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We derive the radial distribution functions at zero particle separation for like and unlike particles in a
plasma. No account is taken of many-body (screening) effects, but the sum over Coulomb wave functions
in the two-particle density matrix is evaluated exactly to give a convergent power series in the dimensionless
parameter yV/2, where y=2ue!/hi*%T, and i is the reduced mass of the two-particle system.

HE singularity that occurs for small particle
separation in a classical calculation of the radial
distribution function (r.d.f.) in a plasma can only be
removed by taking quantum effects into account. Feix,}!
Trubnikov and Elesin,? and Diesendorf and Ninham?
have obtained the first two terms for small values of #
and v: For =0 their result is

g(0)~1—(wy)*2. (6]

In this paper we determine g(0) under the assumption
that at small separations the particles interact via a
purely Coulomb potential, without any indirect effects
due to the presence of the other particles in the system.
Within this assumption the function g(r) can be ex-
pressed in terms of the one- and two-particle density
matrices using the relations

g( l X—y I )=p2(%,5,%,5,8)/p1(x,X,8)p1(y,y,8) )
for distinguishable particles, and

g( I X— YI ) = [P2 (X)y,x:Ya:B) - %p2 (x)y7YJx)B)]/
p1(x,x,8)01(y,y,8) (3)

for indistinguishable particles. In the latter expression
we have taken account of spin and exchange effects
explicitly, so that p, must be calculated using wave
functions for distinguishable particles, It is well known?*
that the density matrix can be expanded as

p2(X1,¥1,X2,¥2,0) =>; exp(—BE W& (xu,y)¥:(x2,y2), (4)

where the wave functions are the complete set of bound
and scattering states including center-of-mass motion.
Note that we use Coulomb units® throughout, so that
the unit of energy is ue!/#?, where u is the reduced mass
of the two-particle system. We absorb this constant
into Eq. (4) by introducing the parameter y=2pue!/
7?kT as the measure of temperature. Eliminating the
center-of-mass factors in Eq. (4) and putting the inter-
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particle separation equal to zero, we obtain for g(0)

8O)= (T RGO, )

where Y;(r) are the Coulomb wave functions for the
relative motion of the two particles. The values of
[¢i(0)|2 are given in Ref. 5, and direct use of these
results in Eq. (5) yields the formulas

g1(0)=271124312 / N _ﬂ ©
o exp(n/k)—1

for like particles, and

© g—viL AL « exp(y/4n?)
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for unlike particles.

We now proceed to develop the complete ascending
expansions for these expressions, using the technique of
Mellin transforms. Turning first to Eq. (6), we write
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Changing variables in this last integral to x=m/k gives
the further simplification

1 c+i0
O=—
81 i

T J c—iwo

27‘_1’1‘——2?—’1 2

XT(p+Hr2p+152p+Ddp  (9)

at which stage we can close the contour to the left and
obtain the complete ascending expansion for g;(0) from
the residues at the poles of the integrand. Examination
of the steps leading up to Eq. (9) shows that we must
take ¢>0. A considerable further simplification can be
made by using several standard functional equations
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for the I" and { functions,® to achieve the final result:

—1)»

20:(0)=1— ()24 3

Gn)§ (n+2)y2+. (10)
=0 nl
We note that this is not just an asymptotic expansion
for small v, it is in fact convergent for all values of +.
We deal with the expansion of g,(0) in a similar way.
The integral in Eq. (7) can be rearranged to give

2ri2y124-22,(0) (11)

and we evaluate the sum in Eq. (7) by expanding the
exponential and changing the order of summation:

w eVt o o g™ © Y™ (2m+3)
2 =2 2 =2 . (12)
n=l 73 =1 m=0ml4mp2"t3 m=0 4™yl

The complete expansion for g,(0) can now be found by
collecting together Eqgs. (10)-(12). The first few terms
are

8u(0) = 14 (my)'P+5 2+ (dr— s Q)%= (13)

For large values of v, these expansions are of no prac-
tical use. The Mellin technique does not give a descend-
ing expansion, as is evidenced by the lack of poles in the
right-hand half-plane in Eq. (9). We therefore estimate
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F1e. 1. g(0) compared with the high- and low-temperature
approximations and e¢v@7, For the electron-electron r.d.f.
T=3.158%X105/y °K and for the proton-proton r.d.f. T'=1.151
X10%/y °K.
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(14 V5)
exp (Vs )
———— L(ﬂx)gexxa(%)

10

F16. 2. gu(0) compared with the high- and low-temperature
approximations and eY@7, For the proton-electron r.d.f.
T=6.314X105/y °K,

21(0) for large v by steepest descents. We expand the
factor (e7/*—1)~! as a series in ¢~*/¥, change variables
to #=Fk? and then approximate the exponent in each of
the integrals by —3{yu.~+ (3nr)(u—u,)%/u.2} where
#n= (nm/27v)%3, to obtain

o f8u,5/2\112
gz(O)zvrI’?v“”Z( 3 ) exp(—3vu,)
n

n=1

8 1/2
“~’7r1/2‘73/2(g) utexp(—3vuy), v>1. (14)

For g,(0), Egs. (11) and (14) show that the sum
dominates for large v. We therefore write

2.(0)=4(my)* 2 exp(}y), v>1. (15)

We present graphically a comparison between the
various formulas given above and the exact (numeric-
ally evaluated) values of g(0). For g;(0) we plot in Fig. 1
the exact result, the first few terms of the series, and
Eq. (14). We also show the function e~V : This is a
conjecture by DeWitt? which turns out to be quite good
provided absolute and not relative errors are the impor-
tant criterion. For g,(0), we plot in Fig. 2 the exact
result, the first few terms of the series, Eq. (15), and
the function ¥,
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