
NONLEPTONIC DECAYS IN SU(3)

kn= —1, k+n= s,—

for which the solution with positive g is

)=0.54, s) = —1.87

(4.4)

(4 5)

to two decimal places. "The value for $ is in good agree-
ment with other determinations" of the F/D ratio
at the BB3f vertex. If one neglects the t-channel
meson exchange, s) becomes the actual F/D ratio at the
spurion vertex. The fact that the above value for q is
not drastically di8erent from estimates by other

The result III is therefore applicable, and we conclude
that in this model (i) the parity-conserving amplitudes
satisfy the Lee triangle (3.3) and (ii) the two relations
(3.6) will hold if and only if the parameters are re-
stricted such that (3.7) is satisfied.

Writing )=cs/(1 —n), s) =y/x, the condition (3.7) gives

authors'4 " for this ratio indicates that the meson
exchange is not a major contribution.

Finally, we remark that since the question of whether
or not conditions such as (3.7) are satisfied is com-
pletely determined by the actual values of parameters
like F/D ratios, one may conclude that within SU(3),
relations of the type (3.6) must be of purely dynamical
origin. The I.ee relation (3.3), on the other hand, can
be a symmetry eGect in that it is a direct consequence
of abnormal charge conjugation in models with this
property. Since every. dynamical model for the parity-
conserving decays must include the pole model in some
approximation, it seems that a large abnormal com-
ponent is in any case inevitable.
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On the basis of Mandelstam analyticity, crossing, and the observed drop of the backward (180') s+p
differential cross sections with energy, a set of unsubtracted dispersion relations is written for the mE
amplitudes A+, J3+ at 6xed 8=m-. A further application of crossing allows the derivation of separate sum
rules on A and 8+, which are not of the superconvergent variety, and which provide us with information
about NN-+ nv scattering. In particular, we are able to deduce a value of the spin-Rip f'(1250)-N-N
coupling constant, which is shown to permit the following observations: (1) The residue function of the P
(or P') trajectory in sN scattering changes sign between t=0 and t=mr'=1. 56 GeVs, and (2) universal
coupling of the f'(1250) meson to the gravitational stress-energy density and the knowledge of the afore-
mentioned coupling constant 6xes the zero-momentum-transfer values of two of the three mechanical form
factors. The values are given in the text. Lastly, we present an extended discussion of the Barger-Cline
model within the context of backward dispersion relations.

I. INTRODUCTION
' 'N this paper, we make use of the Mandelstam
- ~ analyticity, crossing, and the observed high-energy
behavior of the backward sr+p difFerential cross sections
to derive unsubtracted backward (8= 180') sr1V disper-
sion relations. From these we obtain sum rules on the
two invariant amplitudes A and 8+. These are Not

superconvergent relations at N=o; unlike such rela-
tions, 's the sum rules in the present work (1) do not
make use of the Regge postulates niv (0) and/or
csa(0)( —ss, or, equivalently, lim, „sA+, sB+=0 (the

validity of any of these assumptions is at best in doubt')
and (2) clearly separate the I=O and I= 1 contribu-
tions in the XE-+ srsr channel. Thus we are able to
estimate (with a fair degree of confidence) the spin-
flip coupling of the f(1250) to the nucleon and thence
to proceed to the results mentioned in the abstract.
An outline of the paper is as follows: Sec. II:derivation
of the dispersion relations )Eqs. (35)—(38)j and the
sum rules LEqs. (41) and (42)j; Sec. III: saturation of
the sum rules by known resonances; Sec. IV: numerical
estimate of the coupling of the f(1250) to srsr and 1';

3 A. Ashmore, C. J. S. Damerell, W. R. Prisken, R. Rubinstein,' D. S. Seder and J. Finkelstein, Phys. Rev. 160, 1363 (I967). J. Orear, D. P. Owen, F. C. Peterson, A. L. Read, D. G. Ryan,' D. GrifEths and W. Palmer, Phys. Rev. 161, 1606 (1967). and D. H. White, Phys. Rev. Letters 19, 460 (1967).
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Sec. V: implications for the P and E' trajectories;
Sec. VI: implications for the mechanical form factors
of the nucleon; and Sec. VII: relevance of the present
work to the Barger-Cline model. 4 The reader interested
in the applications could omit the derivation presented
in Sec. II.

A+(s, t,u) = aA+(u, t,s),
B+(s,t,u) = WB~(u, t,s),

or, equivalently,

A+(s, cos8,)=+A+(u, cos8 ),
B+(s,cos8,)=WB (u,cos8„),

(1)

(2)

(3)

(4)

II. DERIVATION OF BACKWARD DISPERSION
RELATIONS AND SUM RULES

Consider the invariant amplitudes A+ and 8+ of
the mE elastic-scattering matrix. ' These satisfy the
crossing relations

We now make the following two assumptions:
(I) lim, „„svA+(s,—1)=0 for some 47)0 with a similar
equation for B+(s,—1); and (II) A+(s, —1), B+(s,—1)
contain only those s-plane singularities imposed by the
Mandelstam representation.

Assumption I is plausible either from (a) the observa-
tion that ir+p differential cross sections in the backward
direction (cc ~A+&A +M(B++B ) ~' as s~ eej
appear to fall according to some power law' or from

(b) the Freedman-Wang conclusion' that
Bcc, „s i ~ 'i at 8=ir $n(gu) is the leading u-channel
trajectory], coupled with the indication tha«(0)& —,

for every 7'=1, 8=1 trajectory. ' ' ' Note that we do
rot require sA+(s, —1), sB+(s,—1) —+0 Lor, equiva-
lently, n(0)& —-', for all trajectories), as would be the
case in order to obtain superconvergence relations. "
The indications, in fact, are that aa(0), na (0))—s.s

Using assumption II, we may catalog the complex
s-plane singularities of A, 8 at fixed cos8,= —1 as
follows:

where

cos8, =1+t/2k, s,

cos8„=1+t/2k„',

(3)

(6)

(i) unitary cut, s) (M+t4)s;
(ii) u-channel cut, 0&s& (M—t4)';
(iii) t-channelcuts, 4t4'&t&4M'~circle~s~ =r

t)4' ~ —~ (s&0;
(iv) poles in the B amplitudes at s= Ms, s= (r/M)'.

Z =2M'+2t4',
4k s=s—Z+r'/s,
4k „'=u —Z+ r'/u,

r =M' —p'. ImA*(s'+is) ds'00

A+(s) =-
M is the mass of the nucleon, and p is the mass of the
pion.

At 180' in the c.m. system of the s channel, we have

s —$

1 &~ »'ImA+(s'+is)ds'

The Cauchy theorem, assumption I, and the Schwartz
(&) reality condition then allow us to write the following

Nnsnbtracted dispersion relations:

cosos= —1.
p s —s

As a consequence of (g), the usual kinematic relations
then provide us with the following:

1 ' ImA+(s'+i e)ds'

u= r'/s,

t= Z s r'/s, ——

cosett, = —1 .

(9)

(10)

(11)

7l et' $ —S

t1A+(s') ds'1

2''b ~&~=7 $ —$
=It+Is+Is+I4, (14)

In the kinematical configuration specified by (8)—(11),
the crossing relations (3) and (4) become

G' G'(r'/M4) 1
B+(s)=

Ms s (r/M) s s ir (sr~„i &

ImB+ (s'+ is) ds'

s —s

A+(s, 1)= ~A—+(rs/s, 1), —

B+(s,—1)= ~B+(rs/s, —1) .

It is especially the kinematical curiosity

cosOg= —1 ~ cosO~= —1

(12)

(13) 7i p s —s/

1 ' ImB+(s'+is)

s —s

1 '~ »'ImB" (s'+ie)ds'

(untrue in the equal-mass case) which makes (12) and
(13) and the subsequent analysis possible.

V. Barger and D. Cline, Phys. Rev. ISS, 1792 (1967).' G. F. Chew, M. L. Goldberger, F. E. Low, and Y. Nambu,
Phys. Rev. 106, 1337 (1957).

t3.B+(s')ds'1

2zz (8 [=7 s s

6 D. Z. Freedman and J. M. Wang, Phys. Rev. 153, 1596 (1967).
7 C. 3. Chiu and J. D. Stack, Phys. Rev. 153, 1575 (1967).
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We note briefly the following:

(a) The circle integral is taken counterclockwise, with

AA+(s') =A +((r—e)e'&)—A+((r+ e)e'»')

=A; +—A,„~+ (16)

and a similar equation for AB+. Here s' on the circle
has been parametrized as

s'=re'~, (17)

(b) The argument cos8,= —1 has been suppressed.
(c) The residue of 8+ at s= (r/M)' is obtained by

letting s —+ (r/M)2 in the usual crossed-nucleon pole
term WG'/(M' —I), with I=r'/s (G.'/4»r = 14.4.)

We now proceed to recast these dispersion relations
into a useful form. This will be done term by term in
Eqs. (14). An exactly similar analysis can be done for
Eq. (15), but we shall just state the result in that case.

Integral Ir of Eq. (14). This integral is over the
physical A+ in the backward direction and remains
as is.

Integral I2 of Eq. (14). Perform a change in the inte-
gration variable s' —& r'/s'. The result is

r' " ImA+((r2/$')+i e)ds'
I2=—

(~+.) $"I:(r'/$') —$3
(18)

ImA+(r'/(s' —ie'))ds'

LUse has been made of Eq. (10).]Hence the kinematical
region corresponds to that of physical NN ~ »r»r scatter-
ing in the forward (or backward) direction.

We effect the change of variable s' —+t', which
involves solving Eq. (10) for s'(t') in the two regions
of s:
Region I (—40 (s'( r)—:

"=—:((t-~)+L(t -~)*-4r 3"};
Region II (—r(s'(0):

"=—:{(t'-~)-L(t'-&)'-4"1'"&
Finally, we note from Eq. (10) that in

Region I: s'+i e ~ t' —ie',
Region II: s'+is ~ t'+is', e,e') 0.

(22)

(23)

After some algebra, Eqs. (21)—(23) and the substitu-
tion rule allow us to express I2 in Eq. (14) as

I /' +
42'' O' Sr+0' —2$)

)(ImA +/rs/ «(t M., cos8p—= —1)

1 r o—.

42»» O' T 0' 2$1

&(ImA +)vp (t'+ is, cos8» ——+1), (24)
where

(sr+&)» $ (r —$$ )
with e'= (s'/r)'e)0. The use of the crossing relations
(12) then gives

ImA+(r'/(s' —ie') )=& ImA +(s' —is')
=WImA+(s'+is'), (19)

v=t' —Z,
0'= (T2 4r2)1/2 (t» 4rn2)l/2(t» 4/»2)1/2

Recall also that for the NX-+ 2r»r channel

a+=6-»2ao,

(25)

(26)
which, inserted in (18), yields

r' " ImA+(s'+is)ds'
I2——W—

(2»+„)» s'(r' —ss')
(20)

[(s'—r'/s)']'/'
=—1 for —~ &s'& —r

(21)

Integral Is of Eq. (14). Is may be converted into a
dispersion integral over physical scattering ampiltudes
fOr the NN ~ n.2r prOCeSS.

First, Eq. (10) tells us that for —ee (s'(0, cos8.= —1
(the domain of 12), t' is a single-valued function of s,
varying from t';„=4M whens= —r tot' = ~ when
s= —~ or 0. At the same time, the scattering angle in
the c.m. system of N(pr)+N(p2) ~»r (qr)+»re(q2) is

gimme~ bys

A

cos8»i=pl' qr=
(t» 4M2)1/2(t» 4t 2)1/2

s —f s

Since cos8» is odd under $4-+u, it follows from Eq.
(1) that

A+(t, cos8») =+A+(t, —cos8») . (27)

Equations (24) and (27) then give rise to the final form
of I3)

1 r or+o— '

42»» O' To2$ T+-0' '2—$—
&&I~+(t'+i.,i), (28)

with o and r defined in Eq. (25). The channel descrip-
tion EX—+xw will henceforth be understood if the
energy argnnent is t'.

Integral I4 of Eq. (14). The identification of AA+(s')
proceeds as follows: Write a 6xed s' dispersion relation
for A+(s', t'),

1 " A,+(t",s')dt"
A +($',t') =-

t"—t'

=+1 for —r(s'(0.
' W. Frazer and J. Fulco, Phys. Rev. 117, 1603 (1960).

1 " A „+(I",s') d2»"

Q —I (29)
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wish to calculate the isc
of A +(s',t') across the circ e ' — ortinuity of A+ s,

is to h discontinuities.' It '
then easy

( )From Eq. (10) an t e pa
the following:

Zf 0

~'&0;s'= (rWe)e'+ —+ t =

the reality ohave lnade use o
for

» th, iast s«r "' '
„y A, (t,s*)=LA~(")f the Schwartz pr»'"y

] real.
repI esF om the Ma

we obtain'

p„,(s', t)
ds

1
A,+(t,s) =-

(M+V) ' $ —$

'tp.~(s,t)
ds

1

(M+y) $ —Q

gp.
s —r e ' '=Z —2r cosp~ze,s'=(rW )ee'~~ t'=Z r— e') 0. (30)

The substitution of

t=Z —2r cosy,
s= re'~,

N=r'/s=re '~
Ield the following29 and (30) then yieEquations (29) an

for hA+ sexpressions

0(y&xAA+(re'&) = 2zA, ( — '" yZ —2r cosy, re'~, y
2iA—, (Z —2r cosy, re'&, —

. (33) shows thatinto Kq.

g re'") =0,ImA~+(Z —2r cosy, re'" =
ReA& (Z —2r cosy, re'~) =0.

des these conditionns readFor the 8 amplitu es

ReB~+(Z —2r cosy, re'&) =0,
1mB' (Z —2r cosy, re'~) =0.

(34a)o . into (14) )with theof Eq. (31) into
parametrizationametrization (17) of s'j gives

or I4.sion f

d A +(Z —2r cosy, re'&zr

'bQ
4 —ep r $

' d A+(Z —2rcosy, re'~ir p
q

r—Se

re'~A ~+(Z—2r cosy, re2r

r—se '~
7l p

use the Legendre

'f h o =+""t -" ~ ~x $ since lt ls eato complex s,
'

ea

rite the
&x.

we can write- -f"-"-,
d lf ur unsubtracted isper

'
following our u
pressing cos,—

32)

ds' ImA+(s')A+(s) =-
(M+v) '

r2 $ ImA+(t', 1)dt'

si r' —s(t' —Z)+s'

2rs
+'

A ~+(Z 2r cosy, re'+-"""'
~ ~ 2r

O' G'(r'/3P) 1

M)'—3P s(r— ds' ImB—(s') ———

2r$

ImB-(t', 1)dt'

4~* r' —s(t' —Z)+s'

Bi (Z —2r cosy, re'&)
Slnpdp

r

ds' ImA —(s')A (s)=— s
r21

+
s' —s s'(r' —ss )

( '—Z) ImA t' 1)2r' —s t—
4~' r — '— s'

t
(t'—4M') (t' —4ti') )'"4M' r —s(t' Z)+s—

(37)~ (Z —2r cosy, re'&,
2ir

r'+s' —2rs cosyX p

lf
6 1960).

r of the double spectra1 o h bo drits should extend on y p"The lower limits s ou
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r2
ds' imB+(s')

(„r—ss')—

Gr(r2/M )

( fM)2 s (M+A~

r—s cosy
+(g 2r cosy, re ry (38)

8+(s) =

2zrim~'(t'»)

(39)

(4p)

A-(~' -')='
+(~r 1)=0.

tt g)
/ft +

r2+s' —2rs cosy

2r2 —s t

X/2
Vr4M )(t'—4l )j4~'

34b) in writing
(12) and (13)™y

r —s t +)+
. ~

ese relations.
'm l

icit use «Eqs. 4a and '
relationsthat the clossing

re have made exp
t erge when we no

'.f--t"-The sum rules o

into (37) a"d (38) we obta»Substituting '= ~" '"

(41)
1I'

re'")
p

imA r(t 1)«' '
d Ar(~ 2r "'"-ImA (s

4 2)j&/2 x o
I2' 4 , L(t 4M )(

1 ImB'(t' 1)d'

I 4M')"—('(g6)~ 4sr' (

1
0——

(M+I )

(42)g +(g—2r cosy, re'") ~t

S

im&'(" —') '2

(M+tt)

0=

sln lz- x (M+&)

ole contributes to
stn

t bltiols from p
d duce thts con

760) The P
ontribu-

Co
f Kq y4. Ke

(43) t;on from

r(p) ~ y xiv(
(46)A-(s, t,l)=—

m2 —tP

g+(0 —1)=0

37) and (38).s=o in Eqs.
can be

e
kthatt cine

d th n substituting —
' t grals over v cpinally, we remar

~ tI jntegi als& VlZ ~7trivia 5'll transformed into where

S

p2 and the su total isiven in Taresonances g~o t'1) denote I=
—s& —1)/&

~

des Ar(t', 1) and
~

channel with
1 ~ lmA

e amplitu e
'

the g&~&~ c0 forward scat gttering»
m. energy =4 '

be obtained by re
c.IQ

«lesniaya
t ecros

The same sum
f our ass mp tiong an t e

lations (12) a

A-(0, -1)=

P2 pxm' P
(44)

z
d ~ (Z —2r cosy, re'"

Fmr(0) = 1.85,
= (4/r X2.4)'",

z 4M2

7M' —t') (t'—4p') j'"L(4 & 2 I/O

dt'A;(t', 1)

8+. We prefer to use thewit a s
'

h imilar equat' ion for
wppar ametrization.

TION OF SUM RULES BYIII. SATURATIO
KNOWN RESON

A. A Sum Rule

'n . The contributionsC t ibution from n

lonanees to the first integ
enfeld

m the various reso
the data of Rosencalculated from e en

8reit-Wigner oet ul. ," usin

ution. The separa ete contributions osizable contribution.

"A . . Rev. Mod. Phys."A. H. Rosenfeld et al. , ev. . s.

to the A and 8+s of the nN resonances toI. Contnhutron
sum rules Eqs.

Resonance
[MeV (1,1~)g

Nucleon po1.e

1920(-,',g+)
2420(-,',~~+)

1525{-,', -', )
2190($,$ )
1400 ($,g+)
("Roper" )

1688(k,4+)

Hi h-energy continuumg-
(aor, &S GeV)

Contribution
to A sum rule

(GeV ')

0 ~ ~

—1.01
—0.25
—0.07

+0.46
+0.28
—0.60

—0.60
—0.01

Contribution
to 8+ sum rule

(GeV ')

+16.36
—10.47
—1.40
—0.31
—0.93
—0.32

+ 1.31

+ 0.96
0.00

mated using the Regger contri u ib t'on was estimate"The high-energy
parametnzati ion of Ref.
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and p,N~ ——p, =y, if the p is universally coupled to
the isospin current. "'4 For our purposes, this is a
sufficient approximation; we then obtain from (45)
and (29)

F2'(0)
A,—(t,s)= —2r y'(2s+t —Z)b(t —m') (48)

2M

giving the quantity desired in Eq. (41)

p, (0)
A2 (Z —2r COSy, re'&) = —i2r

235

nances""" to At—(and to the second integral) are,
of course, unknown. LWe shall discover later some
evidence that the contributions of one (or more) of
these resonances to Bi are not small. j As a rough
approximation, we may retain the only state which
seems to have sizable coupling to 2rtr, the g'(1650) ""
(with suspected J~=3 ). Equation (51) will then pro-
vide a cancelling relation between the two constants
characterizing the spin-fhp and non-spin-flip coupling
of the g' to the nucleon, since these both enter into A ~ .

Keeping this comment in mind for future reference,
we turn now to the 8+ sum rule.

Z —mp )
Xsiny b cosy —

~. (49)
2r )

Equations (49) and (47) then yield the p contribution

z
At (Z —2r cosy, re'&)dy

F2'(0)
y 2=42r(2.36) GeV '. (50)

2M

Note, however, that this estimate could be changed
to 4r(1.'l4) GeV ' by keeping universality but obtain-
ing y, from the e+e annihilation data of Ausslender
et al." (corresponding to I', 95 MeV), or to 42r(2. 75)
GeV ' by deducing 7, yp++ from the assumption that
the entire isospin-Qip xS amplitude at threshold is
given by p exchange. ""Other possibilities are also
available. We average among the three given here and
change the right-hand side of Eq. (50) to read
4r(2.28&0.40) MeV '.

The sum rule now takes the form

42r (—0.51&0.40) =—
0

dy A t '(Z —2r cosy, re'&)

22 J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960); Phys. Rev.
Letters 17, 1021 (1966).

~4 M. Gell-Mann and F.Zachariasen, Phys. Rev. 124, 953 (1961).
'2 V. L. Ausslender et al. , Phys. Letters 2SB, 433 (1967).
is An equivalent result is obtained from current algebra LS.

Weinberg, Phys. Rev. Letters 17, 616 (1966)g combined with the
Kawarabayashi-Suzuki relation rI/, =f f,.

'~ T. Ferbel et al. , Phys. Rev. 143, 1096 (1966); W. M. Katz,
B. Forman, and T. Ferbel, Phys Rev. Letters . 19, 265 (1967);
G. R. Lynch et al. , Phys. Rev. 131, 1287 (1963).

1 " ImA'(t', 1)dt'
(51)

22r 4M~ L(t~ 4~2) (t& 4p2) J/2

where A ' denotes all contributions except for the p
contribution. The error reflects the uncertainty about
the p.

The continuum part of the second integral is assumed
to be small, since pp-annihilation data in the region
0-3.3 GeV/c indicate only small branching ((0.5'%%u&)

into ~x.' The contributions of the higher I=1 reso-

p

dy Bi+(Z—2r cosy, re'&)

ImB'(t', 1)dt'1
+

4sr2 L(P 4/JII2) (ti 4tt2)$1/2

=42r(16.36—11.16)=42r(5.20) GeV '. (52)

Annihilation contribution The . total Pp-+2r2r cross
section is known to be very small between 0 and 3.3
GeV/c. "The only I=O resonant structure suspected"
(at &=2380 MeV) has a small decay rate at least into
pp. si This leads us to safely neglect the second integral
in (52).

Contribution of resonances tt/ith mass (Z3I. The
present data" indicate no I=0, 6=+ mesonic activity
with sizable coupling to zm in the region below 1876
MeV except for the 7~= 2+ f'(1250). The 2+ f'(1500)
seems to have only small coupling to ~m, while any
possible 0+ 0- meson" does not contribute to 8+. With
a slope of 1 GeV ', the 4+ recurrence of the f'(1250)
would have a mass very close to NN threshold. There
would then be a severe suppression due to the angular-
momentum-threshold factor p/vtv', since the relevant
NN state is 2F4 (in spectroscopic notation).

f' contribution The couplin. g of a spin 2+ meson to
the hadrons x and Ã may be described by the covariant

'8 M. N. Focacci et al. , Phys. Rev. Letters 17, 890 (1966).
22 D. J. Crennell et at. , Phys. Rev. Letters 18, 323 (1967)."R. J. Abrams et al. , Phys. Rev, Letters 18, 1209 (1967).
"The results of Ref. 20 show that (2J+1)x=0.8, where J is

the spin of resonance, z= 1',i/Pi, ~. If we construct a linear Chew-
Frautschi plot for the f' trajectory with a slope=1 GeV ~, we
discover that at t= (2360 MeV)', Re m=6. From the data above
we And x=0.8/13=0.06.

"W. D. Walker, J. Carroll, A. Garfinkel, and B. Y. Oh, Phys.
Rev. Letters 18, 630 (1967); K. Malamud and P. Schlein, i'.
19, 1056 (1967).

B. B+ Sum Rule

Contributions from N Pole and 2rN scattering Th.e
first term on the right-hand side of (42) is equal to
42r(16.36) GeV '. The secon. d term is again saturated
with the known resonances (here the 33 makes the
dominant contribution; see Table I), giving 42r( —11.16)
GeV '. Thus the sum rule becomes
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vertex functions"

Z(f~~): 8.,~, 2q„()„e"(A), (53)

&(f&&): &Lvr»"Ls (I'pv.+I'.vp)

+ (vr»"'/M)I'pI'v7e""(A)
v (54)

)0

gh

N—

f

\
\

P)
N

Pg

with the rnolnenta and isotopic indices as shown in
Fig. 1, and the definitions

Q= k(Ci+Cs)

I'=k(Pi+Ps)
A=q2 —q».

1 is the unit matrix in nucleon isotopic space, and
ep" (A) is the spin-2 wave function.

Using these couplings and the spin-2 projection
operator'4

Fro. 1. fvvtv and fNN vertices.

MeV, my0=1250 MeV "yield

s/4m=5. 32 GeV '.
Equation (58) and (60) then combine to give

yrpp= &2.30(4z)'ls GeV ',
'7 f &"=&4.51 (47r)'" GeV '

~

We now turn to the applications of this result.

(60)

(61)

(62)

epv (A) cpa (A) =
2 (gppgvo+gpvgvp sgpvgpa)

—(1/2m') (g-ApAp+g"ApA. +g"ApA. +gpp~. A.)

+ (1/3m') (g„„A,A,+g„,A„ttt„) B+(s,l) 2M' y prsiiv &"oir/(mrs t)—(63)

IV. APPLICATION TO P AND P' TRAJECTORIES

Equation (56) approximates B+(s,t) for any s as
long as t~my'. In particular,

we obtain
+ (2/3m )ApAvt-"&pA v (55) (where &pr, is the total pion lab energy) is a good approxi-

mation as long as ~1,& 4 GeV and t~my'.
The Regge form for B+ corresponding to I' (or E')

whence

Z——Bt+(Z—2r costtp, re'p)

s yf |vtvyriviv&" sin pp5Lcos&p —(Z—mp)/2r7. (57)

For the reasons given above, we saturate the sum rule
(52) with (57) v

obtaining"

'7f '7

fivish

&"/4tr =+10.4 GeV (58)

From Eqs. (53) and (55) we may calculate the decay
rate fP +zz. This t-urns out to be

r, = s(»..s/4 ) (hs/mrs), (59)

where 2k = (mp —4p')'I'. The assignments I'~p= 120

"We have omitted terms proportional to g„„, b,„h„, since these
contract to zero with epv(A). Also omitted are the usual wave-
function normalization factors (2E) 't' for each boson, (M/F)'t'
for each nucleon.

'4 The spin-2 wave function ep„&~& (et) is obtained from the rest-
frame J=2, J,=P wave function via a Lorentz transformation
along 6,. Also c„„("=g), C(112; ) —X', V) e„(" "')e„(~'). For a
field-theoretic derivation of the spin-2 propagator, see S. Wein-
berg, Phys. Rev. 133, 81318 (1964); S.-J. Chang, Phys. Rev.
148, 1259 (1966)."A value of +4.6 had previously been obtained via the super-
convergence postulate in Ref. 2. However, the authors there had
made use of the questionable properties lim, „sA.+, sB+=0
(see Ref. 3). In addition, (i) their value varies widely with the
value of I in the fixed-g sum rules and (ii) their assumption of 33
saturation is not supported in our A sum rule (see Table I).
However, we do agree in sign and order of magnitude, and this
will be significant in the applications.

4P (mr') (~i/~p)
B+(~f) =-

mt —t, &r (m~2) (mrs ])
(65)

leading Lin conjunction with Eq. (63)7 to the
relationship

P(my )= zMoipprvwpf+jljT&''tct'(mg')=61. 4ct'(mr' ). (66)

The parameter ~0 has been set equal to 1 GeV and we
have, in the last step, made use of Eq. (58).

We compare (66) with some fairly recent experi-
mental fits," which provide us with P(t) in a range
—0.6 GeV'&t(0. In terms of the parametrization of
Ref. 27,

B+(&pz„f)=—Dp(1+e ' ")
&r'(n+1)

sin+a

&(exp(Dtf) (&pr/&pp)
' (67)

"V.Singh, Phys. Rev. 129, 1889 (1963)."C. B. Chiu, R. J. N. Phillips, and W. Rarita, Phys. Rev. 153,
1485 (1967).

(I+e
—i|va &tl) f~ ~

a &tl i-
B+(&pr„f) = —zn(f) P(t)~ —i, (64)

coL » t sinz. &r (t) k &pp)

with coo as an arbitrary scale factor.
If the fP(IZ50) lies ort the P (or I") trujeefory, then

near I= mP Eq. (64) becomes
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TAnLa II. Comparison of p (0) (Ref. 27) and
P (mfs) (present work).

Solution Iff0 '(0) '(m y~)
(Ref. 27) lies on (GeV 2) (GeV «) n(0) (Gev ~) (Gev ~) (GeV ~)

(a)
(+)
(b)
(b)

P
P'
P
P'

0.34
0.34
0.23
0.93

0.94 1.00
1.20 0.72
1.05 1.00
0.80 0.65

70.0
—212

91
—23.0

—44.5
-83.4
—5.8

7 9

+57.7
+73.2
+64.5
+49.1

one obtains from (64)

P(0) = (1/ir)Den(0)I n(0)+1j. (68)

In Ref. 27, there are two solutions (a and h), each of
which demands that Do be negative for both the I'
and P' trajectories. Hence Eqs. (66) and (68) indicate
that the residue of the P (or P') trajectory changes sign
for 0&t&1 56 Ge. V2. The value of P(0) with which to
compare p(mf ) of Eq. (66) now depends on (1) whether
the fs lies on P or P' and (2) which of the solutions
(a) and (b) of Ref. 27 we choose. Also, none of the slopes
n'(0) given in Ref. 27 sends its respective trajectories
(P, P) through n=2 at t=1.56 GeV'; this dictates
curvature for n(t) and hence the inequality of n'(mts)

I entering Eq. (66)$ and n'(0) (provided by the data).
%e tackle this question first in a crude approximation.

Expand each trajectory in a power series

u(t) =n(0)+u'(0)t+-', n" (0)t', (69)

with n(0) and n'(0) assumed known from the data.
I'ix u" (0) by setting n(ms') =2. u'(mf ) is then com-
puted from (69) and turns out to be

u'(ms') =2(2—u(0))/ms' —n'(0)
= 1.28(2—n(0))—n'(0) GeV '. (70)

Now calculate p(mr2) from (66).
The comparisons are given in Table II. It is dear

that IP(mr2) —P(0) I
is considerably smaller for the

choice of solution (b). There is no clear choice between
the P or P' as the trajectory associated with the f'

In surronary, our determination of pf pfQ+(", the
identification of the f' as a particle on the P or P'
trajectories, and the available Regge fits to 2r+P data
near t=0 provide us with two conclusions: (1) that
p(t) changes sign between t=O and t=ms2 (and thus
has a zero) and (2) that solution (b) of Chiu, Phillips,
and Raritasr is to be preferred to solution (a) on the
criterion of minimal variation of P(t). We may remark
at this point that the Regge fits to 2r pa ir'n near
t=0 "'s and to 2r+P —+ ir+P near u=O ' both impose as
a condition on their parametrization that P, (t) Lor

PN(+u) j extrapolate to its coupling constant value for
t=m, ' or Qu=mi2. The analytic form employed to
parametrize p(t) in Ref. 27 L'Eq. (67)j, if used to
extrapolate Pz or Pz' to t=mf2, immensely increases
the variation IP(mr2) —P(0) I

already present. (See
Table II.) It is then suggested, on the basis of the

'8 F. Arbab and C. B. Chiu, Phys. Rev. 147, 1045 (1966).

present analysis, that future parametrization of the
P, P' residues take account of the sign of p(mfs) as
given in Eq. (6), or at least attempt to minimize the
variation Ip(mf') —p(0) I. At any rate, we have one
lnore peculiarity associated with this troublesome
aspect of Regge theory.

V. APPLICATION TO MECHANICAL
FORM FACTORS

An isoscalar, symmetric, rank-2, tensor density
8„„(x),satisfying 81'8„„(x)= 0, has the matrix elementsu

(~,q, I8„„(0)I .q, )=I 8.,/(2q„2q„) I2]

xl 2Gi (q')Q„Q,+G2 (q')(q'g„q, q,)—g (71)
and

PP2 I8"(0) I &Pi)= (~'/P»p»)'"u(P2)
X$,'Gi (q')(-P„~„+P.~„)+GP(q )P~„

+G "(q')(A"—q.q.)lu(p ) (72)

between pions and nucleons, respectively, where

q p2 pl or q2 ql p

P=-', (p2+ pi),
Q=2(q2+qi).

If, moreover, 8„„(2:)is the energy-momentum stress
tensor, then, in particular, 822(x) is the Hamiltonian
density, and the conditions"

Gi (0)=1,
Gi (0)+G2 (o)=1

(73)

(74)

are enforced by the equivalence principle.
We now inquire whether one can separately fix GP (0)

and G2 (0). The answer, under an assumption relevant
to this work, is yes. The assumption is that f is
universally coupled to 8„„(x).The elucidation of uni-
versalitity in the present context will follow presently.

If the f' is coupled to 8„„, then we may relate the
coupling constants ps and yfir+&'& (i=1, 2) I defined
in Eqs. (53) and (54)j to Gp and GP (i=1, 2) in the
usual way:

vss x'"=v~GP (0),

7 fsrsr
"i=V iiG2~(0) .

(75)

(76)

(77)

G (0)=ysriN i'&/yt = 1—G (0) (79)

"H. Pagels, Phys. Rev. 144, 1250 (1966), and references
therein.

Universality (as with the coupling of the p to the isospin
current" '4) is taken to mean

(78)

This postulate implies Lvia Eqs. (74)—(77)] the
conditions
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and

Vtmrt'i+Vttrtrt i=Vs« ~ (80)

(the "interference model" )

res

Combining (79), (80), (61), and (62) leads to the
numerical results

(81)GiN(0) = 1.96~2,

GP(0) =0.92=—1,
yytvtv&'& = ~2.50(4tr)'ts GeV '. (83)

The "synunetrical" case GP(0) =GP (0)= s would
require yrtrN"&/yy =-', , which combines with (60)
to give yttvtv"'yt, /4n =2.66, differing considerably
from the value 10.4 needed to saturate the sum rule.
An obvious check on some of the physics of this section
is to verify the relationship (80). This can only be done
with some reference to the A+ amplitude.

As an example of such a test, the contribution of f'
exchange to the (+) nN scattering-length combination
can be calculated. using Eqs. (63) and (79). It turns out
to be

B aegge(s~ cosg 1) 0 (89)

Hence we may calculate (as best as we can)
B~ &=B +B+, using our dispersion relations (36) and
(38), and compare with (89). Otherwise stated, the
contribution of ReB to Ref t as given by Eq. (84)j
in the energy region considered should be small com-
pared with RefR,«„ as predicted by Barger and Cline.

From Eqs. (36) and (38) we may extract the follow-
ing expression for ReB=ReBb,=ReLB;n—(direct-
channel resonances+ nucleon pole) ):

tt (tt its+ 2ttst s)

4Mtt 'yfx~(7fiVN +VfNN )

trtt'(1+tt/M)

=0 0057LV ('Yf +'y)"')/4 '3 (84)

with the object in square brackets expressed in GeV '.
The result of universality, Eq. (79), gives r' ImB'-'t'(s')ds'

(85)
ReB(s)=—

tt (ttrts+2tt3/s) —0 0057' f~gr.'/4n. =0 03, . s'(r' —ss')

where f„, contains all the direct-channel resonances
(including the nucleon pole) in Breit-Wigner approxi-
mations, and a background (bg) term f is given in this
model by Reggeized N*(1236) exchange, with one
parameter, a constant residue function, left to be
determined by fitting. The resulting fit to the data is
remarkably good. As an application of the present work,
we examine whether the backward dispersion relations
(35)—(38) can lend support to the real part of f as
given by Refa, ggin the Barger-Cline Model. (We can,
of course, say nothing about Im f.)

One simple comparison can be made as follows: It
can be shown that the parametrization of the trajectory
n(gu) as a function of tt alone (one of the assumptions
in Ref. 4) leads to the prediction

negligibly perturbing the value zero obtained from
vector dominance" or current algebra. ~ The significance
of this test may be gauged by allowing p f++&')~y fN g &'&

+4 5(4n)'" GeV-' as in Eq. (62). This gives

tt (ttrts+ 2tt3/Q) ~&0.12, (86)

far outside the Hamilton-Woolcock value" —0.005
&0.009.

(where r=M' —tt'), is given by a sum of two terms

'0 S. steinberg, Phys. Rev. Letters 17, 616 (1966)."J.Hamilton and %. S. Woolcock, Rev. Mod. Phys. 35, 737
(1963), Eq. (4.49).

t' S. &. Kormanyos et al. , Phys. Rev, Letters 16, 709 (1966).

VI. APPLICATION TO BARGER-CLINK MODEL

The presence of interesting interference patterns in
1—3-GeV g g backward scattering" has prompted
Barger and Cline4 to propose an explanatory model for
these data. This consists of assuming that the n p
scattering amplitude in the backward direction,

f= (1/8n. )P(1+r/s)(A +A+)
+M(1 r/s)(B +B+)g —(87)

2r Bi++Be

r—se '~
+ (NN ~ n.n), (90)

(91)

In the second integral, the p contribution is"

B,(4.80)=+1.15 GeV sX4r. (92)

The value of yf yf~~( ) deduced in Sec. IV may be
used to evaluate B,+ and the fs contribution to (89):

Bf'(4.80)= —0.03X4n. . (93)

te This is obtained from Bc =7r2Gtr f,'S(t tris), with f,'—
=-47I-X2 4, G~ =2.3$.

where the last term denotes a dispersion over unknown
physical NN -+ n n. scattering amplitud. es.

One can first note, of course, that 8 cannot be
identically zero, as demanded by n(get)=n( —QN).
Of more practical interest is its value in an important
region of the analysis of Ref. 4, namely, at the "2190"
dip position, s= (2.19)'=4.80 GeV'.

The first integral (giving the crossed n+p contribu-
tions) is completely dominated by the 33 resonance.
It is evaluated using standard procedures and gives

B~e(4.80)=+0.68 GeV 'X4n.
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Finally, consistent with the postulate n (QN)
~n( —gu) in the region of I=0, there is no asymptotic
contribution to ImB via the first and third integrals
in (90).

The contributions (91)—(93) sum to

ReB(4.80) =+1.80 GeV 'X4n.

+higher resonant contributions. (94)

The known part of Eq. (94) is a far cry from zero.
In fact, from Eq. (84) we see that Ref is itself
augmented by ', (1+-r/s)MXReB/47r, which is

Eq. (84), lead to

Ref=+0 20. GeV-' due to A

=+0.70 GeV-' due to B. (98)

These differ greatly from the Reftt, «, given in Eq. (95).
We have omitted from the A calculation a considera-

tion of the 0-."An estimate of its contribution, com-

mensurate with the bounds on its proposed mass and

width, " the dispersion 6ts to NN scattering given by
Ball, Scotti, and Wong, 35 and the results of xN partial-
wave dispersion relations, " shows that it can at most
add an entry

Ref=0.70 GeV ' at 4.80 GeV'. (95) ~A. (4.80)
~
(0.5X4tr GeV ' (99)

The value of Refa.«. at this point is [via Eqs. (17)
and (21) of Ref. 4]

Ref@,«, +0.0——7 GeV '. (96)

A~ ~(4.80) =+0.13X4tr GeV-',

A, (4.80)= —0.57X4rr GeV '

Azo(4. 80) =+0.78X4tr GeV-'. (97)

In the f evaluation, in lieu of any other information,
we have made use of the f' coupling constants found

in Secs. IV and V. The results above, folded into

"See Ref. 9 for the helicity expansions of A and B.

It is therefore clear that agreement with the postulate
rr =rr(N) near I=0 will only come about if one or more of
the higher boson resonances" have substantial coupling
to the mx states md to NX states in which the helicities
are opposite (only "triplet states" enter B). The only
higher resonance which has indicated substantial
coupling to era is the g'(1650).""If this removes the
discrepancy just discussed, then the seeming saturation
of the A sum rule [Eq. (51)] is really the result of
large cancellations between NE helicity Rip and nonQip

couplings, '4 as mentioned at the end of the discussion of
the A sum rule in Sec. III. The B+ sum rule [Eq. (52)]
wouM then still give a good indication of p f p fNpf'",
since there are no indications yet of other low-lying
I=0 resonances. "

We may also try to evaluate the A. piece of Eq. (84)
using Eq. (35). We quote the results:

to Eq. (98) which has the possibility of cancelling (or
doubling, if the sign is as given in Ref. 36) the contribu-
tion of ReZ to Ref shown in Eq. (98).However, the o.

does nothing to the A or B+ sum rules, Eq. (52).
At this stage these numbers should be merely sugges-

tive of the need for coupling to higher resonances in

order to obtain the Ref of Barger and Cline (which,
irrespective of its origin, gives a good fit to the data).

Expecially interesting is the gross violation by our

calculated B of the "gg-evenness" condition embodied

in Eq. (89). Several alternatives present themselves

concerning this point: (1) The I= 1 g (1650) meson and

possibly other I=1 mesons"" show large enough

coupling to mm (and perhaps experimentally to EJt7 if

their mass )2M) to allow a cancellation of the B
amplitude thus far calculated. In this way, there would

be no need. to alter our B+ sum rule. (2) There exist also

higher I=0 resonances with substantial coupling to mw

and JV'Jt7. These would then force a reconsideration of

the B+ sum rule and of the derivation of yy~~"&. (3)
None of the higher mesonic resonances has substantial

couplings to both xx and to NX. This latter possibility
would cause us to take more seriously our evaluation of
B.The Regge model used by Barger and Cline to obtain

f would then need to be reexamined. The over-all

question of the sensitivity of their analysis to Ref
could also be studied. ' '
"J.S. Ball, A. Scotti, and D. V. Kong, Phys. Rev. 142, 1000

(1966)."J. IIamilton, P. Menotti, G. C. Oades, and L. L. J. Vick,
Phys. Rev. 128, 1881 (1962).

"Most of the cancellation near the dip is between Imf„. and

Imfa, «„ since Ref„, 0 at the resonance.
38 C. B. Chiu and A. V. Stirling, Phys. Letters 268, 236 (1968).


