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The properties of Mandelstam cuts are discussed which can be deduced from expressions suggested by
Feynman integrals together with an understanding of the singularity structure of real integrals. The sug-
gestion of Schwarz about their “switching on and off”” properties is confirmed, and some expressions for
discontinuities are elucidated. The existence of a pole singularity underneath the Reggeon-particle and
normal threshold cuts is demonstrated, and the importance of its role in eliminating the Gribov-Pomeranchuk
essential singularity is emphasized. This property is also explored in terms of the Feynman-integral model,
and the dangers and subtleties of calculations based on orders of the third spectral function are exhibited.

1. INTRODUCTION

N a recent paper! Schwarz has proposed a very at-
tractive relationship between different types of
Mandelstam cuts? in the Regge plane. In particular he
has argued that there should be certain “switching on
and off” relationships between the different cuts in
order to avoid violating the Froissart bound in cases
of high spin while continuing to avoid the need for a
Gribov-Pomeranchuk (GP) essential singularity.? In
this paper we shall show that these relationships do in
fact exist, even in cases where the spin is not high
enough for the Froissart-bound argument to be appli-
cable. We shall also make some contribution to the
understanding of how the presence of GP essential
singularity is avoided in perturbation theory.

Our principal tool in the investigation will be an
understanding of the singularity structure of integrals
with real contours. A full account of the mathematical
foundations has been given elsewhere? for use in a
different physical context, but it will be convenient
here to summarize the main ideas and conclusions.

We consider integrals over real contours of the form

()= f B f(ass). (L.1)

The integrand f has singularities given by the real
equations
S,‘(xa,Zp)=0. (12)

The contour of integration will have to be slightly dis-
placed to avoid these singularities. It is convenient to
specify the way in which this is done by the equivalent
procedure of keeping the contour real and adding an
infinitesimal imaginary part to each .S;,

S';‘—) S¢+’1:€{, (13)

17J. H. Schwarz, Phys. Rev. 162, 1671 (1967). The switching on
and off possibility was earlier mentioned in Ref. 9, but its full
significance was not realized at that time.

2S. Mandelstam, Nuovo Cimento 30, 1127 (1963); J. C.
Polkinghorne, J. Math. Phys. 4, 1396 (1963).

3C. E. Jones and V. Teplitz, Phys. Rev. 159, 1271 (1967);
S. Mandelstam and L. L. Wang, 4bid. 160, 1490 (1967); J. B.
Bronzan and C. E. Jones, 7bid. 160, 1494 (1967).

*M. J. W. Bloxham, D. I. Olive, and J. C. Polkinghorne,
Cambridge University Report (unpublished).
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to specify the direction from which it approaches the
contour. This is exactly analogous to the familiar e
prescription for Feynman integrals.

A singularity of the integral occurs through the well-
known pinch mechanism when the implied displace-
ments of the contours become incompatible. If this is
due to singularities Sy, « -, Sa, the equation of the
Landau curve is given by
a5
__.=0’

= 1’ .o (1’4)

E2) Z'xi
5

0%y

where the \; are multipliers defined by the equations
(to within an over-all multiplicative constant). Elimi-
nating x, and \; from (1.4) gives a single equation in
the variables zg. The conditions for the resulting
Landau curve to be actually singular at a given point
are:

(1.5)

The curve will become nonsingular at a point where
condition (1.5) fails. Then one of the \; must vanish at
the point and change sign thereafter. The point then
corresponds to a contact with a lower-order singularity,
namely, that generated by equations similar to (1.4)
but with the particular singularity S; omitted. This
switching off of a singularity is called, in the jargon, the
hierarchic effect.

An important notion in discussing integrals of the
type (1.1) is that of the natural continuation round a
singularity. This is the continuation in a sense such
that the real contour of integration does not suffer a
finite distortion by the singularities. In terms of a
suitable variable 7, normal to the singularity curve, it is
determined by the common sign in (1.5); for details
see Ref. 4. '

If the singularities are all poles Si™, we define the
Cutkosky integral associated with a singularity as that
obtained by replacing Si™* by (—2w1) sgne; 8(S;), for
those .S; participating in the singularity. Then the dis-
continuity across the singularity is given by

discl = C>— (C<) —%€nat 3 (16)

where C> denotes the Cutkosky integral evaluated at
the point where we evaluate the discontinuity, and C<

1475

\:€; has the same sign for =1, - -+, #.
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F1c. 1. The singularity structure in the s plane. Parts of curves
singular in the natural continuation limit are drawn with solid
lines, those nonsingular in this limit with broken lines. The
arrows, when rotated through 3= in the complex plane, indicate
the sense of the natural continuation.

denotes the continuation of the Cutkosky integral,
evaluated on the other side of the singularity, to the
point concerned and in the sense indicated.

In many cases, for example Feynman integrals, C<=0
and so the formula simplifies. Technically this is due to
the existence of a vanishing cycle, but as we shall see it
does not happen automatically when we consider
Reggeons.

Finally, we note that singularities of Cutkosky inte-
grals are given by rules similar to the above. The main
difference is that if we have 6(S;) instead of ;™ then
there is no ¢; and the corresponding singularity does not
appear in condition (1.5).

2. SINGULARITY MECHANISMS

We shall suppose that the contribution to the scatter-
ing amplitude due to two-Reggeon exchange can be
written in the form

F\F,
I—a(k)—B((g—k))+1
1 1
X .
sinra(k?) sininB((g—k)?)

F(l,5)= (sini~l) / ak

(2.1)

Here s=¢*>0; % is a two-dimensional vector with one
time and one space component; a and 8 are the Regge
trajectory functions, which we have taken to be of
positive signature and which are assumed to be real
analytic functions with positive derivatives in the re-
gions considered. The functions F; are the functions
describing the emission and absorption of the Reggeons,
respectively, and are functions of /, s, k2, and (¢—k)2,
assumed analytic in the regions concerned.

The form (2.1) is reminiscent of the expression first
suggested by Gribov, Pomeranchuk, and Ter-Marti-
rosyan,® and confirmed by further investigations based

5V. N.. Gribov, I. Ya. Pomeranchuk, and K. A. Ter-
Martirosyan, Yadern. Fiz. 2, 361 (1965) [English transl.: Soviet J.
Nucl. Phys. 2, 258 (1966)]; Phys. Rev. 139, B184 (1965).
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on Feynman integrals.5~8 However, in these latter
papers the problem was investigated in the region s<0
and the loop momentum % in the analogous expression
was taken as having two space components. We shall
show in Sec. 4 that our expression is correctly related
to these other Anusdilze, but in this and the succeeding
section we shall be content to investigate the properties
of (2.1), considered on its own merits as providing a
consistent picture of the singularity structure in s>0.

The singularities of the integrand of (2.1) which are
of concern arise from the vanishing of denominators.
They are

So=l—a(#)—6((g—k)")+1=0,
Si=k—m,2=0,
Se= (g—kP—m?=0,

where in writing equations for S; and S; we have sup-
posed « takes a correct signature integral value J, at
F2=m,?, and B similarly take a value J; at (g— k)?=m;?2.
Of course there may be several possible values of J,
and J; but we consider specific ones.

The Landau curves these singularities generate are
given below.

(2.2)

A. Reggeon-Reggeon Cut (RR)

This is generated by S, alone and corresponds to the

equations
3S0/0k=0, S,=0.

It occurs at I=agrxr(s), where arg is the maximum value
of a+B8—1 in the region of integration. If the two
Reggeons are identical (@=4), then

ORR= 20[(8/4)—'1 (2.3)

For nonidentical Reggeons the form of arg depends on
the details of the trajectory functions. It always exists
and has positive slope if @ and 3 themselves have posi-
tive slope.

B. Reggeon-Particle Cut (RP)

The particle « is Reggeized but particle b is on its
mass shell. This singularity is generated by So and S..
The Landau equations are

95 aS.
A—FA—=0, (2.42)
ok ok
So=0, (2.4b)
Sz—"— 0. (2.40)

Equation (2.4a) implies that % is parallel to g, and the
remaining equations then give

aRP(s) = OL((S”“’— mb)2)+]b—- 1.

6 J. C. Polkinghorne, J. Math. Phys. 6, 1960 (1965).

7V. N. Gribov (to be published).

8J. C. Polkinghorne, Cambridge University Report No.
DAMTP 68/5 (unpublished).

(2.5)
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Because of the square root this equation is in fact
double valued.

C. Particle-Reggeon Cut (PR)

Here the roles of ¢ and b are interchanged. The
singularity is generated by Sy and Sy and its equation is

apr(s)=B((s*2—mq)?)+J.—1. (2.6)

Although the first authenticated cases? of cuts of the
type described in Secs. 2 B and 2 C were obtained from
Feynman integrals in which the particle was in fact an
elementary particle, it has long been understood that
the particle could also be one lying on a Regge
trajectory.?

D. Normal and Pseudothresholds (N,P)

They are generated by .Sy and S, and occur at the
familiar values

2.7

5= (ma=mp)?.

E. Fixed-! Singularity (X)

This is generated by So, S1, Se together. When these
each vanish we have, immediately,

I=JotTo—1. (2.8)

Since this is generated by three poles in a two-
dimensional integration, the discontinuity formula in
Sec. 1, yields a § function. Thus this singularity is a
pole. Its existence was noted by Schwarz who did not,
however, discuss its significance. It occurs at the first
nonsense integer, just like the Gribov-Pomeranchuk
pole, but as we shall see, it is distinct from it, being
associated with the removal of the GP essential
singularity.

Other possible combinations of S’s fail to generate
meaningful singularities.

The interesting suggestion made by Schwarz! is that
the RP and PR cuts are switched on and off as singu-
larities by the RR cut. We immediately see that this
is possible by the hierarchy mechanism discussed in
Sec. 1 since the RP and PR cuts are generated by just
one more singularity than the RR cut and hence touch
when they meet as discussed below.

Figure 1 illustrates the various curves (a)-(e) in the
(s,0) plane. As already noted, the RP and PR curves
are two-valued functions of s because of the s'? in Egs.
(2.5) and (2.6). They pass through the points 4; and
4. with (s,]) coordinates ((mat+ms)?, Jo+Jp—1),
((ma—mp)?, Jo+Js—1), whatever the functions e and
B may be. Further, these curves touch s=0, s'/? chang-
ing sign at the points of tangency, being positive at 4.
The curves RP and PR have minima B, and B, at
s'2=1m;, and m,, respectively.

. 9J. C. Polkinghorne, Phys. Rev. 128, 2459 (1962). The argu-
ment has been rediscovered by Schwarz in Ref. 1.
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We have anticipated a point by drawing RR actually
touching RP and PR. Schwarz pointed out that this
must happen as illustrated if PR and RP are to be
nonsingular at s=0 (so as not to violate the Froissart
bound if the spins J, and J5 are too high), while one of
the two is singular at A4; in order to vitiate the GP
essential singularity argument. We show now that the
desired tangency does occur in that the particular one
of RP and PR which has steepest slope at 4;, must
touch RR between A4; and the minimum B, or B,
whatever functions «, 8 are involved.

This tangency of RP with RR follows if the relative
sign of the multipliers Ao, N2 occurring in the Landau
equation changes between 4; and By. This is because
Mo cannot vanish, since S, itself generates no singu-
larities, and because when A;=0 on RP we also satisfy
the Landau equations for RR and, in fact, have tan-
gency. Evaluating A2/Ao on the branch of RP where
s'2 is positive, we find

Ao/ No= [’ (ma?)— (52— my)o! ("2 —mn)?) /. (2.9)
At By, S0 N/Ae=p'(m2);
at 4, S=Mg+mp, SO
Ao/ No=[mf’ (ms?) — mac! (ma®) J/my
3 dapr OJarp (ma+ms)
_( as B ds ) )

Thus Az and A\ have the same signs at B, and opposite
signs at A, providing RP is steeper than PR there.
Since similar equations can be written down for PR,
this establishes the result.

31/2=mb,

s/ %=mgtmy me

3. SINGULARITY STRUCTURE

We have been concerned so far with the geometrical
properties of the Landau curves associated with (2.1).
These are the locations of possible singularities of the
integral but in order to determine which parts are
actually singular it will be necessary to look more
closely at its properties. We shall suppose that the con-
tour is real and that infinitesmal distortions 7eo, 7€, 7€a
are associated with the singularities So, Sy, S, respec-
tively, in the manner discussed in Sec. 1.

Singularity occurs if the quantities \:e; have a com-
mon sign for all the participating S’s. The quantities A;
are calculable but the ¢; are so far unknown. Like
Schwarz! we shall require nonsingularity of RP and PR
at s=0. For high spins this follows from a desire to
avoid violating the Froissart bound, but alternative
arguments which can always be applied are given in
Sec. 4 to show that this is always true. By (2.9), As/Ao
=[B'(m®)+a’ (m?)]>0 at s=0 on RP. Similarly, A;/Ao
is positive at s=0 on PR. Hence we must have

3.1)

It then follows from (2.9) that the steeper of RP
and PR is singular at s= (m.+my)2. The curve RR

— €)= €1=€2.
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is always singular, having only one e. As usual, the
normal threshold is singular and the pseudothreshold
nonsingular.

For X, I=J,+J3—1, we find Ao:Ai:he=1:a/(m42):
B’ (m2) at all points except A1 and 4. Since all \’s thus
have a common sign, (3.1) tells us that X is not singular.

We now see that the simple 7e prescriptions (3.1)
which satisfy our requirements in fact follow from the
Feynman e prescription. This associates —ze with m?,
or equivalently +ie with %% in the propagator (k2—m?
-+1¢e)~, Doing likewise with a(4?), and remembering o’
is positive, we find

a(B+ie)=a (k) +ie.

Thus the Feynman prescription is equivalent to associ-
ating +-7e with each trajectory function. By inspection

F.\F
discyF= (singnl) / _—
I—J.,—Jut1

FiF,
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of the expressions for Sy, S, and .S this indeed gives
(3.1). Note that this is not what we get if we insert
Regge poles into (4) and (—) bubbles of a unitary
integral [as in the Amati-Fubini-Stanghellini (AFS)
argument!®].

We can also evaluate the natural distortion for our
singularities, telling us how to detour the singularities
while maintaining flat contours. These are indicated by
arrows in Fig. 1 (assuming the Feynman prescription).

Because of its possible relationship to the Gribov-
Pomeranchuk singularity we look at the points of X, in
boundary values other than the natural one, that is
underneath the various cuts. To do this we must study
the relevant discontinuity formulas which take us under
the cuts. For the normal threshold cut, it is known that
there is a vanishing cycle in s> (m,+ms)?, so that its
discontinuity is given by a single Cutkosky integral,

Pk (—2mi)d(sinkma (k) (— 2mi)3(sindnB (g—£)?)

-8
(3.2)

= (sini~l)

where we understand k2=m,2, (g—k)?=m;? in F; and
F,. This clearly has a pole at I=J,4J,—1, since we
recall that our choice of signatures for the trajectories
a and B ensures that both J, and J; are even and so
siniwl does not vanish at this point. The existence of the
pole in the discontinuity then implies that F has a
similar pole when evaluated in the boundary value
under the normal threshold cut, but over the RP cut.
(We understand “over” to correspond to the natural
boundary value and “under” to be opposite to “over.”)

In a similar way an identical pole is discovered under-
neath the RP cut (while over the N cut) which, as
shown in Sec. 4, also has a vanishing cycle.

Thus the pole X has properties exactly opposite to
those expected of the GP pole,? which is singular in the
natural boundary value but which then must not be
found underneath the normal or RP cuts if the GP
essential singularity is to be avoided. The role of X is
clearly to cancel the GP pole which would otherwise
appear on these lower sheets. We study in Sec. 5 how
;his cancellation manifests itself in terms of Feynman
ntegrals.

Since no other singular curves pass through the
intersection of RR with X and since X is not singular
in the natural boundary value, it follows that X cannot
be singular under the RR cut and therefore the dis-
continuity across this cut cannot be singular at X
either. However, a Cutkosky integral for RR, just
obtained by substituting 278(So) for S¢%, is, according
to the rules given in Sec. 1, singular at X. The reason is
that, because of the Lorentz metric, there is not a real

I=Ta=Jot1 o' (me2)8 () [s— (mat-mo)*ILs— (ma—ma) Ty’

vanishing cycle for RR. This will be shown in Sec. 4.
Thus the discontinuity is, according to (1.6), the dif-
ference of two Cutkosky integrals. Each possesses a
pole at X but their residues cancel, as can be shown by
evaluating the discontinuities at X by a further applica-
tion of the Cutkosky rule (there are vanishing cycles
again in this case).

Thus the discontinuity across the RR cut possesses
some subtle features.

4. TWO-REGGEON CONTRIBUTION

In this section we shall discuss the form (2.1) as-
sumed for the two-Reggeon contribution and how it is
related to other suggested forms. The best founded of
these latter discussions are based on properties of
Feynman integrals®® and they give an expression
similar to (2.1) but with s taken negative and with the
two-dimensional loop integration being over anti-
Euclidean vectors & (both components spacelike).

If our expression (2.1) is continued into s<0, it
proves possible to make a Wick rotation which then
reduces (2.1) to the same form as these other expres-
sions. This is because in s<0 we can write ¢= (0,9), so
that the component of ¢ is associated with the space
component k; rather than the time component &o. Then
each singularity equation (2.2) has the form

f(k+i€)=0 (4.1)

10 D, Amati, S. Fubini, and A. Stanghellini, Nuovo Cimento 26,
2896 (1962).
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(2) (b)
F16. 2. The curves A=0 (a) when s<0, (b) when s>0.

as far as the %y and 7e dependence is concerned, since
we have assumed «’ and 8’ are positive.

It is now necessary to assume that for each .S; the
roots of (4.1) are real when e=0 and ki, ¢, and [ are
real. A sufficient condition for this is that the trajectory
functions are Herglotz functions, that is functions whose
imaginary parts are of the same sign as the imaginary
part of their argument. This is true in potential theory
if trajectories do not cross. The status of the assumption
in relativistic quantum mechanics is not known. If there
were nonreal k¢ roots of (4.1) extra terms would be
obtained on making the Wick rotation. There might
then have associated with them extra complex Regge
singularities but the existence of the latter would not in
fact spoil the analysis of the interrelation of the real
singularities already given.

If the roots of (4.1) are real when e=0, then either
ko is pure imaginary or it has the form

ko= Fo— (4.2)

This disposition of singula.rities makes it possible to
rotate the ko contour through 37 so that

/dzk—w/d?k’,

with &’ anti-Euclidean.

It is possible to give an alternative discussion based
on an integration over invariants. It is convenient to
start in this case in s<0. The two-dimensional anti-
Euclidean integration is then written in the form

/ dsy dss

[_ A (S 31132):]”2
Here s; and s, are the squares of the momenta associated
with « and 3, respectively,

A=s2+s5.2+s.2— (4.4)

and the region of integration is A<0. This is the in-
terior of a parabola lying in the third quadrant of the
515 plane, as shown in Fig. 2(a). When s=0 this de-
generates into a coincident line pair and for s>0 the
parabola lies in the first quadrant, as shown in Fig. 1(b).
Its interior is no longer the region of integration, which
has become complex and is bounded by complex points
of the curve A=0." Cauchy’s theorem in its generalized

1€ sgnky, Ko real.

(4.3)

2381— 2832— 281S2 )

U Compare several similar cases discussed in detail by I. T.
Drummond, Nuovo Cimento 29, 720 (1963).
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S5
s

(a) (b)
Fic. 3. Diagrams relevant to RR in (a) s>0, (b) s<0.

form allows this region to be freely distorted, provided
that its boundary is always some part of the curve A=0
and that no singularities are crossed. This enables us,
under the assumptions discussed above, to make the
region of integration real again, in which case it becomes
the outside of A=0. This is the analog of the Wick rota-
tion in reverse since the integral described is indeed the
result of transforming from the Lorentz integration to
invariants in s>0.

If the singularity structure is discussed in terms of
invariants the analysis is a little more general than that
discussed in Sec. 1 since there is now a boundary B
given by A=0 which also participates in generating
Landau curves. There is, of course, no ze associated
with B, so it does not figure in (1.5). The singularities
are generated as follows:

RR by B, So;

RP by B, Sy, Sa;
PR by B, S, Sy;
P, N by B, S1, Sa;
X by S, Sy, Se.

It is clear that if we adopt the form suggested by Feyn-
man integrals in s<0, then the poles S and .S are no-
where near the undistorted contour in the neighborhood
of s=0 and this provides a more general argument than
that based on the Froissart bound for the nonsingularity
properties used at the beginning of Sec. 3.

The invariant formulation is also convenient for see-
ing the vanishing cycle properties used in Sec. 3. For
axample, consider the RR singularity, which corre-
sponds to S touching B. In Fig. 3(a) we have s>0, and
So’ corresponds to Sy evaluated at the value of / given
by the singularity, So”” and So"”’ to values of / on either
side of singularity. Since both So’” and So””’ intersect the
shaded region of integration, there is no vanishing cycle.
However, for s<0 the situation would be as in Fig. 3(b)
and there would be a vanishing cycle in the region
I<arg(s). Other singularities can be discussed by draw-
ing similar diagrams.

X XX XAX,

F1G. 4. The set of iterated cross diagrams.
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F16. 5. The set of diagrams to be considered.

OLIVE AND ]J.

5. PERTURBATION-THEORY MODEL

In this section we see what understanding can be
obtained of the mechanism for removing essential singu-
larities in the model of relativistic quantum mechanics
provided by Feynman integrals.!? The original Gribov-
Pomeranchuk!® argument for the existence of an essen-
tial singularity at /=—1 stemmed from two-particle
unitarity in this channel and the presence of a p,
double spectral function.

The set of Feynman diagrams in Fig. 4, the iterated
cross, supply these ingredients and do indeed lead to
an essential singularity when summed. Mandelstam
showed that if the s-channel particles are Reggeized,
rather than elementary, cuts exist, with just such
properties as to vitiate the argument for essential
singularity.?3

The corresponding set of diagrams to be considered
is shown in Fig. 5 where the crosses are now joined by
Regge-pole generating ladders. This is the simplest set,
but the crosses could be replaced by any diagram with a
third spectral function which was two-Reggeon irre-
ducible and the ladders by any set of Regge-pole
generating diagrams.

Diagrams of the form of Fig. 5(a) give a pole in the
positive-signature amplitude of the form

Gl/(l'l‘l) )

where Gy is an amplitude whose precise definition is
not required here. Diagrams like Fig. 5(b) yield an
expression®

(5.1)

Go(s,)/ (141),

where G contains a term of the form (2.1). Because
of the properties of the X singularity discussed in Sec. 3,
(5.2) will have a single pole at /=—1 on top of the nor-
mal threshold cut, but a double pole beneath it.

In fact, it turns out, using the normal threshold dis-
continuity equation (3.2) and the special properties of

(5.2)
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G»,? that
diSCNGg=pG12/ (l+ 1) ) (53)

where p is a calculable phase space factor. Thus to the
order we have considered, namely, up to “second order
in ps,”’ the amplitude evaluated underneath the normal
threshold cut (but over the RP cut) has the form, near
I=—1,

an~ (G1+Gz)/(l+ 1) +P612/ (H' 1)2 ’ (5-4)
while above this cut
a1~ (G1+Go)/(I+1). (5.5)

At first sight this appears disastrous, for instead of
cancelling the pole in a;; we have added to it a double
pole. The explanation is found by considering the uni-
tarity equation which gives err in terms of a; to all
orders in pe,

air= aI/(l —p(lI) = a1+pa12—l—p2a13+ e, (56)

To all orders in psy, a1=G/(I+1), where G=G14G,
=+ .-+, and so by (5.6),

G G oG
= = + = .
IH+1—pG I+1 (1)

that is, a sequence of multiple poles. If we collect terms
involving up to second order in p:,, we do indeed obtain
(5.4) even though to all orders, near I=—1,

o (D)

an

a~—1/p.

Thus in the model theory of Fig. 5 there are two
summations, the first of which, the sum over ladders,
introduces new singularities and the second of which,
the sum over crosses, removes these singularities, as far
as ayg is concerned.

It is clear that great care must be taken when using
arguments based on ‘“powers of the third spectral
function.” Unitarity in the s channel is of the greatest
importance and we shall only satisfy this requirement
if we consider infinite sequences of diagrams, like the
whole set of Fig. 5, which then require us to work to all
orders in pyy.

The analysis of the higher diagrams, like 5(c), is not
easy but we expect!* that the contribution to a; near
{=—1 in nth order of p;, is G,/(I+1), where G, is an
integral of the form

(Sin%wl)/dzky o, 1 X (@ 1; me2, ma, k2, (q—k)DX (g, U; k2, (q—FR1)%, k22, (q—R2)2)X - -+

X(q2; l; kﬂ—lz) (‘I‘"kn~1)2; ma27 mb2)

X .
IT: {l—a(®:)—B((g—k:)*)+1] sindra (k) sindnB((g—k)?)}

(5.8)

2 For a discussion of this model and its implications for complex angular momentum theory see R. J. Eden, P. V. Landshoff, D. I.
Olive, and J. C. Polkinghorne, The Analytic S-Matrix (Cambridge University Press, New York, 1966), Chap. 3.

13V. N. Gribov and I. Ya. Pomeranchuk, Phys. Letters 2, 239 (1962).

% Compare Ref. 7. A simple case analogous to (c) but involving an elementary particle instead of the intermediate cross has
been analyzed. See P. Osborne and J. C. Polkinghorne, Nuovo Cimento 47, 526 (19661)3.
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This can be analyzed according to the previous tech-
niques and exhibits the same singularities and e pre-
scriptions in the natural boundary value as (2.1), pro-
vided we assume the Feynman ie prescription as
discussed above. Such properties are normally pre-
served under infinite summation so that Fig. 1 now
applies to the whole model theory defined by Fig. 5
and, we suggest, to the complete theory.

Under the normal threshold cut, (5.8) has poles of
order up to (J41)~7t.. The normal threshold dis-
continuity is, using a generalization of (3.2),*

n—1
discnGa=p 3 GAGn_1/(I+1).
=]
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Thus our behavior near /=—1 agrees with unitarity
which, in #th order, reads

n—1

er"—an"=p 2, ar"e"" .
r=]

Notice the importance of the two-dimensional nature
of the integration in this for it means that the residues
at the poles factor into products. This is not the case
for analogous calculations for the diagrams of Fig. 4.
The residues in that case still contain integrations
and this is what gives rise to the GP essential singu-
larity in that case.’?
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General restrictions on the SU(3) invariants are found such that an experimentally satisfactory one-para-
meter solution of the parity-conserving nonleptonic hyperon decays is obtained under octet dominance and
CP invariance. Both normal and abnormal charge conjugation are considered. The pole model is discussed
as an example. In this model the restrictions determine the BBM and spurion F/D ratios, for which reason-

able values are obtained.

I. INTRODUCTION

T is known that within the framework of strict
SU(3) symmetry, the situation with respect to the
(p-wave) parity-conserving nonleptonic hyperon decays
remains in its pre-SU(3) state of the AI=1% rule when
one applies octet dominance and CP invariance, to-
gether with the charge-conjugation properties of the
current-current theory of the weak interaction. With
these assumptions, one SU(3) restriction is imposed on
the parity-violating amplitudes.! This is the well-known
Lee-Sugawara? relation. It is found to be experimentally
good for both the parity-violating and the parity-
conserving decays, and can be deduced for the parity-
conserving decays as well under one or the other of
some further symmetry assumptions.?—*
In a recent paper,® a somewhat general result is ob-
tained on the conditions under which an SU(3) model
leads to a one-parameter solution to the parity-violating

*On leave of absence from Downing College, Cambridge,
England, and the University of Khartoum, Sudan.
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Progr. Theoret. Phys. (Kyoto) 31, 213 (1964).
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hyperon nonleptonic decays in agreement with experi-
ment. In particular, it is shown that beyond the above
assumptions, it is sufficient to neglect the decuplet
contributions in both the Br and BB channels. It is
our purpose in this paper to apply similar considera-
tions to the parity-conserving amplitudes.

We start by finding what can be deduced about the
parity-conserving decays under the assumptions of
Ref. 5 mentioned above. Two relations among the four
independent amplitudes result:

2B(E~— An~)=B(A — pn~)+V3B(Z+ — pr9),
Bt — pr%)=—V3B(A — pn).

(1.1)
(1.2)

The relation (1.1) is the Lee triangle known to be in
agreement with experiment. Relation (1.2) is also well
satisfied experimentally.®
Using (1.1) and (1.2) together with
BE=—nr)=0 (1.3)
to characterize the experimental situation, we then
state necessary and sufficient conditions on the SU(3)
invariants, such that an experimentally satisfactory
one-parameter solution is obtained. A special case of
¢ See, for example, N. P. Samios, in Proceedings of the Argonne

International Conference on Weak Interactions, 1965 [Argonne
National Laboratory Report No. ANL-7130 (unpublished)].



