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We discuss the possibility of constructing, out of particle creation and destruction operators, local quantum
fields that transform as representations of the homogeneous Lorentz group. Our immediate goal is to write
down a consistent local quantum field theory which can simultaneously describe many particles with dif-
ferent masses and spins. In the case that the field is a finite-dimensional irreducible Lorentz tensor, we are
ab].e to carry through our program with no restrictions on the masses considered as functions of the spin,
provided the usual connection between spin and statistics is satisfied. However, when the field transforms
as a unitary irreducible representation of the homogeneous Lorentz group (an infinite-dimensional repre-
sentation), the requirement of locality, along with the physical assumption that the masses are bounded
below, ne(j) )me)0, leads to the restriction that the masses are independent of the spin. This property is
shown to hold when the transformation law of the field is taken to be an irreducible finite-dimensional repre-
sentation Qx a unitary irreducible representation. The physical consequences of this result and possible
methods for evading it are discussed. Finally, a»ppendix is included, where the related problem of ortho-
gonabty properties of timelike solutions to infinite-component wave equations is examined. In particular,
we show that when the solutions of such wave equations transform as unitary irreducible representations of
the homogeneous Lorentz group, owly the Majorana representations support a scalar product, which is
orthogonal for diBerent spins.

I. IINTRODUCTORY REMARKS

~

~

ONVKNTIONAL studies of quantum field
theories' have been directed toward the construc-

tion of Gelds that describe one particle of definite mass
and spin. One has proceeded by examining finite-
dimensional spinors having appropriate properties
under Lorentz transformations and then hastening to
eliminate, in an invariant manner, any "extra" Geld

components thus introduced. The traditional descrip-
tion of spin-one fields, for example, introduces a four-
vector object A„(x) and immediately subtracts one
degree of freedom by asking that A„(x) be divergence-
free. A notable exception to this ritual is the work of
Weinberg, ' who constructs Gelds for any spin with the
"correct" number of components and, thus, has none
to throw away.

The intriguing idea of Regge poles, ' or more explicitly,
the possibility that particles of different spins and
masses may be connected, opens to our consideration
quantum field theories where the 6elds describe a
variety of particles with various masses and spins.
Success in such studies would provide a compact, field-

theoretic framework in which to examine the properties
of Regge trajectories. 4 In this paper, we investigate the
structure of such field theories.

~ Work supported by the U. S. Atomic Energy Commission.
t On leave from the Weizmann Institute, Rehovoth, Israel.
~ The excellent volume of J. D. Bjorken and S. D. Drell, Rela-

tevistic Qnantnne Fields (McGraw-Hill Book, Co., New York,
1965), exemplifies these studies.

s S. Weinberg, Phys. Rev. 133, B1318 (1964); 134, B882 (1964}.' G. F. Chew and S. C. Frautschi, Phys. Rev. Letters 5, 580
(1960); 8, 41 (1962); R. Blankenbecler and M. L. Goldberger,
Phys. Rev. 126, 766 (1962).

An explicit model where the exchange of a Regge pole of
spin a is induced by the sum of single-particle exchanges of spin
0,1,2, ~ ~ has been given by L. Van Hove, Phys. I.etters 248, 183
(1967}, and R. P. Feynman (unpublished).

We have in mind using these Gelds to calculate a
Lorentz-invariant S matrix via the Dyson-Kick
prescription, so we shall require that they have simple
properties under Lorentz transformations and be local
in the sense of commuting or anticommuting at space-
like separations. In particular we shall address ourselves
to the question of whether it is possible to Gnd local
Gelds that transform as I.orentz tensors and are linear
combinations of (Fourier transforms of) particle crea-
tion and destruction operators. The method we employ
has been advocated by a number of authors, ' and avoids
reference to Lagrangians and field equations by concen-
trating on the Lorentz-transformation properties of the
GeMs and the particle states they are to describe.

We show below that, in the case where the Gelds are
finite-dimensional irreducible tensors, we can answer
the question posed in the afhrmative with no restrictions
on the masses as a function of spin. In the instances
where the fields transform as unitary inGnite-
dimensional irreducible representations of the homo-
geneous Lorentz group, we show that locality is a non-
trivial restriction on the theory and present arguments
that when the masses are bounded below by some
mo&0 for all spin, then locality forces them to be
independent of the spin. This latter result is also shown
to be true for the circumstance where the Geld trans-
forms as the direct product of an irreducible finite-
dimensional and an irreducible unitary representation
of the homogeneous Lorentz group.

In the next section, we review the procedure for
building the fields from the physical creation and
destruction operators. Section III is devoted to a
discussion of Gnite-dimensional fields, and in Sec. IV

5 H. Joos, Fortschr. Physik 10, 65 (1962); S. Weinberg, Ref. 2;
D. L. Pursey, Ann. Phys. (¹Y.) 32, 157 (1965); G. Feldman and

P. T. Matthews, iMd. 40, 19 (1966).
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we direct our attention to the possibility of having local
fields that transform according to unitary irreducible
representations of the homogeneous Lorentz group. In
Sec. V, we consider a direct product of a Gnite-
dimensiona1 and a unitary representation as the trans-
formation rule of the Geld. Some discussion of the
physical implications of the results will be found in the
Gnal paragraph. In an Appendix, we examine the
related question of orthogonality properties of solutions
to infinite-component wave equations. In particular,
we show that, for the case of a unitary representation of
the homogeneous Lorentz group, scalar products that
vanish for two solutions of different spin are defined
only in the Majorana representations (those that
support a four-vector I'„—called the Majorana vector),
only with the metric Fp, and only when the mass
depends on spin j as (constant)/(2 j+1). This is
independent of the wave equation.

II. TRANSFORMATION PROPERTIES AND
COMMUTATION RELATIONS

We begin with a description of the physical states,
their behavior under Lorentz transformations, ' and
the construction of field operators, which are irreducible
Lorentz tensors, out of the creation and annihilation
operators for these states. Ke follow here the authors
of Ref. 5, and adopt, fairly closely, the notation of
Weinb erg. '

The physical states Ipm(j) jo.) are characterized by
their three-momentum p, the spin j, its projection on
the s axis o, and the mass m( j), which we allow to be a
function of j. They are, of course, the basis states of
Wigner6 for a unitary irreducible representation of the
Poincare group. The four-momentum of the state is
such that p'=ps(j)z —p'=m'(j). These states can be
obtained from the rest states Im(j) jo.) by a unitary
transformation UI L( )]u,

I pmU) j~&= ULL(u)]1m(j) j~&, (2 1)

where u= p/m( j) is the "velocity" of the state, and
L(u) is the pure Lorentz transformation, the "boost, "
which takes the four-vector (O,m(j)) into (p,ps(j)).
Under a homogeneous Lorentz transformation A, we
then have

ULA]lpm(j) j~&= IAPm(j)i~'&D"'TRw], (22)

with Rw ——L, '(Au)AL(u) the Wigner rotation, and
D&T'Rrr] is the usual rotation matrix for spin j.

Now we introduce creation and annihilation operators
a*(jpo) and. a(jpo.) such that operating on the vacuum

lo), Ipm(j) qo&=~*(jp~)
I O), and

I:~(pj ),~*(p'j' ')].=~'(j)2uo5'(u —u') ~ '~-" (2 3)

Here, e=-+1(—1) for an anticommutator (commu-
tator), us ——Po(j)/m(j), and F(j) is a normalization
factor. Other commutators or anticommutators vanish.

' E. P. Wigner, Ann. Math. 40, 149 (1939).

U[A]a(pj o)U[h]'= D, .&TRs ']a(APj~'). (2.5)

By introducing a charge-conjugation matrix C(&'

satisfying~
O'I R]*=C"&DiLR]LC&J&]-', (2.6)

we can make these transformation rules quite similar.
Define a~(p jo.) by

then

u*(pj~) =—(LC"'] ')- ~*(pj~'), (2.7)

ULA] *(pj )UI:A] '=D- 'LR '] *(A-P j ') (28)

Thus far we have simply recounted the lessons of
signer on the description of the single-particle physical
states. Now we turn to the construction of quantum
fields out of which one may build an interaction
Hamiltonian which via Dyson's formula enables one to
compute the 5 matrix describing transitions between
the original physical states. The simplest way to
guarantee that the interaction Hamiltonian be a scalar
and commute with itself at spacelike separations is to
make it an invariant polynomial in local fields. The
usual method for making this invariant polynomial,
which we adopt, is to choose the fields to be Lorentz
tensors and then couple them to an invariant. ' We shall,
at least for the moment, even take them to be irreducible
tensors.

So now we construct from the a( jpo)'s field operators
y(x), which transform covariantly under an irreducible
representation of the homogeneous Lorentz group. o

Let &p;, (x) be the (jo) component of that field; (jo) are
suKcient to label the components within one irreducible
representation. We insist that both particles and anti-
particles be included in the Geld operator and write"

v».(x)= ~~.' '(*)+Vi. '+'(x), (2 9)

where to;, t l(x) is the annihilation part for particles,

~J.' '(x) = Z D, '"LL(u)7
2lp 2'&'

Xa(pj'o')e '~&&'&"', (2.10)

7 This determines C(&) up to a phase. The usual convention is to
take C o&=( 1)&+ 8 (C —e' ~')=

8 Actually, if the Gelds are tensor operators of any groups con-
taining the Lorentz group, this procedure will go through. Since
the Lorentz group is the only one with any compelling physical
meaning, we will stick to it.

9 The representations of this group have been thoroughly
discussed by M. A. Naimark, Linear Represeetatiorls of the
Loreaiz GroNP (Pergamon Press, New York, 1964). We will
mention a few of the relevant points of his analysis when necessary.

"This construction is also found in G. Feldman and P. T.
Matthews, Phys. Rev. 154, 1241 (1967).

The Lorentz-transformation properties of these opera-
tors are immediate:

U/A]rz'(Pj ~) U(A]-'= a*(AP j~')D...~T Rrv], (2.4)

and
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and &p;, &+)(x) is the creation part for antiparticles,

q &+)(x)=))

we 6nd for the commutation relations of the 6elds

[& .(*) & '"'(y)].

Antiparticles are created and destroyed by operators
b~(p ja) and b(pjo) which commute (anticommute)
among themselves as the o*'s and a' s, and commute
(or anticommute) with them. Thus our particles and.
antiparticles are distinct; the case of self-conjugate
particles does not change the results to follow. In the
de6nition of the creation and annihilation parts of the
field, )) is a phase factor, I g I

=1, and

XP2(j ){s—
' &j") ~ &*-0)+ +' &P') ~

&
—y) } (2 19)

with all other commutators vanishing. By a change of
integration variables, we can express the equal-time
commutator as

[& / (x),v»'"'(y)].=- d'P &~..~'"(p)
2

X [e-*~ &*-»+~e+'~ &*-») (2.20)

p'(j")
PJ., / "(p)= 2

&II&Il ~2(j ~1)[p2+~2(j ~~)]1/2
is the representation matrix for the boost along the
direction 8, of magnitude e(n)=sinh 'IuI, generated
by the boost operator K. K commutes with itself and
the generator of rotations J in the usual way:

XD;.,;".-[I-(p/ (j")))

D;.,p;[1.(n))=(j0 I exp[—iK &e(u)) I
j'&r') (2 12) where

and

[J„Jb]=is,/„J„

[J,&K/]=ie~b, K„

[K„K&,]= ie,&„J—,

(2.13)

(2.14)

(2.15)

XD' " . '"'[l(p/~U"))] (2 21)

Our aim in the following sections will be to determine
under what conditions this commutator vanishes for
x-y spacelike for q (x) transforming under various
representations of the homogeneous Lorentz group.

These 6elds transform covariantly under Lorentz
transformations,

= Z» .~'"[~ ']
&
~'"")(») (2 16)

The "wave function" for a particle state described by
this field is just

(OI q;.& )(x) I pm(l) ll3)

=D~. )&[L(n)] ' '""*P'(l), ( 17)

and the / values run over all the spins contained in a
given representation of the Lorentz group. For a 6nite-
dimensional representation, I, will have a certain
restricted range, while, for an in6nite-dimensional
representation, l will begin from some minimum value
j 0 and take the values jo, jo+1, jo+2,

We have thus completed the task of building fields
that describe particles of many masses and spins and
have simple Lorentz transformation properties. It re-
mains to discuss the local nature of our fields, before
we can proceed to the computation of the 5 matrix.
Therefore, we ask if they can be made to commute or
anticommute at spacelike separations. Noting that the
unitarity of the charge conjugation matrix leads to

[b~(jop),b(j'0'p')], = eF'(j)2NOB'(n —n')e;,'b„., (2.18)

III. FINITE-DIMENSIONAL REPRESENTATIONS

The erst case we are invited to address ourselves to
is that where the quantum 6eld transforms under the
finite-dimensional nonunitary representations of the
homogeneous Lorentz group. These representations are
most simply characterized by introducing the operators
A=-,'(J+iK) and B=-',(J—iK), which decouple the
commutation relations of the rotation operators (J)
and the boosts (K). A and B now form two independent
angular momenta, and an irreducible representation
[u,b) is labeled by A'=a(a+1) and B'=b(b+1), and
has dimension (2@+1)(2b+1). The operators K are
anti-Hermitian here and the function P;,', (p) from
above becomes

P'U")
P/. ,~'"(p) = 2

pl~" pz2(j )[pm+~&(j~l)]&/2

X(j"&r"
I exp[—ip Ke(j"))I j&r), (3.1)

where sinhe( j")=
I p I/m( j").

Consider now the quantity P;,&z)p
&' ~)(p) for the

irreducible representation [a,b]:

X(JO"
I exp[—ip Ke(J)) I

j'0'). (3.2)

The sum P, I
Ja")(Jo"

I gives a projection operator
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Since

Xe' '" ' ""
I p&.')tb')(p&, '&b'I pJ(r")

X (pJo"
I
p)~s'9 b")(pt .")I,b"

I
e' (" "—"b"&

XexpI iP K—8(J)$
I
j'o'). (3.3)

'A, '+X '=X,"+X ", X,'—)t '+)(,"—X "
= 2L()~,'+Xb') —(Xb'+&(b")j, (3.4)

and
e24'[(ba'+lb')-0 b'+& b")i = ( 1)2(~+b)

so one has

»'"(-p) =(-I)"+b)&;.(.); "(p). (3.6)

The commutator of a Geld transforming as I a,b) and
its adjoint can now be written as

L~ ~.' "(x),V»'"' "'(y)].
~'(J) d'p

""(p)j m'(J) 2pp(J)

F'(J) d'P
J'~ (j»'"""(&(i)j m'(J) 2pb(J)

X le—iP (z—v)+e( 1)2(e+b)eiy (x-v)j (3 7)

Taking the usual connection between spin and statistics
e= —(—1)'( +b&, this commutator becomes

L( ' "(*)('"' "t(y)3
E'(J)

Ij (j)' ' "(ra)j m'(J)

xI b(2~)'a(x —y;m(J)2)), (3.g)

"C. Itzykson (private communication).

on spin J which can be written as a certain integral over
the rotation group. Using this form for the projection
operator and the representation of homogeneous
Lorentz transformations in terms of two-by-two
complex matrices, it is straightforward to prove that
Ij (j)i ' "(p) is a polynomial in the components
of Pb."Now we will show that when Pb —b —P, it picks
up a phase (—1)'('+b&. This will enable us to take
J';,(j)p, (' b&(p) out of the locality integral and show
that the commutator becomes a finite number of
derivatives on the usual causal function h(x —y) and,
therefore, vanishes for x-y spacelike.

To proceed, note that iK=A —B and insert two
complete sets of states

I p)(,Xb), where )W. and Xb are the
eigenvalues of A p and B p. Also observe that to take
Pb into —

Pb, set P-+ —P and 8(J)—birr 6(J—) The. se
two operations result in

& (j&' ""(—p)

(j IexpL —bP «(J)3
y II) lgglg tlgb I I

which vanishes for x-y spacelike and thus establishes
locality for the 6nite-dimensional case.

Hence, covariance and locality lead to no constraints
on the mass spectrum as a function of spin when the
usual connection between spin and statistics is taken
and the fields are irreducible finite-dimensional Lorentz
tensors. Such a Geld theory may now be used to describe
the interactions of a set of particles with an arbitrary
mass spectrum. We shall see in the next section that,
in the case in which the fields are irreducible unitary
Lorentz tensors, strong restrictions on the masses will
follow from locality.

or
c=ir, r real; (principal series)

(4.1)
jb——0, 0(c'(1. ('secondary series)

In any representation (j(&,c), the action of K on the basis
states I(jb,c)jm) (called

I jm) below) is

E+Ijm)=$(j—m)(j—m —1)j "O'Ij—i,m+1)
+I (j-m)(j+m+1)jt"c&IJ,m+1)
—L(g+m+1)(j+m+2) j ' &'+

I J+i,m+1),
(4.2)

E
I jm)= L(j+m—)(j+m 1)3'I'O'I j—ip—p—1

+LV+m) U—m+1)j'"c'IJ,m —1)
+L(j—m+1)(j—m+2)j'"b~'I j+1m —I),

(43)
and

EbI gm) =
I j'—m'g'~'b&'I j—l,m)+mc'I j,m)

+L(i+I)'-m'1'"b~'I j+I,m), (4.4)
with

. 1&(j'-jo')(j'-") 'I'
— and b =-I (45)j(j+1) jk (2j+1)(2j—1)

IV. UNITARY IRREDUCIBLE REPRESENTATIONS

Having tasted success in our attempts to build local
6elds that describe a 6nite number of particles Of
different mass and spin, we now turn to the unitary
irreducible representations of the homogeneous Lorentz
group as the transformation law of our quantum Gelds.
These representations contain all spins jb,jb+I, ~ .
greater than some minimum spin jo, so the "Born
approximation" written in terms of such a 6eld would
describe an in6nite number of spins being exchanged
and might then resemble a Regge pole. 'We have made
no secret of the fact that for local 6elds we 6nd that the
masses in such representations are required to be spin-
independent and, thus, this nice program loses its
attractiveness; but now to the demonstration.

Naimark' shows that the irreducible representations
of the homogeneous Lorentz group are determined by
two numbers (ja,c) with jb, integer or half-integer, the
minimum spin in the representation, and c complex.
Each spin j&jo appears once and only once in an
irreducible representation. For unitary representations
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In the unitary representations, J and K are
Herrnitian, so that the operator P;, , ;(y) in the
equal-time commutator of a field and its adjoint is now

F'(j")P., '"(y)= Z
jr 1&3I

n32 (g )Lp2+ n3 2 (j )7
1/ 2

x(j-I-pL-'p K0(j-)7I j---&
x(j"a"IexpL2P Kg(j")7jj'a'& (46)

If all the masses were equal and F'(j)=F2=—some con-
stant, P;,; (p) becomes {F2/j n32(p2+m2)'/27)('), ,'b
and we have local commutation relations only for
&= —1, namely, Bose statistics. This was observed some
time ago by Feldman and Matthews. " We first in-
vestigate here what is the most general mass spectrum
consistent with Bose commutation rules. Besides
locality and covariance, we make the physical assump-
tion that the mass spectrum is bounded below:
n3(j))n3()&0. Under these conditions we shall show
that the only mass spectrum allowed is that of equal
masses.

Consider then the equal-time commutator

LA.(x,0),3 '"'(y,0)7

=i d3pLsinp (x—y)7P, ,;;(p)

d'pLsinp. (x—y) 7

XLP,.,;.(p)-P;. ,'. (-p)7. (4./)

Since this commutator is well-defined only in the sense
of a distribution, its vanishing or nonvanishing depends
on the space of test functions on which one is allowed

to apply it. Within the usual framework of quantum
field theory" P;,;;(p)—P;, ,;;(—p) must be a
polynomial in the components of y. Jaffe'3 has extended
the notion of a local field to that of a strictly localisable

geld by introducing a more clever set of test functions
than is usually entertained. In this paper, we shall
restrict ourselves to the usual notion of a local field and
return to Jaffe fields in the future.

We are invited then to imagine that the anti-
symmetric combination

F'(j")
' (y)-P. ' (-y)= Z

piiirrr n32(~j )Lp2+2n2( j )71/2

X L(ja I expL —2P Ke(j")71j"a"&

x(j"a"IexpL1P Kt/(j")7I j'~'&

(j~ I
expL—2P K//U") 5 I

j"a"&

x(j"-"I-pt.-'p K~(j")7Ij'-'&7 (48)

"G. Feldman and P.T. Matthews, Phys. Rev. ISI, 1176 (1966).
» R..F. Streater and A. S. Wightman, PCT, SPie arsd Statistics

and A/l That (W. A. Benjamin, Inc. , New York, 1964).
'3A. M. JaBe, Phys. Rev. 158, 1454 (1967); SIAM J. Appl.

is a polynomial in p of degree, say, 2K+1. The case
where the expression vanishes identically is included
by E= —1, as will be clear in what follows. Now let p
be infinitesimal and expand the right-hand side in a
power series in the components of y. This expansion is
certainly allowed for mass spectra bounded below, and
for F'(j)/m3( j) bounded by a polynomial in j, which
we henceforth assume. Ke consider the coeKcient of
(p)'N+'+'", which vanishes by assumption for
n= 0,1,2, , and choose j'= j+2(E+n)+3. To take j
to this value of j', one needs at least 2(A+n)+3 powers
of K, but then we have 2(E+n)+3 powers of 8(j")
which give for infinitesimal jpj, I Iyj/n3( j")7"+")+'.
Hence, in all other factors we may set y= 0. Combining
all these steps results in

X j+2(p'+r)+3 ')—(p —p) =0, (4.9)

for all n. The vector character of K means that, for
any r, only j"= j+r gives a nonvanishing contribution
in the sum over j",so we may do the sum and get

2(N+. )+3 2(/U+n)+3 F'(j+r)(-)
x=0 Ln3(~+ r)72 (N+PP+3)

X (g,(T
I (ip K)"N+")+3

I g+2(1V+n)+3, (T'&=0. (4.10)

Inspection of the matrix elements of K given above
shows that the given matrix element of y K does not
vanish, therefore the expression in curly brackets must
be zero. This, however, is the

I 2(1V+n)+37th difference
of the function F'(j)/Lm( j)7'( +"+')p so that function
must be a polynomial in j of order 2(X+n+1):

2 (N+n+1)

F'U)/I ~U)72' +"+"= 2 a (n) j" (411)

for all rI,.
This means

2 (%+I) 2 (N+n+1)
m(j)'"= Q a„(0)j"/ Q a,(n)j'r. (4.12)

r=O

Our assumption that n3(j)&2n()&0 leads to the require-
ment a,(n)=0 for n&1 and r&2(&V+3); otherwise
m(j)2" would go to zero for jp ~. With this observa-

Math. IS, 1046 (1967). We would also like to thank Professor
Jaft'e for a thoroughly enlightening conversation about local fields.

F'(j") 1-ip K-"

j"p"rn3 (j ") r! n3(j")

(
( 1)r+1 —2y. K —2(N+n)+3 r—

X j"fT"
I 2(E+n)+3—r7! n3(j")
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tion, we have

9 (&+&) 2 (&+&)
m(j)'"= 2 a.(0)i "/ 2 a.(rt)i'

r=o

I"
~
jm)= —,'i—([(j+m)(j+m —1)]'"~j —1,nt —1)

+[(j—m+1)(j—m+2)]"'~g+1,m —I&}&

(4.20)
and

which implies for all e&0
2 (N+1)

c(1)" II [j-j.(0)]"/ II [j-j.(1)]"

One may also show that

i[1„,r„]=W„„,
J.F=O, (4.22)

2 (%+1) 2 (%+1) I s=Ks
=c(rt) g [j—j,(0)]/ g [j—j„(n)]. (4.14) d

I'„I'»=J'—K'+-,' = ——', .
From this it follows that

j„(rt)= j„(0) and c(tt) = c(1) 0"+1/2)'
P;.,..(p) = p {jo ~

exp( —ip K8)
~ j"o")

&vsris ms(ps+ms) 1/2which immediately leads to m(j) =m and determines
F'(j) to be a polynomial in j of maximum degree
2(xV+1), &&(j"o"(exp(iP. K8) t

j'o')

Now we choose Fs(j)=(j+s)n. It follows then for

{4 15) m(J) =m,

2 (++1)
I"'(i)= &

7=O
(4.16) {jo~exp( —ip K8)1'@exp(ip K8) (

j'a')

which is the announced result.
In the case of Fermi statistics, one has to consider

the symmetric function E..,. ;(p)+P;,,;, (—p) and
require that it be a polynomial of degree, say, 2S for
locality. This again leads to the conclusion that all
masses are equal, and determines J'(j) to be a poly-
nomial of degree 2N+1.

In general, then, for a field that transforms as a
unitary irreducible representation of the homogeneous
Lorentz group also be a locaL field, it must create only
particles (and antiparticles) of equal mass, when the
masses are bounded below. The wave-function normali-
zation functions F'(j) are also constrained to be
polynomials in j.

It is possible to give explicit examples of this behavior
for any S, which are generalizations of the examples
considered in Ref. 10 for S=—1 for bosons and E=O
for fermions. The examples are constructed in the
Majorana representations'": (je,c)= (rs,0) or (O'war).

These are the unitary irreducible representations which
support a four-vector F&—the Majorana vector—
namely,

with J~= —,'e~;;35;; and E;=3Ip,. The action of l'), on
the basis states j jm) is given by

l.
~
jm&=(j+-;) [ jm&, (4.18)

I'+
f
jm)=-,'i([(j—m)(j—m —1)]its]j—1,m+1)

+[(j+m+1)(j+m+2)]'ts~ j+I,m+I&},
(4.19)

"E.Majorana, Nuovo Cimento 9, 335 (1932).

&j l(pr„/m)sl~' &

m ps

(j [(P,l',—p r)"[j' '&

porn+'
(4.23)

V. A REDUCIBLE REPRESENTATION

Irreducible representations of the homogeneous
Lorentz group are interesting because they are the least
complex structures in the representation theory of the
group. It may happen, however, that certain reducible
representations are as interesting because of their
usefulness in physics. For 6nite-dimensional representa-
tions, this is the case, for example, with the Dirac
rePresentation [rs,07[0, rs] and the Rarita-Schwinger
representation [—',,—',]8[[s,0]8[O,s]]. For infinite-
dimensional representations, it may be that the Dirac
unitary [[—',,0]EB[0,s]]8(js,c) representation is rele-
vant to the problems of current algebra. "Both for its
physical significance, then, and as an example of a

"M. Geil-Mann, D. Horn, and J. Weyers, in Proceedings of the
Heidelberg International Conference on Elementary Particles,
edited by H. Fiithuth (Interscience Publishers, Inc. , New York,
&968), p. 479. See also E. Abers, I.T. Grodsky, and R. E. Norton,
Phys. Rev. 159, 1222 (1967).

For R=2(A'+I), the antisymmetric part in p is a
polynomial of degree 2Al+I, and for R=21V+I, the
symmetric part is a polynomial of degree 2S. The
former then yields local comrnutators, and the latter,
local anticommutators. Similar examples can be con-
structed in unitary representations which support
finite-dimensional tensors I'„,...».
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"simple" reducible representation, we shall treat here
the case where the fields transform as the direct product
of the 6nite-dimensional representation [i,07 and the
unitary representation (jo,c). The extension to the
case Dirac (3 unitary [(ja,c)7 or the more gen-
eral [[u,b7(l) [b,a778 [(jp c)6 (jo,—c)7—which includes
parity —is straightforward. As we shall see again, only
a trivial mass spectrum is consistent with locality,
covariance, and boundedness of the masses from below.

In general, in the representation (ja,c)8[a,b7, the
wave functions and Q.eld components may be labeled
by the two pairs of indices (jio 1jio2), where (jlo 1) refers
to (ja,c) and (jio2) to [a,b7 The. wave function for a
particle is characterized by three-momentum p, spin J,
spin projection J,=Z, and a parameter p which tells
how J was made out of j& and j2. For a given J, the
number of values of p is given by the number of different
pairs ji,j2 such that

I ji—j2I &J&j 1+j 2. The mass of
a particle is now a function of both J and p, m(Jp) ~

The wave function f;„»„2(pJZp) is given by

and

& (p'I jij2(»&*(jij2(»lp&=bpp
otl&2

(5.2)

Z(j:j'(J)lp&*(plj.j.(J)&=8» 8,..." (53)

This form for the wave function is motivated by analogy
with solutions of a Lorentz-covariant wave equation,
which at rest (y=0) reduces to an Hermitian operator
diagonalizable by a unitary transformation.

The matrix E(p) appearing in the commutator of one
of our 6elds and its adjoint is now

A... ~ (nJ&p)= 2» ~ . " (j"[L(elm(J p))7
21 o'1 j2 ~'2

X»2P2 j2'o2' ['L(P/m(J)p))7

X(ji'oi'j2'o2'I J&)(ji'i2'(J) I p) (5.1)

(jioij2o2IJ&) is the usual Wigner coefficient, and

(jij2(J) lp) is a coefficient which tells how to make J
from j& and j&, and which we take to form a unitary
matrix:

F2(Jp)
~(22P222P2) (21 PI 22'P2 ) (P)

'zP21 Pl 22 P2 21212222m (Jp)[p2+m'(Jp)7 j2

x (J~ I
ji"o,"j2"~,")(J~

Iji.—,j2o2&(p I
ji"j2"(J))(,I jij2(J)&*

X(jioilexp[ —2p K8(Jp)7I j"2oi)(j c2r 2elxp[ ip K—8(Jp)7lj 2"o2")

X(j iaiI exp[2p K8(Jp)7' 2'oi'&(j2o2I exp[—ij K8(Jp)7I j,'o2'&, (54)

where we have noted that K is Hermitian for (jo,c) and anti-Hermitian for [a,b7. 8(Jp) is, of course, defined as

8(Jp) =sinh-'[I pl/m(Jp)7. (5.5)

As promised, we deal here with the simplest of our class of reducible representations: (ja,c)(g)[—„07.Furthermore,
we present the argument only for Bose commutation relations, since the arguments and the conclusions are similar
for Fermi statistics, namely, the masses m(J, p) must be independent of J.

Suppose then that P(p) —E(—y) be a polynomial of degree 2K+1 in the components of y. As before, we study
the coefficient of (p)2("+")+2 in the expansion of the boost operators for 22=0,1,2, . .. Also, we choose ji' ——ji
+2(&+n+2). Since

I
ji"—jil =0,1 the only nonzero contributions to the coefEcient of (p)2(~+")+' come from

the terms with ji"=j1+r,ji=j 1+r+1 for 0&r&2(1V+I)+3.We are thus led to the condition

2(N+P)+3 p2(Jp)
(J~l jr+«2" 2o2)(J~ I ji+r+1oi,ko2')

'ZPP2 "» r-O m (Jp)
!
1-2P K

X(ol j + (r))(r )j2r+ro+( —(2))"(jro'a — jr+ro'r")
r! m(J,p)

( 1)r+1 —2P. K -2(N+e)+8-P

X ji+r+1 oi—
[2(1V+n)+3—r7!-m(J,p)

jr+2(Ã+o+2) ')=0. (1.6)

To proceed, we choose p= p8, and o.2'=o2. This means that ai ——ai', or the expression vanishes identically. Ob-

serving that

and that
(j,+r oil &2I ji+r+1 oi)= [(ji+r+1)'—o)27»'bjl'--'-' (5."/)

(i 2+«1,2o2li 1+r+2 oi+a2)(gi+r+2, oi+o2Ij1+r+1 o, ,o2&

1)~"([(ji+r+1)'—ai'7/I:4( ji+r+1)'—17}'j2, (5.8)
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x, (5.1o)
[m(j+ 2,p))""+"

which we suppose to be nonvanishing. This, of course,
means that P, G(J,p)/[m(J, p))'" is a polynomial in J
of maximum degree 2(1V+r)+1):

G(J p) 2(Ã+n+1)
b„(1V+n)J". (5.11)

n-) [m(J p))'"

Some straightforward manipulations show that in order
to implement the boundedness assumption on the
masses m(J,p) &mo) 0, one requires

b,(n) =0 for r)) 2, r &2(1V+2)+1. (5.12)

This means

G(J,p) 9{%+%)

b„(1V+I)J"=—P (J);-' Lm(J p))'"

[b»+I(1V)=b»+, (1V)=o). (5.13)

Now, by examining the expression for G(J,p), which
is independent of r), one may solve for [m(J,1)m(J,2))'"
and m(J 1) '"+m(J,2)—'" with the results

Ps„(J)P„(J)—Pp„'(J)
[m(J, I)m(J,2)) '"=- (5.14)

P2 (J)Po(J)—P.'(J)

tN(J, 1) '"+m(J,2) '"

PI.(J)P0(J)—Pg (J)P.(J)
(5.15)

Pg (J)Pp(J) —P '(J)

Thus, the masses may be written as

m'"(J, 1)=
A (J)+QB (J)

C.(J)
(5.16)

A (J)—&B (J)
m'"(J,2) =

C-(J)
(5.17)

where A„(J) and C„(J) are polynomials of degree
4(1V+2) at most, and B„(J),of degree 8(1V+2) at most.

we can cast our requirement for locality into

~ (~+-)+I (—1)" G(j~+r+2,P)
=0, (5.9)

r![2(1V+e)+3—r)! [m(Jp))'"

by deGning

«j+-, p) =-P (j+-,,p)& I
j-,V+-,»(pl j+I-', V+-, ))*

j+1
X

f LV+1)'—jo')L(j+1)'—c'))"'

This form for the masses implies

Ai(J)++A(J) " A (J)+QB.(J)
(5.18)()Ci(J)

for all e= 0,1,2, .If there is a zero of C~(J) that is not
a zero of A )(J)+QB)(J),we cannot have this equation,
since this zero is raised, on the left-hand side of the last
expression, to an arbitrary power e, while the degree of
the polynomials on the right is independent of n. Thus,
every zero of Cz(J) is a zero of A &(J)+QB&(J), which
implies that they are proportional, with a J-independent
proportionality constant. This means the masses are
independent of J:

m(J, 1)=Cg

m(J, 2) =Cn,

(5.19)

(5.20)

VI. SUMMARY AND OBSERVATIONS

Ke have, following the lead of the authors of Ref. 5,
constructed quantum fields with well-deGned trans-
formation properties under the Lorentz group out of
the annihilation and creation operators for physical
states. In the case where the Geld is a 6nite-dimensional
irreducible Lorentz tensor, we found that locality placed
no restrictions on the masses, considered as a function
of spin, of the particles described by the Geld. However,
when we chose the Geld to transform as a unitary
irreducible representation (jo,c) or a direct product
[Lo)(jo, c) and made the physical assumption that
the masses were bounded below, m(J,p)&me&0, we

whenever the G(J,p) are nonzero. The G(J,p) themselves
are also found to be polynomials in J of maximum
degree 2(1V+2).

If G(J,p) turns out to be zero, this implies that

(pl jlV+-:))(pl j+Il(j+l))*=0, (5 21)

or that the two ways of making j+-', —from j and -,'or
from j+1 and —', —do not mix. Again, one examines the
coefficient of (p) )r+'+ " in the matrix

P(~ .,~;.,) o,",~.",)(p),

taking 0 &= 0.x', (r2= 02', p= p()., and j('——j)+2(1V+I)+3,
and this time finds that the F'(J',p)/[m(J p))2(N+&)+'
for both p=1 and 2 are polynomials in J of the same
degree. Familiar arguments now lead us to conclude
that even in this case the m(J,p) are independent of J.
F'(J,p) turn out to be polynomials of degree 2(1V+1)
at most.

Once again, we have found that the requirements of
covariance, locality, and boundedness of the mass
spectrum from below are severe enough, in the ease
where the quantum field transforms as [~,0)(Q(jo,c),
to imply a trivial mass spectrum, that is, masses
independent of the spin J. We conjecture that this
result holds for the more general case [c,b) (jp,c) also.
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were led to the conclusion that locality of the fields
required that all the masses be independent of spin.
This conclusion means that in a local field theory one
can describe an in6nite number of particles of spin

jp, jp+1, jp+2, . by an irreducible unitary Lorentz
tensor or a Lorentz tensor of the type L-', ,0j (jp,c) only
in the physically uninteresting case where all those
particles have the same mass. Such a 6eld clearly has
little to do with a Regge trajectory.

It behooves us to inquire if there is some way in which
we can avoid this last conclusion, since the idea of
describing an infinite number of particles by a single
quantum field is not only attractive but may be
imperative if 6eld theory and hadron physics are to
have anything to do with one another. There are at
least two possible alternative paths that might lead us
out of the limbo of equal masses; each requires an
enlargement of our notion of a quantum field: (i)
Perhaps our requirement that the field be local is too
restrictive. It might well be that allowing it to be one
of Jaffe's strictly localizable fieldsi4 would give us
sufhcient extra freedom to have a physical mass
spectrum again. (ii) We have constructed our fields as
linear combinations of (Fourier transforms of) particle
creation and destruction operators. In so doing, we have
included only timelike momenta in the Fourier ex-
pansion of the field. Experience with infinite-component
equations, '~ especially of the variety where the wave
function transforms as a unitary irreducible representa-
tion (jp,c) or as Dirac(jp, c), shows that solutions of
these equations with spacelike frequencies are a general
occurrence. Our conclusions may demonstrate simply
that we have been in error in omitting such Fourier
components in the construction of our fields. These and
other ways out are the subjects of future research.

1Vote added inproof. A, . S. Wightman has very kindly
informed us of the following references we had over-
looked: (a) The results of Sec. III, namely, that locality
gives no restrictions on the mass spectrum when the
6elds transform as hnite dimensional representations of
the homogeneous Lorentz group, are contained in a
widely ignored paper by J.Schwartz (J.Math. Phys. 2,
271 (1961)j.Furthermore, we should mention that the

Lj,0j and $0,jj representations are explicitly treated
by %'einberg, Ref. 2, and Streater and Wightman,
Ref. I3, pp. $03—f05. Our treatment of the 6nite-
dimensional representations should then be regarded as
a warming up for the more interesting infinite-dimen-
sional case. (b) Reference 17 will be more complete if
we note the following work: D. T. Z. Stoyanov and
I. T. Todorov, Trieste Report No. IC(67)58 (unpub-
lished). Finally, we would like to call the reader's atten-
tion to the work of I. T. Grodsky and R. F. Streater
LPhys. Rev. Letters 20, 695 (1968)j, in which a very
similar result to our Secs. IV and V—the infinite-

'7 Ref. 15; Ref. 16; and C. Itzykson and J. Weyers (to be
pubhshed). Also Y. Nambu. Phys. Rev. 160, 1171 (1967), aud
references therein.

dimensional cas" is obtained by methods far less
pedestrian than those presented here. In the case of a
Geld transforming under an irreducible representation
of the homogeneous I.orentz group, our result is slightly
stronger, since we 6nd that all masses must be equal,
while they conclude that at least one mass shell is
in6nitely degenerate. On the other hand, their fields
may include continuous parts in the mass spectrum
while v e treat only discrete mass spectra.
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21&122&2

with A the constant metric matrix. Then one hnds

i& /1+1(P) 21+1 22 2D92+2 P& L (P/~4 ))j
214'1224'2

and hence
Z ~5& 51&1(P)~Jl&1 i + ~B ~«) (A3)

because of the completeness of the wave functions with
timelike p. This implies

(A4)

and guarantees local commutation rules for Bose
statistics and local anticommutation rules for fermions.
Now we will demonstrate that a scalar product which
is orthogonal for diferent spins is possible for unequal
masses owly in the Majorana representations, only with
3=1'p/», only with a mass spectrum of the form
m(j)=~/(j+is), and only in the form of (A1) with
F(j)=m'(j). It is ironic that this is the best known
case where there is a wave equation where the wave
functions of timelike momenta are not complete, "
namely, the Majorana equation ( i8 P +~)—iP(x) =0

APPENDIX

The problem of local commutation rules is related to
the question of completeness of the timelike solutions
to some wave equation. To be more precise, suppose
we are considering a covariant wave equation whose
solutions transform as an irreducible unitary representa-
tion of the homogeneous Lorentz group. In momentum
space, the wave functions, for timelike momenta, are
the D,, p, [1.(p/m(j'))g. Imagine that the wave func-
tions with timelike p span the whole Hilbert space and
that a scalar product exists such that
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~/.~'"=B(oj )b// "o- '

We address ourselves, then, to the question whether examination reads
it is possible to have an orthogonality relation of the
form

(A7)

jla'lj20'2
D..., ,„*LL(p/m( j))j

1/2 2 '2 2»' 'LL(y/mU')) j
= B(y,j)b,;.S... (AS)

D,„,,;,*LL(y/m( j))$D;„,,/; jL(p'/m( j'))]
(A6)

because of the unitarity of the representation. This is
actually very natural since the solutions of whatever
wave equation one has in mind are taken to be orthog-
onal for distinct j at rest. The orthogonality at equal
world velocity is, then, simply a statement of the
Lorentz covariance of the equations since the boost
operation takes one to a system of new velocity, not
momentum. However, for our considerations regarding
the properties of P;.,..(p) we need the orthogonality
for equal p. This arose since the conjugate variable to
space-time, in which we inquire about locality, is
p=mu, not N.

By taking p=0, the orthogonality relation under

in a unitary irreducible representation (j,,c). First, note
that it is immediate to obtain orthogonality for the case
of equal world velocities, since, if y/m(j)=p'/m(j'),
then

so that
B(j)/B(j+1)=m (j+1)/m( j),

and implies that we may choose

B(j)= 1/m(j )

(A10)

(Aii)

by fixing an arbitrary scale factor to be one.
Second order in p is more interesting, and has the

form

hence, with B(0,j)=—B(j), it becomes at monmntum p

2 D/ ",.*LL(ylmU))jBU")
~'//~//

&&D' ".'"LL(y/m(j'))3=B(lyl j)b 'b-" (Ag)

The right-hand side is a function of
I pl only because of

rotational invariance of the orthogonality relation.
One now expands the left-hand side of this relation

and examines it order by order in p. This expansion does
not require a boundedness assumption on m(j) since
the j's in the arguments of the boost matrices are not
summed over and may be 6xed at an arbitrary finite
value. The first order in p tells us that

ZP'

&(i)(i~ i ' ')
m( j')

zp'—B(j') jr j'a')=0, (A9)
m(j)

For j'= j+2, we obtain

d2

=-;lyl2 B(lpl, j) b;;.b.... (A12)
-a

I p I
- Ip I=0

(A13)
m( j) m( j+2) m( j+1)

which implies that m( j)=1/(a+bj). For j'= j+1, we get

-', (jo I(ip K)'I j+Io'&[2a+b+2bj)

=P &jo lip Kl j+io"&&j+Io" lip Kl j+1o'&I a+bj+bj+P &jaliy Kl ja")&ja"lip Kl j+1o'&Pa+bj g

=(a+bj)&jul(ip'K)'I j+1~'&+& b&jol(ip'K)I j+1~'&&j+io"liy'KI j+1~') (A14)

or if b&0,"
jo I (ip K)2lj+1 o'&=2 2 &joIip K

I j+1o")(j+1o" lip 'Klj+I o')
~

"If b=o, the masses are constant and the notion of equal momentum reduces to the notion of equal world velocity and has been
considered.
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which in turn leads to

E (j I P KIj "&(j "I P Kl j+1 '&=2 (j I p Kl j+I "&(j+I "I p K(j+I '&.
nfl

Take p=pe„which requires o'=o and

(jo.(Z&l j+&=oo'= (j+I o'(It&I j+
which is satisfied only if cJ=0, or joe= 0.

Finally, choose j'= j in the second order of expansion:

(A17)

(9'I (ip'K) I jo') 2 (jo Iip'KI j 1 o"&(j I o"Iip Kl'jo'&
m'(j) m( j) m(j —1)

—Z (j~lip Kl j+1~"&(j+I~"lip Kl j~') — =l lpl' fI(lpl j)
y II ~(j+I) -dipl' —!pl~0

(A18)

remembering that since joo= 0, K does not have matrix elements between states of the same j.This is equivalent to

.
— & (j~lip Kl j—I ~"&(j—«"lip Kl j~')—2 (j~(ip Kl j+1~"&(j+I~"lip Kl jo'&

~2(j) y II

= 2 lp In'"(P=O, j)8,. (A19)

Again, take p= p8„and choose o.=o, then we 6nd that
I (go I

E3 (g—1o)
I

'—
( (jo I Ea

I y+1o) (
' is independent of o.,

which is satis6ed only when joo =0 and jo'+c'=xi. This implies that only the Major ana representations are allowed.
Armed with the knowledge that we need only consider the Majorana representations, we return to the ortho-

gonality relation

g Dj-, ~,;,*[1.(p/m(j))](a+bj ")Dp;,&'. [L( ipse(j'))5=8((p(y j) bpl8, gjI/g I I

and use our knowledge of the Majorana vector F . Since

I'o=exp[ip K8(J)][cosh8(J)1'o+p I sinh8(J)) exp[ ip K—8(J)],

(A20)

(A21)
we may write

(jo I exp[ip K8(j)][cosh8(j)I'o+p I' sinh8(j)] exp[ ip K8—(j')]I j'o')
=(j+-,')(jol exp{—iP KL8U') —8(j)]) I

j'o'). (A22)

Interchanging j and j' in the argument of 8(j), we can quickly find

[m(j) cosh8( j)—m( j') cosh8( j')](jo ( exp[ip K8(j)]I'o exp[ ip K8—(j')5
I
j'o')

=[ (j)(j+l)— (j')(j'+l)](j I p{—P KI 8(j')—8(j)]}l
j' '&. (A»)

The scalar product for j/ j' can now be set in the form

2 (j~l exp[+iP K8(j)]I
j"o"&[(a—2b)+bU"+k)](j"~"IexpL —iP «(j')] I

j'~'&
pily II

=(a——,'b)(jo(exp{—ip K[8(j')—8(j)])I j'o'&+b(jo (exp[ip K8(j)]I'oexp[—ip K8(j')]I jV&=0, (A24)

which implies that a= ~b, or
~(j)=~l(j+2) ~

For j=j', the scalar product can be explicitly evaluated:

r'(jo
I exp[ip K8(j)]I'o exp[—ip. K8(j)]ljcr )=L '(jcrlcosh8(j)I'o —sinh8(j)p. I

I ja )
= {[p'+~'(j)]'"i~'(j)}8-'

This is what we set out to prove.


