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The same result can also be obtained from the low-

energy theorem of Das, Mathur, and Okubo" provided
that one uses expression (5) for the pion form factor.
We have preferred to use the above method, because
it illustrates the question of subtraction in the dispersion
relation of 8s(v) as well as in the pion form factor.

From formula (30), we notice that for the case when
the dispersion relation for FIs(v) has a subtraction, one
obtains for

y=gr (as in Schwinger's theory), b(0) =0, r=o,
y= 0 (no subtraction" in the pion form factor)

b(0) =f./2rrt, s, )r) =0.6,
'5T. Das, V. S. Mathur, and S. Okubo, Phys. Rev. Letters,

19, 859 (1967). This paper contains earlier references to m. —+ hy
decay.

and

&=~, f(0)=3f./10, s, ~r~ =O.36.

In contrast, if Hs(v) has no subtraction, b(0) = f—/rn, ',
so that ~r~ =1.2. Thus, to conclude, an accurate de-
termination of r can settle the question of subtraction
in FI„(v) as well as in the pion form factor, and, further,
it can make a choice between the various values of y.
The present experimental situation regarding r is that,
on the basis of 143&15 events, Depommier et al."
obtained two possible solutions for

~

r ~, which are 0.38
and 2. This would indicate y= —,'0. Further experiments
on x —&Ivy decay with better statistics would be of
great interest.

' P. Depommier, J. Heintze, C. Rubbia, and V. Soergel, Phys.
Letters 7, 285 (1963).
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Since the field theory which describes the interaction of a massless fermion with a vector meson of bare
mass po in one spatial dimension is known to contain massless boson excitations, there is considerable
interest associated with the question of whether these particles can be identified as the Goldstone bosons
generated by the breaking of an appropriate symmetry operation of the theory. It is shown that such an
interpretation is indeed consistent, independent of the strength of the coupling, provided that one takes
Lorentz invariance to be the broken symmetry of the model. Particular attention is given to the limits
tsv ~~ (Thirring model) and tsv-+ 0 (Schwinger model). It is found in all cases that despite the apparent
breaking of Lorentz invariance, the excitation specrtum has a normal form, and the symmetry breakdown
remains entirely unobservable.

I. INTRODUCTION

HE field-theoretical techniques of spontaneously
broken symmetries have been used in a number of

recent attempts to understand the structure of strong
interactions. Invariably the elegance of such formula-
tions has been found to be marred by the problems
associated with unwanted massless particles which,
according to the Goldstone theorem, "must neces-
sarily accompany the breaking of a continuous sym-
metry group associated with a manifestly covariant
theory. ' In order to investigate whether such difficulties

*Research supported in part by the U. S. Atomic Energy
Commission (Report No. NYO-2262TA-171).' J. Goldstone, Nuovo Cimento 19, 154 (1961); J. Goldstone,
A. Salam, and S. Weinberg, Phys. Rev. 127, 965 (1962).' G. S. Guralnik and C. R. Hagen, Nuovo Cimento 43, 1 (1966).' G. S. Guralnik, C. R. Hagen, and T. W. S.Kibble, Phys. Rev.
Letters 13, 585 (1964). In the case of gauge theories in which the

might be circumvented by the possible decoupling of
the Goldstone boson, the study of various soluble field-
theoretical models which are capable of supporting a
broken symmetry has recently engaged the attention
of a number of authors. In particular, it has been
shown' that a relativistic theory whose Lagrangian is
invariant under transformations of the form

d(~) e(~)+~,

where P(x) is one of the canonical variables of the theory
and q is a constant, always possesses an in6nite number
of broken-symmetry solutions, each of which describes
exactly the same physical system. Such theories have

Goldstone theorem fails to apply in the radiation-gauge formula-
tion, the massless bosons reappear as uncoupled gauge modes in
the manifestly covariant formulation of the same theory. This
phenomenon is discussed in detail in Ref. 2.
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been discussed in some detail in a number of free-field
models as well as in the Zachariasen models 4 (which
itself consists merely of an infinite number of free
fields). Although the existence of the gauge group (1.1)
in all these examples implies the essential unobserv-
ability of the symmetry breaking, models of this type
have been quite useful since they possess a number of
features which characterize the more interesting (and
more speculative) theories of spontaneous symmetry
breaking. On the other hand, it has recently been shown

by the authors' that in certain types of nonrelativistic
field theories which have a massless excitation but which
are not invariant under (1.1), the broken-symmetry
condition

(0!y(~)!0)= ~

implies that the results of physical measurements will

generally depend upon the symmetry-breaking parame-
ter g. One can include in this class both the neutral-
scalar theory and the Lee model provided that one
requires the mesons of these theories to have vanishing
mass. To date, however, the computational difhculties
inherent in relativistic theories has precluded the
possibility of convincingly generalizing this result to the
fully covariant case. Because of the complicated con-
straints imposed on such a theory by a symmetry-
breaking condition, it is far from clear that a nontrivial
broken-symmetry solution can be internally consistent,
even if one assumes the existence of well-de6ned solu-
tions which respect the symmetry.

Aside from these problems of constructing relativistic
models in which the breaking of a symmetry leads to
physically observable consequences, there is one further
generalization of the results obtained in Refs. 2 and 4
which is of considerable interest. In particular, it would
be desirable to demonstrate that there exist cases in
which the operator P(x) need not be one of the canonical
variables of the theory under consideration, e.g., that
@(x) can be bilinear in the fundamental field operators
of the system. Within the realm of renormalizable
relativistic 6eld theories there is only one set of soluble
models known at the present time in which a composite
6eld operator has a particlelike excitation. This class
of theories describes the interaction of a massless
fermion 6eld with a vector meson in a world of one
spatial dimension according to the Lagrangian

L= ', Gs"(8 B„—8,B )—+—-,'Gs"G, ,'Vp'BsB„—-
+ ',i&u&8„&+eB„j-&, (1.2)

which includes as special cases the limits go= ~ and
pp= 0. Because the solutions of (1.2) are known to con-
tain a zero-mass boson excitation, such a theory might
well be expected to support a broken symmetry and

' W. S. Hellman and P. Roman, Phys. Rev. 143, 1247 (1964);
N. G. Deshpande and S. A. Bludman, ibid. 146, 1186 (1966).' G. S. Guralnik and C. R. Hagen, Phys. Rev. 149, 1017 (1966);
Nuovo Cimento 45, 959 (1966).

we shall consequently investigate in some detail the
consequences of casting this massless particle into the
role of the Goldstone boson.

II. DERIVATION OF SYMMETRY-BREAKING
SOLUTIONS

Since the Green's functions of the theory described
by the Lagrangian (1.2) are most easily obtained by
means of source techniques, it is useful to introduce the
additional coupling terms

Asj„+BsJ„,

where A& and J& are classical external sources. However,
before one can proceed to calculate the solutions of the
model, it is further necessary to take into account the
long recognized fact that (1.2) is ambiguous' because
of the ill-de6ned nature of the formal prescription for
the current operator

j"(*)= s4~"8,

where the 0.& are the two-dimensional set

O.'= —0.0=
&0

t1 0
ni=0, q=

ko

and g is the antisymmetric matrix

to —i~

4 oj'
which acts in the charge space of the Hermitian 6eld
f(pp). Recently, it has been shown~ that one can con-
sistently define the current operator by means of a
spacelike limiting procedure, which, in the case e=0,
may be written as

j~(x) =-,' lim P(pp)nsq
x~z'

Xexp iq dx„" (pA& —t)ysAsa) p(x'), (2.1)

where

~~"—&" Av,

y5=0, '0, '= O.',
and e&" is the antisymmetric tensor de6ned by

gPV gVP

set=+ 1

The parameters & and g, which are required to be real,

~ K. Johnson, Nuovo Cimento 20, 'l73 (1961).
~ C. R. Hagen, Nuovo Cimento 518, 169 (1967); 51A, 1033

(1967).
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must satisfy the constraint condition

if there is to exist an energy-momentum tensor with the
correct transformation properties. It is important to
note that each distinct value of f can be shown' to lead
to a different solution of (1.2) with the limiting cases

$= 1 and g = 1 corresponding, respectively, to the special
circumstances in which the vector and axial-vector
currents are conserved even in the presence of the
sources.

In order to demonstrate the existence of symmetry-
breaking solutions of the model, we consider the
vacuum-to-vacuum transition amplitude (00 r l

Oo s)~,~,,
or more simply &Olo&~, J,, From the action principle,
one readily infers the result

&Olo)g, g„=exp ie —dx — &olo&~,q, (2.2)
aA~(x) aX„(x)

where

This equation can be solved' by writing

G(x,x') =Cp(x —x') expLiq(F(x) —F(x'))5,
where

n (1/i) a„C.(x—*')= S(x—x'),

nba„F(x) =n~A„(x).

(2 4)

(2.5)

It is now easy to see that the solution of these equations
is not unique and that there is consequently a certain
amount of arbitrariness in the matrix element of j}'(x).
In particular, one notes that the usual causal boundary
conditions are capable of specifying Cp(x —x') only to
within an additive constant and that the most general
solution of (2.4) is thus of the form

1"p(x—x') =Gp(x —x')+7,

where y is a constant matrix and

Gp(x) =
l n'(1/i) Br—(1/i) Bp5D(x),

D(x) being defined by

&ol o4,,=&olo&, , , dk 1
~ikg

(2x)' ks—ip
D(x)

%ith the removal of the coupling term in the expo-
nential there follows a signi6cant simpli6cation, namely
the factorization of &Ol 0&~,J as expressed by The function F(x) can be inferred from (2.5) to have

&ol o), ,= &olo),&ol o&,.
Although &Ol0&z can be readily shown from the equa-
tions of motion to have the form~

F(x}= if&o(x —x'}a A „(x—'}dx',

(Olo&g= exp si J„(x)Gp "(x—x')J„(x')Cxdx'
which enables one to deduce~

where

cp . t' p"p"i
s'"*I g""+

(2 )' k p' jp'+}}r'—'

&olj (x)lo),
(j"(*)&=- Dps"(x x')A, (x')dx'+—qs,

olo4

where

the amplitude &Ol 0&z strictly speaking is not uniquely
determined even after one speci6es the limiting pro-
cedure (2.1) for the current operator.

To demonstrate the origin of this ambiguity, we note
that from the action principle it follows that

1
&OlO&&= &Ol j (x) lO&&

——,'z lim Trqn G(x,x')
i SA„(x) X~X

Dp~"(x) =—(1/s)((e e +qgs g" )B.B,D(x)

&j"( )&I = = n" (2 6)

ql'= ~i Trisul'y.

This result clearly shows that the ambiguity in (2.4)
allows one to consistently impose the broken-symmetry
condition

without requiring the imposition of any constraints
Xexp —iq Cx„"(5A"—m'pAp") ~ (2 3) upon the theory. On the basis of this result, Eq. (2.3)

can be integrated to yield

where the Green's function

&o l(y(x)4(x')), lo&,
G(x,x') = is(x,x')

&QIQ&.

satis6es the di8erential equation

n&P(1/i) 8„qA „5G(x,x') =—b(x,x') .

(0lo)&=exp s'i A„(x)D "(x—x')A„(x)dxCx

Xexp iri" A„(x)dx

' J. Schwinger, Phys. Rev. 12S, 2425 (1962).
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which di8ers from the usual form~ only in the presence
of the second exponential.

One can now proceed to calculate the effect of the
interaction on the vacuum transition amplitude from
Eq. (2.2). The latter can be rewritten in terms of the

case qI'=0 as

j.
(olo&, ,, .=vvo iv (x„+v— ov (olo&, :=

i bJ~

so that, using the results of Ref. 7, it is trivial to deduce

(0 ( 0)~,z,.= (0
~
0)o, p, ,"=o exp ig)' A „(x)dx exp ', i —pJ„(x)+erj„jG)'"(x x')—fJv(x')+eg„jdxdx'

&&exp oi A„(x)D""(x x')A„(x—')dxdx' exp i LJ„(x)+eg„7M)""(x x')A„(x—')dxdx'

where

8"8")
o""(v)= (7""— lo(*)—

~2 j
g2 j. 8 8

D(x),
or)((o' (1—ge'/os p') (1+$e'/orlop') pp'

D)lv(x) — p)ltvpv7 +g)llvgvT

7r 1+$e'/or go' 1—ge'/or go'

Pe' 1
8 8 D(x)—— p" p"'8 8 D(x)

or' p p' 1+$e'/or)((p'

1
&"~"D(*)+- ( 'g""—~"~")~(*)

(1 ne'/ u-o')(—1+&e'/ IJ ') 1+$e'/or)((p'

and A(x) is the causal Green's function

(—~'+u') ~(x) = &(x)

corresponding to the renormalized meson mass

p'= po'+ Pe'/or

With this prescription, (2.7) becomes

(P) ( a,z=o = g"+
orgo' (1—ge'/or go') (1+$e'/or go')

]e2
gP

orpo' 1+$e'/n. y p'

The eBect of the interaction on the broken-symmetry
condition (2.6) is found immediately by calculating

+op"
1+$e'/or)((o' 1—ge'/n. p p'

(2.8)

(j")
~ z,z-o= g"+e M""(x x') q,dx'. —(2.7)

Since, however, the Fourier transform of M)'"(x) con-
tains terms of the form k)'k"/kp, the value of this func-
tion at k= 0 is dependent upon how one takes the limit.
It is, consequently, necessary to lend meaning to all
expressions involving pl" by giving p& a space-time de-
pendence which will allow one to freely carry out
integrations by parts and by taking the limit p&=con-
stant only at the end of a given calculation. More
specifically, we write

q"= gy"+ rjp" v

which displays the diQerent renormalizations under-
gone by the "vector" and "axial-vector" parts of the
symmetry-breaking parameter. Although it may seem
peculiar at first sight that the vacuum expectation value
of j"(x) should depend upon the way in which one splits
the vector g& into the two parts g~& and q2&, this can
readily be seen to be a consequence of the fact that a
constant vector in two dimensions can always be
written in the form

o&"=no""Bv(p"x g )+PB"(g" )x

where the two parameters n and P are constrained by
the single condition

where

6ppB g2 —0.

Since those parts of q)' which are proportional to n and P
are renormalized by (1+$e'/orpp') ' and (1—qe'/orpp'),
respectively, only in the exceptional cases /=1 and
ot=1 (which correspond to go)'=0 and g~"=0, respec-
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tively) is the expectation value of j"(x) uniquely
speci6ed by the e=0 result. Any lingering doubts that
the reader has about this decomposition should be
resolved by the results of the next section, from which
it can be deduced that this is the unique decomposition
consistent with the properties of J&" as the generator
of Lorentz transformations.

A special case of the vector-meson theory which is
of particular interest is obtained by taking the limit

po ~00
e2 @pm —+A.

only the massless mode persists, i.e.,
82j"=0, (2.11)

while in the limit ps —+ 0 (Schwinger model) one must
requirer )=1, and (2.10) reduces to

( 8'—+ e/~)j»=0 (2.12)

Although (2.10) and (2.11) imply the possibility of con-
sistently taking (j»(x))NO in the source-free limit,
(2.12) clearly demonstrates that in the Schwinger model
such a condition requires

(es/ )(j (x))=O,

i.e., the broken symmetry is inconsistent because of
the absence of a zero-mass particle. Although this result
can also be extracted from (2.8) by setting rl&»=0 and
taking the limit pp —+ 0, it is somewhat more instructive
to establish this result by a direct calculation.

To do this we begin with the Lagrangian

This corresponds to the case of the Thirring model which
is formally described by the Lagrangian L=srifn»8»$
+sXj»j„.In this case the broken-symmetry condition
(2.8) trivially becomes

(J») l ~,~=o= rlr» +as»
1+X)/e. 1—lw. rl/e

(2 9)

I= ', F»"(8—»A-„B„A»)+—', F»"F»„+-,'i'»8„$-
+ep A»+A»J»+j "a„,We emphasize here that there is no connection be-

tween the broken-symmetry solution (2.9) and that
previously obtained by Leutwyler' for the Thirring
model. In particular, it is to be noted that Leutwyler
does not allow the possibility of a broken-symmetry
solution in the free-field limit, that is for X= 0 he 6nds
p&&=p2&=0. This approach consequently leads to the
incorrect claim that the construction of nonzero (j»(x))
can be achieved only for the particular values of X cor-
responding to the singular points (),= —s./$ and X=e-/rl)

of (2.9). On the other hand, the solutions obtained here
and in Ref. 7 speciftcally require that X be restricted
such that (1+At/e. ) ' and (1—Xrl/x) ' be positive and
bounded out but do not otherwise limit the strength
of the coupling.

It is instructive to note that from the expressionsv for
the divergence and curl of j»(x) in the source-free limit,

where J& and a& are external sources. As before, one
obtains

(or 0),, q, .=exp —ie dx (olo). , (2.1s)
8a»(x) 3J„(x)

and

(ol o). ,= (olo).(ol o), .
Since it is necessary to impose current conservation
on j»(x), one takes )=1 so that

(0 l 0)o= exp ,'i a„(—x)D»"(x x') a„(x')dxd—x'

where
D»"(x)= —(1/e.)e»'e"'8, 8,D(x) .

One also finds by straightforward calculation the result

(0 l 0)=exp si J„(x)D~»"(x—x')J„(x')dxdx'

1.e.)
B„j&=0,

e»"B„j„=(e&/2e. )e„„G»",

one 6nds with the help of the 6eld equations

G~"= 8~$"—8"B~
Gpv ejI'—IJ,p2BI"

where Dg»"(x) is the radiation-gauge Green's function

(2.10) Dz""=bp"&o"V

the result
8&(—8'+p') y»= 0.

In the limit in which one obtains the Thirring model, Substitution into (2.1S) yiel'ds

(0rO), ~,= (0 l0)e, s„exp i'» a„(x)dx exp ,'i (J»(x)+erl„fDa»"(x x')—[J.(x')+erl, jdx—dx'

Xexp sri dx a„(x)+e D» rr(x x")(J (x")+erl )dx—" A»"(x—x')

X a„(x')+e dx"'D„e~(x' —x"')/Je(x"')+erie jdx" ' dx'

o H. Leutwyler, Helv. Phys. Acta 38, 431 (1965).
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where
6»"(x)=—(1/lr) 0» 0"'8,8,b (x)

(—oj2+e2/lr) A(x) = b(x) .

(0)0).,p, ,——(0~0)0,0, , exP i21» u„(x)dx

Xexp ~~i u„x e' D x—x g„Ch' A~" g—g'

X u, (x')+e2 D(x' —x"')g„dx'" dxdx'

Since there are no independent dynamical variables
associated with the electromagnetic 6eld in two dimen-

sions, all boson matrix elements of the theory can be
generated by the single source a»(x). We thus set J»=0
and obtain

where 0&" is a numerical matrix, It follows from this
expression that the requirement (0~ C ~0)WO necessarily
implies the formal breakdown of Lorentz invariance. In
general, this is a very dangerous requirement since
(assuming the symmetry-breaking parameter (4)
appears in a nontrivial manner) the result is likely to
be an unacceptable departure from Lorentz invariance
in the excitation spectrum of the theory. As is seen
from the solution of the simple model theories discussed
in this paper, the symmetry breaking in these cases is
sufBciently trivial so as to preclude an observable
breakdown of Lorentz invariance. Nevertheless, it is
necessary that this breaking be consistent with the
Lorentz group properties and we must consequently
con6rm that the equation

(1/2) LJ»",j'(x))
= (x»B" x"8»)-j"(x)+g»"j"(x) g""j»—(x),

where

where we have given g& a space-time dependence which
will allow integrations by parts (subject to the condition
B„lt»=0). One now finds

(j»(x))i. 0= q»+e' d,»"(x x')D(x' —g"—)dx'd g"q.

J '= dx LxoT01( ) xToo(*)j
is consistent with (j")WO and hence (using (O~P'=0)
that

i dx'x'(0
[
CToo(g'), j'(g)j (0)

which clearly illustrates the cancellation of the free-
field broken symmetry through the effect of the inter-
action. This rather remarkable result thus shows that
the soluble models in two dimensions provide some sup-

port for the hypothesis' that broken-symmetry solu-

tions can occur in a given quantum-6eld theory if and

only if the system has a massless excitation.

III. CONSISTENCY OF SYMMETRY BREAKIN6
WITH THE PROPERTIES OF THE
LORENTZ GROUP GENERATORS

It is not difficult to understand why most attention
to spontaneous symmetry breaking has been confined

to the case of spin-zero Goldstone particles. In particular,
the formidable mathematical (and physical) difhculties
associated with spin can readily be displayed by means

of the commutator of a Geld 4 of nonzero spin with J&",

the generators of the Lorentz group

(1/i) $J»",4 (x)$= (x»8"—x"8»)4 (x)+~»"4(x),

is satisfied. We shall do this only in the case of the
massive vector-meson model and note that the results
for the other models can be obtained by appropriate
limiting procedures. Incidentally, a similar equation
must be valid for (0~8»~0) since the field equation
B„G»"=ej» Il 028» requires tha—t (8»)= (e/F02)( j»). How-

ever, verification of (3.1) is tantamount to verification
of the same equation with y& ~ 8&.

We evaluate (3.1) by first finding

(1/z)(~/W, (g))(0~ Too(x') (0)(, , ,
In this process we neglect all terms proportional to
(j"(x)) since they cannot contribute to (3.1). From
Ref. 7 we 6nd that

Tpo(g) (Gp1)2+ 2P02(gl+12+ g2+02j 2/~1/1/

e81 y
' (e2$/lr) 8—12—

Where the ShOrthand nOtatiOn al —=1+)e2/lry02 and

a2—= 1—pep/lrp02 has been introduced.
We also need an explicit expression for the two-point

Fermi Green's function G(x,x') in the presence of inter-

actions. Using the methods of Ref. 7, one finds

G(x,x') =—Gg, g„&(g,x') =Gp, p, P(x,x') exP 2g A»(x")PE»(x",x) E»(g",x')jdx"—

Xexp iq LJ»(g")+eq»LM„(x",x)—M„(x",x')jdg", (3.2)
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where
e ) 1 —ie'

Gp, p,,&(x,x') =
I y+Gp(x, x')] exp k—r

I
LD(x—x') —D(0)] exp Lh(x —x') —6(0)]

)l'pp e) aia2 Pp ~i

and we have introduced the functions~ From this representation it is easily seen that

and

E~(x,x') =L(I/a2) 8~+(1/a, )e"q,8„]D(x—x')

M)'(x, x') = (e/pp2) L(1/a2) 8"+(1/ai) p)'"8„~,]D(x—x')
(1—/ai) p)'"y 28„2 (x x'—) .

(I/i)(8/8A &(x))(0 I
T"(x')

I o) I. ..
term by term using the expression given in Sec. II for
(ol 0)g,~,,&, Eq. (3.2), and the usual source techniques.
Terms of the form (0 I

(8)'8"j")+I 0) are readily found to
yield

Although it is a straightforward exercise to compute
the higher-order Fermi Green's functions, we omit the
results of this calculation since they are not relevant to
our discussion of Eq. (3.2).

One can now evaluate

(ol((Go )'q ),lo)=o

since in forming this from (3.3) one derivative always
acts on (ol j"

I
0). Just as directly we 6nd that

—i8 —ib

, «lo)l~=~=p
i)A), (x) 8J)(x') 8Ai(x')

ie
i M—' i( x', x)(OI j'lo) —D'"(x',x)(ol j'IO).

Pp

Finally we compute

-l (ol(4(*') '8 4( ')j"(*))+Io)

—iB
(8."' TrG(x', x")u'(0

I 0)), „,-.
2 8A&(x)

—ib —i8 —ib
(olo)l» 2

bJ„(x') 8J„(x') 8A), (x)

eM '(xx)-fG (x ,'x )ee C"x'', ".
—e'e)f""(x' x)fG" (x'x")ee dx +',IT.".

Using (3.2), we find that

—gi 8 "'TrG(x', x")n'I.
8A.(s)

,'i T—ru—'Gp,p„&(x',x")q82)V"(x,x")

where I.T. represents irrelevant terms proportional to
(ol p(x) I

o
Although the expression J' G)' (x',x")e)).Cx" may be

evaluated directly (using our speci&ed integration
technique), it is more convenient to use

+—Tr
2x

Ch'"ed~8, M„(x'",x")

X8,W(x,x")I,„„.,

G"'(x',x")eggx"= (0I8"I0)=(e/pp )(ol j"I0)

to deduce

(olo)
8J„(x') 8J,(x') 8A), (x) & g p

=—iM~" (x',x)—(ol j"
I 0)

Pp

the evaluation of which results in the expression

—ib
I 8,-' TrG(x', x")u'] l, ,-(0 I 0)

2 bA), (x)

(V )' p2
= i 8 "8'D(x' h) — — —+-

Q2 %Pe G2

Pp2
+ip""p"8„8. —D(x' —x)+ h(x' —x)

2

e—iM"(x~x)—(Ol j IO)+I.T. (3.3)
Pp

~' —(m)' ~'
X —— — +I.T.

-Gg Cy 8'pe



1438 G. S. GURALN I K AN D C. R. HAGEN

Thus, it follows that

(oI 2'PP(x') I0) I ~=~=p
i 3W, (x)

=1= 2PP

2'L8C].
N'"(x', x)(0I j'I0)—

po2

2ieap —$es
3I"(x',x)(OI jpl0& ie—'"p'8,8. D(x' —x)+ A(x' —x)

ÃjM9

-(»)P es &P- —
2es~~——+i(OI j'I0) e 1+ IM' (x',x)+—D'"(x',x)

—(ar ) pr+0 al- plgo ) pp

GroUping terms and using the expressions for M&" and DI'", this becomes

e4$ e2 r)lr)xD(x x) 'gr (r)2) 1e2-

(1/)(3/» (*))(oIT"( ') Io)= &oI j'Io)— +i r)"O-'D(x' x) ——+-
go'~' xylo' a,as a, a,s~„osJ

n' (»)'e'
+

Cy Cy 71@0

i8"O'D(x' x)+ — BPB"D(x'—x)(OI j'I0&+I.T.
Ãpo Qy

Note the important result that all terms proportional
to the massive propagator A(x' —x) vanish, as required

by the Goldstone theorem. Using Eq. (2.8) the above

expression finally becomes

(3/W, (x))&0IToP(. ) lo&=-ara~D("-x)(ol»lo&
—ri'r)"D(x' —x)(0I jl0)+I.T.

From this it is immediately seen that Eq. (3.1) is valid

and that we have consequently succeeded in construct-

ing a consistent broken-symmetry theory. As mentioned
in the previous section, experimentation with the above
expressions reveals that we have dedned the integrals
involving ql" in the correct manner.

CONCLUSIONS

In this paper we have established the consistency of a
broken symmetry involving the nonvanishing vacuum-

expectation value of a bilinear operator. This is the

only relativistic example presently known to exist
which is nonperturbative and consequently not in-

timately involved with the intricacies of a cuto6. It
should be emphasized that the broken-symmetry re-

quirement in these models has a minimal effect on the
Green's functions of the theories, and in no way changes

the spectrum. In particular, the Green's functions in-
volving only boson operators are identical to the cor-
responding Green's functions evaluated at g&=0, while
the Green's functions involving Fermi operators are
changed only by the inclusion of the constant p in Go
and the replacement of J&(x) by J&(x)+eri&. It must be
pointed out, however, that despite the relatively slight
changes induced by the symmetry breaking, the
structure involved is much more complicated than in
the so-called naturally occurring cases discussed in
Ref. 2. This is borne out by the fact that (j&& is depen-
dent on the strength of the coupling parameter e'/pp'.

Finally we note that by making an appropriate
identification the formal Green's function expressions
of the Thirring model with a broken symmetry can
easily be shown to correspond to their analog in four
dimensions —the Bjorken modelio, ii with vanishing
fermion bare mass. The actual interpretation and com-
parision to electrodynamics is not identical, however,
because of peculiarities intrinsic to a two-dimensional
space-time.
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