
QUEST FOR FASTER-THAN-LIGHT PARTICLES

for tachyons up to some energy are already filled. If this
energy is above the energy of the photons used in this
experiment, no tachyons would have been produced.
The limit that is presented assumes that these two
e6ects are not important.

The limit that is presented does not consider the
process of a photon decaying into a photon plus
tachyons. ' If such a process has a high probability of
occurring, the limit set by this experiment would be
lower than the quoted result.

It is important to note that faster-than-light particles
of any "rest mass" could have been created in the
experiment. ' It is possible that the production cross
section is pathologically small below energies corre-
sponding to the "rest mass" p of the tachyons. This

9 It should be noted that very low mass tachyons might not
have been seen in this ex eriment. This case has been considered
in another ex eriment T. Alvager, P. Erman, and A. Kerek
(unpublished) which also gave a negative result.

possibility, although not based on any theoretical argu-
ments, lends some support to efforts to extend the
measurements to higher photon energies. Also, there is
some interest in placing a limit on the existence of
completely neutral faster-than-light particles. Experi-
ments along both of these lines are now being planned,
as well as plans to extend the sensitivity of the present
experiment. It is felt that it is possible to increase the
sensitivity of the present experiment by several orders
of magnitude with only minor changes in the detector
system.
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Gravitationally Induced Electric Field near a Conductor, and Its
Relation to the Surface-Stress Concept
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The contact potential difference between points just outside different parts of the surface of a conducting
body is altered when the body is acted on by a gravitational Geld, because of the effect of gravity on the
work function of the surface. A reciprocity relation due to Schiff and Barnhill relates this e6ect of gravity to
the shift in mass moment of the conductor produced by shifting the position of a test charge near it, and
shows how the effect can be expressed as the sum of a purely electronic term and a nuclear term due to dis-
tortion of the crystal lattice. It is shown here how the nuclear term, which describes the effect on the work
function of the distortion of the body by its own weight, can also be described, via the reciprocity relation,
in terms of the local alteration of the surface stress of the body by the electric Geld due to the test charge. The
contribution of the nuclear term to the electric Geld in a vertical metal tube is expected to be of the order
of 10~ to 10 ' V/cm, much larger than the Schiff-Barnhill electronic contribution of —5.6X10 rs V/cm.

1. THE PROBLEM

~ONFI. ICTING views have recently been ex-~ pressed' ' regarding the theoretical effect of gravity
on the electrostatic potential just outside the surface
of a conductor. This question arises in connection with
any experiment aimed at measuring the force of gravity
on charged. elementary particles: To avoid having
gravity swamped by stray electrostatic fields, one
must introduce metallic shieMs; one must then worry
about the electrostatic fields inside these shields. These
fields can conceivably arise from random causes such as
Ructuations in surface contamination or crystal grain
texture, from space charge in the evacuated region, and

' L. I. SchiG and M. V. Barnhill, Phys. Rev. 151, 1067 (1966).
'A. J. Dessler, F. C. Michel, H. E. Rorschach, and G. T.

Trammel, Phys. Rev. 168, 737 (1968).

from a systematic eBect of gravity in modifying the
charge distribution that would exist in the bulk and
surface of the metal in the absence of gravity. The
present paper, like those cited,"will discuss only this
gravitational e&ect; it will show how to reconcile the
large field estimated by Dessler et 0/. ' with the reciproc-
ity-theorem approach of SchiB and Barnhill, ' which
led them to predict a much smaller field.

The most obvious way to attack the problem in
question is to view it as one of computing (or at least
estimating) the eRect of stress on the work function.
When the diferent parts of a conducting body are in
equilibrium with one another in a gravitational field,
the electrochemical potential p, of the electrons must be
the same in all these diGerent parts. In a gravitational
field the role played by the electrostatic potential
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energy —eC in the usual dednition' of the work function
y of any region of the surface of a conductor is now
played by the total potential energy —eC+m%, where
0 is the gravitational potential. Thus

c&o
= —eC —p+ m%',

and so it follows that the electrostatic potential di6er-
ence DC between points just outside two different
regions of the conductor must be

dC = —6q+ (m/e)A%,

where hq is the difference in the work functions of
these two regions, M' the difference of their gravita-
tional potentials. This is essentially the well-known
expression for contact potential difference. Now imposi-
tion of a gravitational 6eld on the conductor will cause
stresses and strains to be developed in it, which will in
general depend on its geometry and on the way in
which it is supported; if the stress or strain is different
at the two points being compared in Kq. (2), there will

be, in addition to the second term of (2), a gravity-
induced term —h, q, representing the difference in the
effect of strain on the work functions at the two points.

The second term of Kq. (2) gives a downward vertical
contribution to the electric field —VC just outside the
conductor, of magnitude gm/e= 5.6&&10 "V/cm, where

g is the acceleration of gravity. The first term of Eq. (2)
can be expected to give a much larger contribution.
From the known relationships between the work func-
tion and quantities entering the theory of cohesion of
metals, ' one expects that a compressive strain I of the
order of unity will alter the bulk contribution to the
work function of a typical metal by an amount dp/du
of the order of a volt; the surface-dipole contribution,
which adds to the bulk contribution to give the total
work function, should have a comparable dependence
on strain. Now one expects the zz component of the
stress tensor in a body of density p to have a variation
with height z something like —pgz plus a constant; this
is in fact exactly correct for a vertical rod or tube of
uniform cross section. From this and the elastic con-
stants one can calculate the variation of compressive
strain with height, and hence, with the estimate dq/dg

1 U, the Geld E,= —dC/ds. The result, as shown by
Dessler et al. ,' is ~E,

~

10 "—10 s V/cm, depending on
the amount of accidental cancellation of the bulk and
surface-dipole terms.

An alternative approach to the problem, due to
SchiQ and Barnhill, ' makes use of a reciprocity relation
connecting A,C, the first-order gravity-induced contri-
bution to the difference of potential between two points
just outside two spots on the surface of the conductor,
with D,M„ the erst-order change in the vertical
component of the mass moment of the conductor when

'C. Herring and M. H. Nichols, Rev. Mod. Phys. 21, 185
{1949),Sec. I.2.

4 E. Wigner and J. Bardeen, Phys. Rev. 48, 84 (1935); Ref. 3,
Sec. IV.j..

a test charge q is moved from the one point to the other.
Treating the magnitude q of the test charge and the
acceleration g of gravity as infinitesimal perturbations
on the thermodynamic state of the conductor, we have,
to first order in g and q,

BDM, 8 OAF
AqM, =q =q-

Bq Bq Bg 0~p
where 65: is the difference in free energy (or, at T=O,
in ground-state energy) between situations with the
test charge at the two points, respectively. Thus hgC is
just g/q times 6,M, .

Now A,M, is made up of shifts in the electronic and
nuclear mass distributions; it is convenient to write

A,M, =h,M.&'+A,M.&"', (5)

where 6~3EI,('~ is the contribution of the shift in the
electronic mass distribution when all the nuclei are
held fixed, and h,M, (") is the remaining shift in N,
(mostly, but not entirely, nuclear) when the nuclei are
allowed to relax. For a conducting body, the erst of
these terms can easily be evaluated by noting that the
perturbation of the electronic density in the conductor,
due to a charge q near some point of its surface, consists
in the accumulation of an extra charge —

q near this
point (the image charge) and of a charge +q in remote
regions of the surface, with a distribution determined by
the condition that the surface of the conductor be an
equipotential. If the conductor is a closed hollow body,
the distribution of the +q on the outer surface will be
independent of the position of q in the interior space,
and Schiff and Barnhill gave a simple proof that the
centroid of the image charge is exactly at the position
of q. We thus have the simple result that

(6)

where m is the mass of the electron, e the magnitude of
its charge, and hz is the diBerence in the vertical
coordinates of the two points being compared. Accord-
ing to the reciprocity relation, this corresponds to a
contribution

E,&'&= —gm/e= —5.6X10—"V/cm

to the electric field in the space internal to the con-
ductor. Clearly, Eq. (7) will also apply as a good approx-
imation in the interior of a long hollow tube, etc. Note
that this is exactly the same downward 6eld which we

computed above from the second term of Eq. (2):
Neglect of h,M, &"& irt Eq. (5) is equivalertt to neglectieg
the effect of gravity orat the work furtctiort This could have.
been anticipated, since holding the nuclei fixed prevents
gravity from affecting the electron density significantly.

Schiff and Barnhill made a rough estimate of the
other contribution E,("& to the field. inside a hollow
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conductor, arising via the reciprocity theorem from the
second (mainly nuclear) term of Eq. (5). They con-
cluded. that for conductors of macroscopic size this
term would be much smaller than Eq. (7). They reached
this conclusion, despite the fact that nuclear masses
are much larger than electronic masses, on the basis of
reasoning which seemed to indicate that nuclear dis-
placements of an atomic scale were to be compared with
electronic displacements of a macroscopic scale. That
the latter are macroscopic is obvious, since for situations
of the type considered in the preceding paragraph the
image charge can be shifted over macroscopic distances
by moving q, while the compensating external surface
charge shifts little or not at all. Whether the eRect of q
on the nuclear coordinates extends to a macroscopic
distance or not is a little less obvious; it depends both
on the nature of the forces that q exerts on the metal,
and on the solution of a problem in elasticity. We show,
in Secs. 2 and 3, that the nuclear displacements due to
q do indeed extend to macroscopic distances, and that
the term AsM, &"& in Eq. (5) will in general be larger
than 5,3f,('& by something of the order of the ratio of
the nuclear to the electronic mass: the reciprocity-
theorem approach agrees with the approach via strain
dependence of the work function in yielding an expected
gravity contribution to the vertical electric 6eld of the
order of 10 —10 ' V/cm. In Sec. 4, finally, we shall
discuss a few further aspects of the problem. A few
words are added in Appendix A about the case of a
nonconducting body.

2. "SURFACE PINCH"

As has just been indicated, the 6rst step in the
calculation of the eRect of a test charge q on the nuclear
mass moment of a metal specimen must be an evaluation
of the forces which the introduction of q exerts on the
nuclei. More precisely, our procedure will be first to
introduce q holding all nuclei fixed, to estimate the
forces that must be applied to the nuclei to do this, and
then to calculate, by elasticity theory, the displacements
of the nuclei when these forces are removed. Our concern
in this section will be with the estimation of the forces;
Sec. 3 deals with the elastic response.

We are interested only in forces of the first order in

q, since our basic equations t (3) and (4)] involve deriva-
tives with respect to q at q=0. To this order the eel
force is just the attraction of q for its image, and is of
order q'. Moreover, even if we separate the metal into
electrons and nuclei or ions, the net force on the latter
alone, due to q and to the modi6cation q induces in the
electron distribution, can easily be shown to be of order
q' also. Thus the A,M, &"i of Eq. (5) can arise only from
higher moments of the force distribution, i.e., from the
fact that forces are felt by nuclei in a region of diameter
comparable with d, the distance of q from the surface
(though perhaps only an atom layer or so deep), equal
and opposite forces being felt in two regions a distance

REGION II
Z DIRECTION

x DIRECTION

REGION I

SEPARAT ION
dl

Fig. &. Schematic diagram of a metal surface showing (1) the
formation of a "surface pinch" by two equal and opposite forces
F acting in the plane at the surface at different points; (2) the
contribution to a surface pinch from the forces on two nuclei
A,B due to a test charge q and its image; and (3) the definition
of surface stress in terms of force and momentum transmitted
between two regions I,II.

A. Microscopic Ayjpxoach

Let us first consider the nuclei one at a time. When
the test charge q is introduced near the surface, holding
the nuclei 6xed in position, the only nuclei that will
experience appreciable forces will be those within a few
atom layers of the surface, the deeper ones being
screened from all inQuence by the metallic electrons.
Let us choose a coordinate system with the z direction
parallel to the surface and the x direction normal to it,
as shown in Fig. 1. Consider the variation of E„ the
z component of the electric field due to q and its image
charge, as we vary x along some line like the dashed
line in Fig. 1, chosen to pass through the nucleus of
some atom A of a surface layer. This variation might
look something like the curve of Fig. 2; it may oscillate
in sign a little inside the metal, as most electronic

of order d apart. As will now be shown in detail, the
eRect of q in shifting the vertical component of the
nuclear-mass moment of the metal is equivalent to
that of applying a pair of equal and opposite tangential
forces F to the surface, as shown in I ig. 1, so related to
the separation d' of their points of application as to
make the product Fd' proportional to q and independent
of the distance d of q from the surface, if d is && radii of
curvature, etc. Such a pair of forces we shall call a
"surface pinch of strength —Fd'."

It is obvious, from the analogy of pinching a rubber
wall with one's 6ngers, that when the metal is allowed
to respond elastically to such a pinch there will be a net
transfer of mass from remote regions into the pinched
region. We shall calculate this eRect quantitatively in
Sec. 3.
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responses do, but its zero will not normally occur at the
exact position of A. Thus we expect the force Fi"'
required to hold 2 fixed to have a s component

/BE. bg(sg s,)d—
F.&"& =Zebg~ = qZe

& Bx .„, ~rg —r, )'
(8)

where Z is the nuclear charge, b~ is a length of atomic
magnitude, dependent on the lattice constant and the
screening length, (BE,/Bx), „, is the slope of the right-
hand part of Fig. 2, d is the distance of q from the
surface, and rg, r, are the coordinates of A and q,
respectively. Clearly an atom J3, located as far below

q as 2 is above it (see Fig. 1),will require a force F&~'

with F,& &= —F,&"&. Any such pair A,B thus gives a
surface pinch of the sort described in the preceding
paragraph. Summing over all atoms in the surface
layers gives a total pinch strength

1
P —Q P i&)s

A g2

q'Z86
&& P fright of (8)jsg ——-',sr

line
, (9)

where g~;, means a summation over a line of atoms
running inward from the surface beneath atom 3, a is
the lattice constant, and b, derived from the b~'s in
Eq. (8), is also a length of atomic dimensions. Note
that Eq. (9) is independent of the distance d of q from
the surface.

There will be, of course, a yy pinch 8„„—=gz Ii„t"&yz

of the same order as Eq. (9), and for anisotropic surfaces
perhaps a P„,and P,„.It is obvious from the symmetry
of Fig. 1 with regard to reversal of the s or y direction
that there can be no P, or P „of this order; we shall
show in Sec. 2 3 that in fact the sum of F &~) over
atoms 2 underneath any significant element of area of
the surface is smaller by a factor of order a/d than the
corresponding sum of Ii, (~&.

x —COORDINATE
OF SURFACE
ION A

FIG. 2. Schematic variation of the electric Geld parallel to the
surface of Fig. 1 with position along a line normal to this surface.
The ordinate represents only that part of the Geld which is due to
the test charge q and its image, d being the distance of q from the
surface.

B. Macroscopic Approach

A less detailed but neater and in some ways more
satisfactory approach to the surface-pinching phenom-
enon can be given in terms of purely macroscopic
concepts. The key concept is that of surface stress, '
defined as the surface excess, in the sense of Gibbs, of
force transmitted across a plane. Specifically, consider a
plane normal to the s direction in Fig. 1, dividing the
metal into two regions, as shown by the dashed line.
The force exerted by region I (above) on region II
(below) is deGned, as usual, as the sum of all forces
exerted by particles of I on particles of II, plus the rate
of kinetic transfer of momentum across the plane. Let
K, be the value of this force, out to a distance hx to the
left of the surface, and p„ the ss component of the stress
tensor well inside the surface. Then the surface stress
component G„ is defined by

G„=(E,/hy) p„hx, — (10)

where hy is the width, in the direction of the line of
intersection of the dividing plane with the surface, of
the portion of dividing plane being considered; if p„
is small in atomic units, ambiguities in the location of
the surface or in the inner limit Ax will have a negligible
effect on G„. Obviously other components of a two-
dimensional tensor G„„can be defined similarly as the
surface excess of force in the p direction transmitted
across a plane normal to a direction v in the surface.

The important thing for us is that the surface stress
can be modified by the presence of an electric Geld at
the surface. However, for a conducting body a (normal)
electric field at the surface implies charging of the
surface, and for a uniformly charged infinite plane
surface the force E, as we have defined it is infinite,
the electrostatic repulsions of the surface charges
diverging at infinity. The obvious w'ay to modify our
definition of G„„ for such a case is to replace the E,
in Eq. (10) by E,', the total force less the interaction
of the macroscopic distribution of surface charges, the
latter being described by some tw'o-dimensional density
o(r) localized on the two-dimensional "surface" of the
body, and varying appreciably only over macroscopic
distances. Consideration of the equilibrium of a pill
box of matter just beneath an element of the surface
then gives, as the boundary condition on the macro-
scopic stress Geld p„„inside the body,

on the surface, where n is the unit outward normal to
the surface, E is the macroscopic electric Geld, and the

For a brief review of this concept, see C. Herring, in Strectlre
artd Properties of Soled Surfaces, edited by R. Gamer and C. S.
Smith (University of Chicago Press, Chicago, 1953), p. 5, espe-
cially Sec. Il. Note that while for a liquid the surface stress can
be shown to equal the ordinary surface tension, deGned in terms
of free energy, this equality does not hold for crystals.
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BGprg ttIIO

Z p"~.= Z
e in surf. $0 gg~

(12)

on the surface near q.' With the coordinate directions of
Fig. 1, Bo/Bs is q times a positive quantity at positions
above q, a negative quantity below q. The right of Eq.
(12) is thus equivalent to a distribution of surface forces
whose zz pinch is

BG„
p-—

aG..

this can obviously be generalized to

(13)

We can expect charging of the surface to alter G„
by a large percentage when the excess charge in the
surface cells becomes of the order of the valence-
electron charge initially in them, i.e., when the surface
charge density a becomes of order Xe/as, where X is
the valence and a the lattice constant. Since G„ is of
order e'/asil, where h is a length of atomic dimensions
(usually of the order of 10a), we get for Eq. (13)

P„=qXe/b, (14)
' To readers versed in the theory of electrocapillarity, it may seem

surprising that after throwing away the second term of Kq. (11)
as being of the second order in q, we have retained the first term
in the form of Eq. (12), treating it as of the first order: For a Quid
surface, BG„,/Bo is itself of order o, hence of q in a case like ours.
The surface of a solid behaves differently however, and its BG„„/eo
is, in general, finite as o ~ 0. This difference in the behavior of
solids and fluids is elucidated in Appendix 8; it arises ultimately
from the long-range lattice periodicity, the same cause, in fact, as
is responsible for making the surface stress G„„ofa solid surface
difterent from 8„„ times the quantity usually called "surface
tension, "

summation on the right is just the surface divergence
of G„.

Note that rotational equilibrium of elementary
regions requires that g„ts„G„=O in the absence of a
macroscopic surface density of externally applied
torque. Thus the effective surface force density (11)
has no normal component in the present macroscopic
approximation; this justifies the statement made at the
end of Sec. 2 A,

The problem of interest to us is the elastic distortion
of a conducting body when an infinitesimal charge q is
introduced at a distance d from a portion of its surface,
d being small compared with the dimensions of the body
but still of macroscopic size. The oE„ term in Eq. (11)
is of the second order in q, so we can neglect it. What-
ever stress Geld may originally have been present in
the body will now have added to it an amount P„„(r),
determined by the equations of elasticity and a bound-
ary condition

i.e., a value in essential agreement with our earlier
estimate )Eq. (9)].

3. ELASTIC RESPONSE TO THE
SURFACE PINCH

As we have mentioned above, it is intuitively obvious
that a surface pinch will move matter elastically into or
out of the pinched region, and it is not hard to convince
oneself that it will produce significant displacements at
large distances, so that the effective transport of matter
is from remote regions of the specimen to the pinched
region. We shall illustrate this explicitly for a particular
geometry in the next paragraph. Let us 6rst, however,
make the almost trivial observation that one can use a
reciprocity argument like that of Sec. 1 to relate the
eBect of a surface pinch on the mass moment to the
e6ect of gravity on the state of strain at the surface.
For if, as in Sec. 1, we let 5 be the free energy of the
body, M its mass moment, g the acceleration of gravity
(acting in the negative s direction), we have for the
response to a surface pinch E„„applied to a point r of
the surface

BM, 82K 8 BF 8
= ——N„„(r), (15)

BP„„(r) BP„„(r)ctg Bg i)P„„(r) ctg

where N„„(r) is the strain tensor at the point r.
Since this strain in general depends on the complete

geometry of the body and the location of its supports,
it is obvious that a direct calculation of the left of
Eq. (15), such as we shall in fact perform in the next
paragraph, must involve signi6cant displacements in
regions of the body remote from r, and can be correctly
performed only by solving an elasticity problem that
takes correct account of the exact boundary conditions
at such remote points. If one compares the mass
moments for two positions of the test charge q that are
in6nitesimally close together, one can compute the
hM, &"& to be used in Eq. (5) from the elastic response
to a pair of equal and opposite surface pinches applied
at points an in6nitesimal distance apart. In a semi-
in6nite medium the displacement in such a response
would die off as the second derivative of that in response
to an applied surface force, but as this is still only as
the inverse cube of the distance, ' the integral over the
specimen cannot be computed unambiguously for the
semi-in6nite model, and account must be taken of the
shape-dependent boundary conditions at remote points.

For an explicit illustration of (15), let us take a body
in the form of a long cylinder with a cross section of
arbitrary shape; this is the geometry assumed in the
celebrated Saint-Venant problem of elasticity theory.
I.et the long direction of the body be the z direction,
and let it be constrained at its lower end, which we take
at z=0. Application of a vertical force Ii, at a point at
height sr will produce a strain N„equal to F,/S)/ at

7 L. Landau and E. M. Lifshits, Theory of Elasticity (Pergamon
Press, Ltd. , London, 1N9), Sec. 8.
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4. CONCLUSION

We have shown in Sec. 2 how a surface pinch is
produced by bringing a test charge q close to some point
of the surface of a conductor. The elastic shift in the
mass moment of the conductor, produced by this pinch
as computed in Sec. 3, is responsible for the D,M, &")

term in Eq. (5), and adds to the value (6) already
computed for the d,M, (') term. Thus, using 6 as in
Sec. 1 to denote a diHerence between two locations for q
and choosing the s direction upward, we have, from
Eqs. (13) and (15),

(19)

Use of this in the reciprocity relation LEqs. (3) and (4)j
gives the contribution to the electric Geld near a vertical
surface of a conductor:

gh SI ("
P (n)

q Ds
(20)

where I„„«)is the strain produced in the conductor by
gravity, at the point of its surface near which K is
measured. The total contribution of gravity to the Geld

all points with s between 0 and s~, except near the ends
of this range, 5 being the cross-sectional area and F
being Young's modulus. It will shift the centroid of
the matter between s& and the upper end of the body, at
s= L, by the displacement of s~ and shift the centroid of
the matter below zi by half this (plus a small end
correction in each case). Thus the force will alter the
mass moment by

5pPI, = (F.p/F)(Lzt ——',zis)+end correction, (16)

where p is the density. A second force —F, applied at
s&=s&—d' will affect M, correspondingly, and since by
Saint-Venants principle the end correction will be
practically independent of s& or s2, the surface pinch P„
formed by the two forces will aGect the mass moment by

8p„M.= (F,d') (L zi)p/Y—+O(d")
=I' *(L »)t/F—+O(d") (17)

a relation clearly identical with the ss component of
Eq. (15). The meaning of (17) is that the pinch effec-
tively removes a mass I'„p/Y from the region in which
it is applied, and transports it to the unconstrained end
of the specimen.

A pinch P„„in the horizontal direction of the surface
will clearly also alter 3f, by an amount of the same
order as (17), though in this case it is easier to compute
the alteration from (15) than to compute it directly:
for an elastically isotropic body the result is, of course,

5p„„M,= I'„„(L zi)—prt/F, — (1g)

where q is Poisson's ratio.

is the sum of Eqs. (7) and (20). In general, for a body
of unsymmetrical shape, there will also be other
components of E&"i besides the z component, which
can be computed analogously; this contrasts with the
Geld E&'& of Eq. (7), which, since it corresponds to the
second term of (2), is always exactly in the —z direction.

Let us specialize (20) to the Geld in a long, hollow,
vertical cylinder, or in general near a long vertical rod,
assuming the surface stress tensor 6„„to be isotropic.
We then have, from Eq. (20), or from Eqs. (3), (4),
(17), and (18),

~G.'g(1-.)
E (n)- (21)

For copper take density p=9.0 g/cms, Poisson's ratio
rt=0.37, and Young's modulus F=1.2)&10"erg/cms:

cfG erg/cm'
E,&"&(Cu) =2.0X10 ' F/cm. (22)

&)&r esu/cm'

According to the estimate leading to (14), this may be
expected to be of the order of a few )&10 ' V/cm, in
agreement with the estimate made at the start of Sec. 1,
or with that of Dessler et al.2

The agreement between the E,(") calculated in this
way from the Schiff-Barnhill reciprocity relation and
that calculated from the e8ect of strain on the work
function is a consequence of the reciprocity relation
between the charge dependence of surface stress and
the strain dependence of the work function'.

(23)

Although one may calculate E,&") by estimating either
the right or the left of Eq. (23), it seems diS.cult to
get an accurate estimate either way. The surface stress
clearly depends on conditions in the dificult transition
region between the interior and the vacuum; so does
the work function, since an important part of it is the
surface double layer contribution. ' However, it may be
possible to determine the strain dependence of the work
function experimentally in a contact-potential rneasure-
ment, or to measure the dependence of surface stress on
normal 6eld by using this dependence to excite acoustic
oscillations.

Careful experiments" on the motion of charged
particles in vertical metal tubes have been interpreted as
indicating a total electric 6eld much less than that
expected from estimates of the strain derivative of the

This relation is based, as is our preceding analysis, on the
assumption that there are no mobile-adsorbed species, other than
electrons. If such species are present, there will be a contribution
to the h,M, &"& of Eq. (3) from the migration of adsorbed atoms
induced by the presence of q; this migration will also alter the
surface stress. Such effects are taken into account in the general
thermodynamic treatment of Appendix B.

e Reference 3, Secs. IV.1, IV.2; C. Herring, in iVetal INterfaces
(American Society for Metals, Cleveland, Ohio, 1952), p. 1.' F. C. Witteborn, Ph.D. thesis, Stanford University, 1965
(unpublished); F. C. Witteborn and W. M. Fairbank, Phys. Rev.
Letters 19, 1049 (1967).
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work function, and in fact of the order of Eq. (7).
According to the arguments presented here and in
Ref. 2, it seems inconceivable that the Geld induced
purely by gravity can be this small. The proper inter-
pretation of this large body of experimental data is thus
a serious challenge for future work.
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APPENDIX A: GRAVITATIONALLY INDUCED
FIELD NEAR AN INSULATOR

All the discussion in this paper so far has been about
a conducting body, i.e., a body with enough free
electrons to make the screening length much smaller
than its macroscopic dimensions. Though the opposite
extreme of a perfectly insulating body is of little
practical importance, it may provide a helfpul per-
spective to add, as a postscript, a few words about
the extent to which the various effects we have been
discussing have analogs in this case. The reciprocity
relation described by Eqs. (3) and (4) still holds, and
in fact holds for any one of the multitude of metastable
states that can be formed by distributing trapped
charges arbitrarily on the surface of the insulator or in
its volume. Considering for simplicity just the ideal
neutral state, let us turn attention first to the Schiff-
Barnhill effect which for a hollow metal body is de-
scribed by Eqs. (6) and (7), i.e., the potential induced
by gravity if the elastic deformation of the body is
inhibited by holding all the nuclei 6xed. According to
the reciprocity relation this potential is determined by
the shift in the mass moment of the electronic system
induced by the presence of a test charge q. This shift
can be computed either from the integral of P over the
body, where P is the polarization vector in the dielectric,
or alternatively from the moment of —V' P in the
volume and n. P on the surface. (These two expressions
are easily shown to be equal. )

To 6nd the electric 6eld produced at a given point
by the action of gravity, we thus compute the total
moment induced in the specimen by a dipole placed at
this point. In general, this moment is of the same order
as that of the perturbing dipole (though of course it
goes to zero with the susceptibility of the medium),
and so the gravity-induced Geld is of the same order as
Eq. (7). However, for points near the surface of a
vertical elongated specimen of uniform cross section, the
moment can be much less. For this case it is simplest to
use reciprocity again and compute the field that would
be produced at the point in question if the body were

placed in a uniform external field. (This is in fact just
the gravity problem we started. with. ) For a point near
the equator of an ellipsoidal body, and approximately
for other elongated shapes, the modification of the field
at the point in question, due to the dielectric, is just
(1+Nx) 'Xx, times the applied field, where X (((1 for
this case) is the depolarization factor and x the suscept-
ibility. %hen Ex«1, therefore, the gravity-induced
field is «Eq. (7), and when Xx))1 it approaches Eq.
(7), as it must if a dielectric of infinite susceptibility is
to behave like a metal.

Just as in the case of a conductor, introduction of a
test charge q will produce a shift of the nuclear mass
moment if we cease constraining the nuclear positions,
which will be related by the reciprocity theorem to a
contribution to the gravitationally induced 6eld. If the
medium is not piezoelectric, this contribution can be
related as before to the effect of the electric field of the
test charge on the surface stress; despite the penetration
of the electric 6eld, there will be no body forces of the
first order in q if the dielectric contains no macroscopic
volume charges. In such case the gravitationally
induced 6eld may be expected to be of the same order
as that for a metal LEqs. (20)—(22)j though involving
the geometry in a difterent way. In a piezoelectric
medium, on the other hand, there will be piezoelectric
deformations which in general will give rise to vastly
larger mass shifts; these correspond. to the large
piezoelectric Gelds that would be produced by gravita-
tional distortion.

APPENDIX B:THERMODYNAMICS OF SURFACE
STRESS AND THE DIFFERENCE BETWEEN

SOLIDS AND FLUIDS

The Lippmann equation of electrocapillarity theory"
is usually interpreted to mean that the surface tension
of a Quid interface varies quadratically with the charge
on it, at least under "ideal" conditions. Actually, this
equation and the experiments supporting it refer to an
electrolytic interface (e.g., mercury in contact with an
electrolyte) that is neutral as a whole, but which
contains a double layer made up of electronic charge
on the mercury and ionic charge in the electrolyte.
In this Appendix we shall consider only the much
simpler system of a solid or Quid conductor bordered
by empty space, with an electronic surface charge
induced by an externally imposed Geld. We shall show
that for a liquid body of this type it is indeed true that
the surface stress G„„(here equal to the unit tensor
times the ordinary surface tension p) varies quadrat-
ically with the surface charge density 0. when a- is small.
But for a solid surface we shall find that there are
additional terms in G„„,not present for liquids, and that
(BG„,/Bo) =e does not normally vanish.

Before plunging into the abstract formalism of
thermodynamics it will be instructive for us to consider

"D.C. Grahame, Chem. Rev. 41, 441 (1947).
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where U is the energy, T the absolute temperature, 5
the entropy, N, the number of moles (or atoms) of the
ith component, and p; the electrochemical potential of
that component. The y so de6ned has the property of
being practically independent of the precise location of
the dividing surface bounding the body, if the radii of
curvature of the surface are alvrays much larger than
atomic dimensions. It also has the property of being
independent of the choice of zero for the electrostatic
potential, since a change of this zero shifts U and
—g; p,N; by cancelling amounts. Since in a general
change

d+=DW—S dt —Q N;dp;,
'

(&2)

where DS" is the vrork done on the body, vre have the
familiar relation

d(yA) =DW' —As'dt —A P I';dp;, (33)

where A is the area of the surface (assumed uniform for
simplicity), s' is the surface entropy per unit area, F; is
the surface excess of component i per unit area, and

"J.W Gibbs, Collected lVorks (Longmans, Green, and Com-
pany, Inc. , New York, 1928), Vol. 1, pp. 55-353, especially pp.
219 6'.

a simple model of a solid surface for which (BG„,/80) =o

is nonvanishing. The fact that such a model can be
thought up already shows that there can be no purely
thermodynamic requirement for this quantity to vanish.
The model consists of two layers of idealized atoms
(not the same as those of the substrate). The first layer
is attached epitaxially to the crystal lattice. The second
layer contains an equal number of atoms, each one
lying directly over the midpoint between three (for
hexagonal packing) or four (for square packing) of the
6rst-layer atoms; the vertical separation between the
layers is to be of the order of the interatomic spacing
within the layers. The atoms of the second layer are
joined by springs to their nearest neighbors in the 6rst
layer. Unit + charges are attached to all atoms of the
one layer, unit —charges to those of the other. Such a
surface has no net charge, and application of a normal
electric field (whose lines of force may be supposed to
end on charges in the substrate below the first layer) will

clearly stretch the springs in such vray as to make a
Grst-order alteration in the surface stress. Note that the
possibility of such a model depends on there being a
crystal lattice to anchor to.

Turning novr to thermodynamics, let us 6rst consider
the scalar quantity y usually called "surface tension"
(the stress implication of the name is unfortunate and
should be disregarded). For any solid or liquid body p
is dered as the specific surface excess, in the sense of
Gibbs, "of the thermodynamic potential

4= U TS Pp N—. —

DS" is the "surface work, " i.e., the di8erence between
DS' and the volume vrork, the latter being dedned for
each bulk phase as the work done on unit volume times
the volume on the appropriate side of the dividing
surface.

All this is standard surface thermodynamics. How-
ever, for our present application to charged surfaces of
conductors one must use these concepts with caution.
For Gibbss definition of surface-excess quantities is
based on the assumption that things like energy can be
localized in space, and thus assigned volume densities.
The interaction energy of macroscopic distributions of
charge cannot be so localized without giving up the
requirement, necessary for the type of thermodynamic
treatment we vrish to use, that the local energy density
is a function only of the local state variables. The
obvious thing to do is the analog of vrhat vre have
already done for surface stress in Sec. 2 3 of the text:
De6ne a "local energy" U as the difference between the
total energy U of the system and the electrostatic
energy U„of any macroscopic distributions of charge;
then define p as the surface excess of a 4 defined by an
equation of the form of Eq. (31),but with U replacing
U and a corresponding p, replacing p;. Such a procedure
is not in general unique, since one can define U„ in
various ways, e.g., with inclusion or exclusion of the
energy of polarization of any dielectric material present.
However, one can draw correct conclusions from any
definition that leaves U a function only of local state.
Moreover, vrith any definition of the sort considered,
the value of 7 remains independent of the positioning
of the dividing surface.

For a conducting body bordered by vacuum the
obvious de6nition to adopt is

e (fo+o'4.)dA,

where the integral is over the surface of the body, 0. is
the surface charge density, fo is the potential due to
external charges, and iP, is tha, t due to the distribution
a. itself. Correspondingly, vre have

8
p'= (U—TS) =p' e'f*—

8X;
(as)

where I stands for all strain variables, e; is the speci6c
charge of the ith component, and g* is the value of

(go+a, ) on or inside the conductor. Note that P* is
not normally the same as the local space average P of
the electrostatic potential inside the body, since f can
be inBuenced by such things as surface double layers,
strain 6elds, etc., vrhich do not show up in the macro-
scopic charge density 0. Equation (32) is now modified
to

d4= (DW dU„+f*Q e;dN, ) SdT——Q N;dp; (B—6)
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i.e., in addition to the replacement of 9' by +, p, by p;,
one must replace the work DW by its "nonelectrostatic"
part: DW was the work done by forces applied directly
to the body, e.g., at boundary surfaces; the quantity in
parentheses in Eq. (86) is this work less that part of it
which represents work done by these forces against
long-range electrostatic interactions. Similarly, (33)
is modified to

DW' of (87), we have

B los By
QG„„dtt„„=A 'DW'=Q y + dN„,
Jtgev P r v QQpv BNIttv

Bpi
+p p I'; dl„„

'BQlgv

whence 6nally

d(yA) =DW' —As'dT AP—I';dtr;, (87)

where the subscripts "is"mean that internal state is to
be kept constant. The derivative on the right of (BS)
measures the effect of charging on the magnitude of the
surface double layer; it is much smaller than the
capacitative quantity BP/Bo. Our treatment differs
from that of the usual theory of electrocapillarity in
that we have excluded the long-range classical electro-
static energy from p, while in electrocapillarity theory
the electric fields are confined to a Debye layer so thin
that it is convenient to indude their energy in y; such a
p leads to an equation (the Lippmann equation) like
(BS) but with P missing. For our present purpose,
however, it is sufficient to note that (BS) has o as a
factor, hence vanishes at 0 =0.

The relation of the surface-stress tensor G„„to y can
be seen by considering the effect of an infinitesimal
strain applied so as to stretch or shear the surface;
let the temperature, total charge, and internal mole
numbers be kept constant. With dl„„ for the applied
strain tensor, and noting that our removal of long-range
electrostatic forces from the delnition of G„v in Sec. 2 3
corresponds to the removal of these forces from the

where DW' is the surface excess of the quantity in
parentheses in (86).

Consider now a change in which the conductor is
charged by addition or subtraction of electrons, keeping
constant the temperature, volume, state of strain, and
interval composition. Under these conditions the
internal state of the body will not change, except for a
possible shift in the mean electrostatic potential f. In
particular, the chemical potentials p,;, related to pi by
te;=p,;+e;(f P), wil—l not change. Thus, from (8'/)
and with P, I',e;=a,

(&v)
(&(e—r"))

trBy) Btri
G.,=».,+I

~
+Z I;

tBQer/ int tr t BNer~ int N

where the subscript "int S"implies constancy of charge
and internal mole numbers, as well as temperature.
For a liquid both strain derivative terms vanish:
Displacing lateral boundaries of the body does not
change the nature of its surface, but merely alters the
area or shape. For a solid the strain alters lattice
spacings at the surface, hence in general changes y and
the surface double layer moment. The 6rst two terms of
(39) agree with the form previously given' 's for G„„
except that the latter has (By/BN„„)„„if all e,=0, the
last terms of (39) can be combined into this form.

Let us now consider the derivative of G„,with respect
to o at a=0, for the case of a solid. Equation (BS)
ensures the vanishing of the contributions of the erst
two terms of (39), so only that from the last term
remains:

(
BGpv ~~i Bpi

is; a=0 i Bo is; tr=0 B+pv int ¹ a=0

Batt
+P I';

i
. (810)

BQ rBO I r=s

For a clean surface we may position the dividing
surface so as to make I';=0 for the nuclear component,
and = I'o./e for the electrons. The second term on the
right of Eq. (810) then vanishes and the first reduces to
(By/BN„.);,ttr, =s, where y is the work function. We
thus recover Eq. (23) of the text. When there are
mobile absorbed components present other than elec-
trons, the situation is more complicated: Charging the
surface can affect both the F; of these and the surface-
stress forces to which they give rise.

te R. Shut tleworth, Proc. Phys. Soc. (London) A65, 444 (1950);
C. Herring, in The Physzos of Powder Metaltgrgy, edited by W. E.
Kingston (Mcoraw-Hill Book Co., New York, 1951), p. 143.


