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The Dirac equation, the Weaver-Hammer-Good wave equations, and the Weinberg wave equations are
written in a manifestly covariant form in terms of hyperplane parameters according to Fleming's hyperplane
formalism. A Fody-Wouthuysen-type wave equation is developed for the Weinberg theory and it, along
with the usual Foldy-Wouthuysen wave equation and transformation, is also written in a manifestly co-
variant form for all spin. Fleming's formalism is extended to include the case where the hyperplane param-
eters are operators as well as c numbers. As a consequence, a hyperplane observer which corresponds to
the particle rest frame is considered, with the result that wave equations are obtained in the usual manifestly
covariant form for all spin with no auxiliary conditions or unphysical solutions.

Fierz and Pauli were led to add more components to the
wave functions in an arbitrary way.

Similarly, a later theory due to steinberg is man-
ifestly covariant, but admits unphysical solutions if the
Klein-Gordon equation is not required as an auxiliary
condition on the wave function. As in the Fierz-Pauli-
Dirac case, the equations become inconsistent when
interactions are included.

More recently, Weaver, Hammer, and Good' (WHG)
have formulated a theory in which the wave functions
have no redundant components. However, this theory
is not manifestly covariant, so it is not clear how interac-
tions are to be included.

Toward this end, the recent hyperplane formalism
introduced by Fleming' is promising, in that it provides
a geometrical construct which generalizes the idea of
manifest covariance. In this paper, the hyperplane
formalism is generalized and used to derive two man-
ifestly covariant equations without auxiliary conditions
for free particles of arbitrary spin and mass. The erst
is based on the WHG theory, and is seen to be partic-
ularly simple for half-integral spin states. The second is
based on the formulation of steinberg, and. is simple
for integral spin. These equations are novel in that in
the absence of interactions, they contain both massive
and massless particle solutions.

In Sec. II, the notation and matrix representation
used herein are given. In Sec. III, the basic ideas of
Fleming's hyperplane formalism are developed, with
special emphasis being given to the equivalence of
spacelike hyperplanes and equivalent inertial frames.
A Schrodinger equation is derived for the hyperplane
system for 2(2s+1) component wave functions. In
Sec. IV, the Dirac equation is written for hyperplane
observers, and a Foldy-Wouthuysen type of transforma-
tion is derived. The same general procedure is followed.
in Secs. V and VI for deriving the two manifestly
covariant equations for arbitrary spin and mass.

I. INTRODUCTION
' 'N the past, one of the problems of theoretical physics
~ ~ has been to find a manifestly covariant theory for
describing particles of arbitrary mass and spin. For
the spin-2 case, the Dirac theory' is the most successful
in that (a) the theory is manifestly covariant, (b) the
wave functions have the necessary 2 (2s+ 1) components
to describe the particle state, and (c) minimal electro-
magnetic-6eld interactions are introduced by replacing
the canonical momenta p„with sr„=p„—(e/c)A„In.
developing a theory for arbitrary mass and spin, it is
desirable that these conditions be satisfied. In this
sense, no completely satisfactory theory for arbitrary
mass and spin has been formulated as yet.

One of the earliest attempts to formulate a theory
was made by Fierz, Pauli, and Dirac in 1939. Their
theory is manifestly covariant in spinor form, but is
cumbersome in that the wave functions contain many
more than the necessary 2(2s+1) components. Similar
theories of Proca' and of Bargmann and %igner4 have
the same difhculty. In order to remedy this, auxiliary
conditions on the wave functions are imposed. In fact,
Pursey' has shown that for a given mass and spin, an
in6nite number of diGerent wave equations, together
with auxiliary conditions when necessary, may be
constructed. Although all of these formulations are
equivalent for free particles, this equivalence is broken
in the presence of interactions. Indeed, it is an open
question whether any such system of equations is
consistent when minimal electromagnetic coupling is
introduced. For example, with p„replaced with sr„ in the
theory of Fierz, Pauli, and Dirac, some of the polariza-
tion states are completely eliminated. As a result,
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where s is the usual (2s+1)-dimensional spin matrix
discussed by Schi8. ' The covariantly defined 4-vector

y„ is given by y„= (—iPa, P). The set of covariantly
de6ned spin operators S„v is dered by

Sij GijlrSIr, ) Si4 $4i $&i ) $44 0 ) (2)

where 0„„=2s„v for spin —',.
The generalized 2(2s+1)-dimensional Dirac matrices

studied by Barut, Muzinich, and %illiams" and by
Weinberg' are used, where

V [Pl VP1II2" 'IJ2e )

with yf4]=p. The notation ai„„l for the matrix elements
a„„ofthe Lorentz transformation 2 is dined by

~trav) ~P1vl@P2v2 ~P2sv2e '

This notation is extended to other indexed quantities
8~pe ~ ov by

@I+P 'Vl .@+"1P1"'7l@+2P2"'V2 ~+2sP2N"'72I ' (~)

II. NOTATION

A Euclidean metric is used, so that x„= (x,it), units
being chosen such that c and A are unity. Latin indices
run from one to three, Greek indices run from one to
four, and the summation convention is used throughout.

The matrices used are the 2(2s+ I)-dimensional
matrices dered by

Perhaps the most significant aspect of Fleming's
hyperplane formalism is that it gives us a manifestly
covariant way of describing an arbitrary observer's
interpretation of physical quantities. Fleming introduces
families of hyperplanes defined by

gPXP 7 ) QIhgP 1 0

The family is specified by the unit normal g„, and the
parameter r defines a particular member of the family.
An "observer" is associated with each family of
hyperplanes —such an observer will interpret r as his
time. At this point, it helps in maintaining clarity to
conceive of a godlike "superobserver" who simul-
taneously sees both the system under study and all
the observers associated with hyperplane families. The
component labels in vectors and tensors, such as in
ri„, p„, x„, etc. , refer to the superobserver's frame. Thus
operators such as p„relate the observed system to the
superobserver, while g„relates one particular observer
to the superobserver. If, as is the case with Fleming, the
observer frame is dered in some way independent of
the system under study, then q„and z will be c numbers.
However, in this paper, the properties of the system
itself will also be used to de6ne an observer frame
analogous to the "instantaneous rest frame" of un-
quantized relativistic mechanics, in which case q, is
an operator.

Simultaneous Lorentz transformations both of the
system observed and of all observers relative to the
superobserver can now be considered. (Here an active
interpretation in which events and observers are
transformed is preferred to a passive interpretation in
which the superobserver's frame changes. ) Thus, if
x„are space-time coordinates of a point on the world
line of a particle, the Lorentz transformation 2 is
defined by

IIL HYPERPLANE FORMALISM A: Sp ~ Sp =C~vSv) (6)

One of the basic postulates of physics is that measure-
ments made on a physical system with respect to
equivalent inertial frames are equivalent. By equivalent
inertial frames one means Lorentz frames which are
related by Lorentz transformations continuous with
the identity, i.e., transformations belonging to the
proper orthochronous Lorentz group. Frequently, one
thinks of an observer being associated with each Lorentz
frame. Entities, such as energy or momentum, used by
an observer to describe a system relate both to the
system and to the observer's inertial frame. Thus what
one observer would interpret as the energy of the system
would not be so interpreted by a different observer, but
instead would be related through a Lorentz transforma-
tion to both the energy and momentum of the system
in the second observer's interpretation.

e L. Schiff, QNaetgm Mechanics (McGraw-Hill Book Co., Inc. ,
New York, 1955).

'OA. O. Barut, I. Muzinich, and D. N. Williams, Phys. Rev.
180, 442 (1963).

where the elements a„„of the orthogonal matrix 2
satisfy

+Zp~Xv= &v4+pX= ~vp, .
Similarly, since observers as well as events are to be
transformed,

/
gp + gp =~pvgv

Of particular interest is the Lorentz transformation
without rotation which carries the "instantaneous"
hyperplanes with normal ri„o= (O,i) into a general
hyperplane with normal ri„. (The observer associated
with the family of instantaneous hyperplanes is that
observer whose inertial frame coincides with that of the
superobserver. ) If this transformation is denoted by
A, with matrix elements a„„, then it is easily seen in
particular that

6~4= —
Zg~ ~

This special Lorentz transformation will become
important in what follows.
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This section is concerned with the transformation
properties of operators acting on the state space of some
physical system, both as seen by the superobserver and
as seen by an observer associated with the hyperplane
family (g„,r) Th. e systems considered are those des-
cribed by relativistic wave equations such as the Dirac
equation, which correspond to particles of de6nite
mass and spin, and with either sign of the energy. To
avoid the need for subsidiary conditions and still have
a manifestly covariant theory, the wave function is
taken to transform like the representation (s,0)+ (O,s)
of the Lorentz group. A state space, with an appropriate
scalar product, can be dehned in terms of such wave
functions, and a Lorentz transformation A may then
be represented by an operator acting on states of this
space. In particular, the operator corresponding to the
particular Lorentz transformation A. is h. (iI).

The operators representing the generators of the
Poincare group acting on wave functions of the state
space are represented by p„and M„„. The physical
meaning of p„ is the energy-momentum 4-vector, and of
M„„the angular momentum and the "boost" generators.
Under a general Lorentz transformation 3, a 4-vector
operator such as p„ transforms like

A 'P„A=a„„p„,

while a tensor operator such as M„„satisfies

3IpyA cypcy~M py' ~

(8)

In addition to operators covariantly dered as tensors
by their transformation properties as in the above
examples, operators are considered which do not
transform so simply. In particular, it is a common trick
in classical relativistic mechanics to de6ne a 4-vector
by specifying its components in a particular frame and
then dining it in an arbitrary frame by the Lorentz-
transformation property; however, this brute-force
technique may be inconsistent with an invariant
functional dependence of the 4-vector on the dynamical
variables. Thus, by analogy with Eq. (8), corresponding
to an operator 6„, an operator 8„' may be dehned
such that

3C= —iAP4A '

MI 4PI

~ppp' (12)

From the space components of momentum, a 4-vector
P„(the hyperplane momentum) can be constructed by

P„=a„;AP;A '
=ap4a~ipv

= (8„„—a„4a„4)p„
=p.+g.(n p) (13)

where, in the last line but one, the orthogonality of the
Lorentz-transformation matrix has been used. These
operators BC and P„are Fleming's H and E„. The
notation used here for P„emphasizes its physical
meaning as a hyperplane momentum operator. Fleming
calls II the hyperplane mass operator; however, the
term "hyperplane Hamiltonian" appears to be more
appropriate, as is illustrated below.

The wave function for the system as seen by the
observer on the hyperplane family (rl„r) is related to
that seen by the superobserver through

0"(n, r) =A(n)4. (14)

Then, since g~„=—r, a translation normal to the
hyperplane, of amount Ar, is produced by the operator

T(Ar) =e'~'&»»& = exp( —ihrK) . (15)

The time-dependent Schrodinger equation on the
hyperplane family (p„,r) now follows directly, and is

observer. Fleming's results will be derived first by the
construction of tensors 8„' as described above. These
will then be reinterpreted in terms of the superobserver
idea.

All tensors will be initially de6ned in the instanta-
neous family of hyperplanes and then transformed to an
arbitrary family via Eq. (11),with the general Lorentz
transformation A. replaced with A(g). The hyperplane
Hamiltonian will be a "superscalar" defined as —ip4 in
the instantaneous frame. This yields

~ 'p'A=+pyy XP'(rI, r) =i8$'(g, r)/Br. (16)

8„'=a„Qe,h.-'.
Only if 8„ is a covariantly dered function of tensor
operators will 8„'be identical with 8„.Nevertheless, all
operators such as 6„' will be tensors as seen by the
superobserver, and for this reason, and to distinguish
them from the usual concepts, they will be called
supertensors.

Each observer, associated with his own family of
hyperplanes (rj„,r), will make a different separation of
p„ into a Hamiltonian and a spatial momentum vector.
Fleming has developed a description of this process
which is covariant from the viewpoint of the super-

Kith the identihcation of 3'. as the hyperplane
Hamiltonian and P„as the hyperplane momentum, it is
not surprising to Gnd the hyperplane analog of the
relativistic relation between energy and momentum.
From Eqs. (12) and (13) it is easily seen that

P„P„+m'=3.". (17)

P(iI)= iq y . —(18)

If one now specializes to the Dirac theory, one finds
the hyperplane analogs of the various Dirac matrices.
First, the matrix p is just y4, consequently, p(4I) is
constructed as the superscalar
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v.=v.+au(n.v.)
=y„+««t„P(«t). (19)

The matrices 6 generalize either by generalizing the
rule e=iPY or by constructing a super 4-vector from
the mixed space and time components of the spin
tensor s„„= 4—«T y„,p„)=2—~„„In. either case,

(2o)

The space components of y„become the supervector At this stage, the superobserver concept permits a
generalization of Fleming's hyperplane concepts. If the
frame de6ned by p„ is to be de6ned by the observed
system, as, for example, the instantaneous rest frame
of the system, then g„will be an operator rather than a
c number, as in Fleming's work. In this case, it is
unnecessary to extend M„„to BR„„as in Eq. (24), since
all the arguments of the last few paragraphs still hold,
provided only that the operator p„has vector-cornmuta-
tion properties with M„„and commutes with all other
relevant operators.

—
Zippo pp ~ (21)

e„=(1/s)irt~„„ (22)

Similarly, for systems of arbitrary spin, the operators
P and e may be given hyperplane generalizations. For
I, following the de6nitions in Sec. II, a supervector is
constructed from the mixed space-time components of
s„, to obtain

IV. GENERALIZED DIRAC THEORY

The direct hyperplane generalization of the Dirac
equation is obvious from the results of Sec. III. Instead
of the conventional

Pf= (e p+mP)f=i8$/Bt,
one obtains

For P, one must obtain a superscalar. The techniques
developed above obviously yield with

Xf'=i 8$'/Br, (26)

t3(rt)= ( «)"%—A'i
&

&2s
Pl tP2"'~P2e~P182"'P2s ' (23)

The preceding results have been obtained by a
transformation of operators from the instantaneous set
of hyperplanes to the family (rt„,r). An alternative
derivation is based upon the superobserver's viewpoint.
Consider again Lorentz transformations of both the
observed event and of the observer

I
associated with the

hyperplane family («t„,r)7 relative to the superobserver.
Such transformations of the event are generated by
j/I„„, which in Fleming s interpretation, however,
commutes with q„. In order to transform the observer
as well, M„„may be replaced with

where

EPy= i8 q/8t,

E—(p2+m2)1/2

(28)

and to the Foldy-Wouthuysen transformation"

(29)

x=e„P„+p(~)m. (27)

Indeed, this latter form can be very readily derived by
substituting p„=P„+«t„X into the conventional form
(y„p„im)$—=0 of the Dirac equation.

The extension of the hyperplane formalism to higher
spins is most simply illustrated by applying the tech-
nique to the Foldy-Wouthuysen wave equation"

OR„„=M„„i(rt„8/—Brt„rt„B/8«—t„) (24) Spw ——(E+m —Pe p)/L2E(E+m)7'" (30)

A transformation generated by 5R„„will leave the
relationship between the frames of the event and of
the observer unaltered.

If now an operator which transforms tensorially as
seen by the superobserver is defined, and if in the
instantaneous frame it has a particular physical
interpretation, then the meaning of this operator will
be the same to all observers. For example, 3'.= —g„p„ is
the energy in the instantaneous frame and is a scalar
to the superobserver. Consequently, K will also be
interpreted as the energy by the observer associated
with the hyperplane family (rt„,r). Similarly, P„ is the
momentum to the instantaneous observer, and therefore
P„defined by Eq. (13) will be interpreted as the
momentum by the observer on the hyperplane family
(«t„,r). In fact, since «t„P„=O, it is clear that P„generates
translations which lie entirely within the observer's
hyperplane, and this is the characterizing feature of
linear momentum.

where
I ~II(n) ~'(~) =«~~'(~)/»,

l~l = LP„P„+msj«I2

(31)

(32)

'( )=S ( )4"( )

I
scl+m iy„P„—

Spw(rt) =
L2I3'-I (I3:I+m)j'"

(33)

Just as II can be obtained by transforming EP
according to

H =Spw«EPS pw
=e p+mP, (35)

» L. L. Foldy, Phys. Rev. 102, 568 (1956}.
» L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950)..

By using the results of Sec. III, these equations can be
written as
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the hyperplane Hamiltonian X can be obtained from Similarly, the polarization operator H/„becomes

Se=s,w'(~) I mlP(~)s, w(~)
= n„P„pm'(~).

W. (n~) = iV4PV.+p. (P.V.) (—p~p. ) 'j (51)
36

For states which satisfy Eq. (44), this is

W„'= (Pn,0),

or, in terms of covariant quantities, by

(37)

Other hyperplane operators can be found in a similar
fashion. For example, the rest-frame polarization super-
tensor operator is defined by

W„(4t )=y (iy„—p„/m), (52)

the Bargmann-Wigner polarization operator, 4 with
respect to the instantaneous hyperplane family.

V. GENERALIZED WHG THEORY

W„'= (kg;, 0).
Under the Lorentz transformation A(4t)

S'„=a„„AW„OA. ',
Eq. (38) becomes

(38)

(39)

The WHO theory for particles of arbitrary spin
in e6ect performs a generalization of the Foldy-
Wouthuysen transformation backwards. The starting
point is a 2(2s+1)-component wave function rp(x, t)
which satisies the equation

W.(.)='~.r~.+(.,~,)~.j
(40)

~=«p( —p p) '" (41)

where «p„ is the physical momentum and « is the
operator corresponding to the sign of the energy. In the
rest hyperplane family, Eqs. (32), (13), and (31)
become (when iB/Br is replaced with rt„p„=X)—

faC] =m, (42)

(43)

im~„p„p'(g~, r,)=p„p„p'(g~, r~) (44. )

For this particular family the transformed Foldy-
Wouthuysen transformation given by Eq. (34) is unity,
which gives

Besides the instantaneous hyperplane family, which
contains the observer's Lorentz frame, there is another
physically signiicant hyperplane family. This is the
family in which the particle, or antiparticle, is at rest.
This special family has the normal

EjSy=i8y/Bt. (53)

The analog of the Dirac wave function f is obtained
by applying (to the spin indices only) that Lorentz
transformation which would accelerate a particle
initially at rest up to the actual momentum p. This
gives, for a particle of spin s,

It (x,t) =m'E '"S&p(x,t), (54)

where E= (p'+m~)'~' and S is the Lorentz transforma-
tion

S=exp$sn (q/g)arctanh(p/E) j, (55)

where the physical momentum operator q is ey. For
s=x' the Lorentz transformation given by Eq. (55) is
related to Spwt by

Spw" ——(m/E)'"S. (56)

Fquations (53)-(55) are now generalized to the
hyperplane family (rt„,r) by

(P„P„+m')"P(g)v'(rt, r) =i' q '(n, r)/~r, (57)

tp'(4t, r) =m'(P„P„+m') —'~'S(4t) q'(rt, r), (58)

4'(nz, rz) = V'(nz, rz) (45) S (rt) = exp(sn„(Q„/P)arctanh (E/ ) K ~ )), (59)

Hence the spinor f'(rtz, rz) is a solution of the manifestly
covariant Eq. (44). This equation can be rewritten as

where, for general spin, n„and P(rt) are defined in Eqs.
(22) and (23), and

p„p„(p„p„im)g'(g~, rg) =—0, (46) P= (P„P„)", Q„=«P„, (K( = (P„P„+m')' '. (60)

so that P' is a solution of either

(y„p„—im)ip'= 0
or

(47)

The Lorentz transformation given in Eq. (55) can
be more conveniently written as

S=coshL40s;4(p;/p) j—
y~4~ smh(cos44p;/p), (61)

y„p„f'=0. (48)

These are the Dirac equations for massive and massless
particles, and imply co = arctanh(p/E) . (62)

where a has been replaced with p~4~, since S always
operates on Foldy-Wouthuysen functions, and where

(p„p„+m')It '= 0

P„P„It''=0. (50)

(49) Then the hyperplane Foldy-Wouthuysen transforma-
tion corresponding to Eq. (54) is

Spw '(4t)=m'(R) 'I'S(rt) (63)
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SFw '(rl) =m' —'1'

so that p'(err, re)=m''1'y, '(», rF) also satisfies Eq.
(66), as in the Dirac case. This is the manifestly
covariant generalization of the WHG theory, and is
simple for half-integral spin, since e"+'= 1 when operat-
ing on P'(rlr4, re), and —P„P„ is taken to an integral
power.

Expect for spin —,', Eq. (66) cannot be factored directly
to give the massive- and massless-particle solutions.
However, p'(r[F, ,re) does satisfy the Klein-Gordon
equation, as can be seen by operating on Eq. (66) with
rNP[„1V[„1 Since.

this gives
V[ 1pfi lVf~l p[~J = (PI Pi)" ~

(p„p„)"(p„p„+rr4')p'(rlr4, rJ4) =0.

(67)

(68)

Then, for free particles, p'(rl~, rI4) is a solution of either

S(rl) = cosL(P„/E)qp„,&0(rl)j
+ 'lS( )

'
t (P,/~) ~ .. ( )j (64)

where

4e(g) = arctanh(E/i Xi). (65)

For given spin, SFw '(rl) can be calculated by the
spin-matrix polynomial procedure given by Williams,
Braayer, and Weber. "

For the rest family of hyperplanes, Eq. (57) becomes

P ( )=()""+'( P P )'+'" ( ) (66)

As is the case for spin —'„covariant hyperplane
operators can be generated from rest hyperplane
operators by using the hyperplane Foldy-Wouthuysen
transformation of Eq. (64). The Hamiltonian for an
arbitrary hyperplane family 3'. is found by

0['=SFw '(n) I
& IP (n)SF w(n) (75)

or directly from H as

SC=A(~)aA-'(~)

In the instantaneous hyperplane, B is found to be

H=E{tanhf24r. (p/p)coj+P sechr 24r (p/p)4ej}. (77)

(76)

In terms of covariant quantities,

Q= (p p +en')'ls{tanhL2S;4(p, /p)4ef

+V[41 sechL2s, 4(P~/P)4e7}, (78)
so that

K= (P„P„+eP)'"{—i tant 2 (P„/P)rl„s„~(rl)j
+p(41)secL2(P„/P)rip „&e(g)j} (79)

For given spin, this operator may be calculated by
using the spin-matrix polynomial procedure given by
Williams, Draayer, and Weber. "For the rest hyper-
plane family, Eq. (79) reduces to mp(rlz) as expected.

Similarly, a polarization operator Q'„may be general-
ized to arbitrary hyperplanes. In the instantaneous
hyperplane family, the rest-system polarization operator
W„=(PS,O) may be written in terms of covariant
quantities as

W„'= ('V V; „0),
or

fp„p„+rw']p'(rlr4, rr4) = 0 (69)

p„p„g"(gz, re) =0, (70)

where $14) i means 2s—1 indices. Under the transforma-
tion h. (rl), Eq. (80) becomes

so that|/'(4[ii, r~) describes both a massive and a massless
particle. For the massive-particle part, Eq. (66)
reduces to

LV[ 1P[ 1 (i)"""~"3&'(»rir) =0 (71)

which, when taken together with the auxiliary condition

—iVsW~(41)= (—i)" 'rl[1 V~[1
—(—i)"+'rl~rl[ [V[1 (81)

In the rest hyperplane family, this is

-'V.W.(~.)= (- ) - (~)"-P[,[,V.[,1,(-p.p.)—
-()"'(~)"'PP[1V[1(-P P ) -'" ( )

fp„p„+rr4' jp' (rlI4, rrr) =0, (72) and. for particles which satisfy Eq. (66), this becomes

is the generalization of the Dirac equation to arbitrary
spin. For the massless-particle part, Eq. (66) reduces to

V[xlp[yl4' ('9»r&) (73)

If minimal electromagnetic coupling is introduced by
replacing p„with vr„, such a factorization is no longer
possible, since )e.„p.„)&0. In this case, Eq. (66) for
half-integral spin becomes

~~r, lV [.14'(»,»)= (i)"( ~.~.)'+"V'(» r~)— (74)

and is not equivalent to replacing p„with 7r„ in Eqs.
(71)—(73), as is usually attempted.

» S. A. Williams, J, P. Draayer, and T. A. Weber, Phys. Rev.
$5g, 1207 (1966).

W.(»)= —VsL( —i)"e" 'V.N P[1
X (—p„p„)'1'-'—p„/ml. (83)

This is the generalized Bargmann-VVigner4 polarization
operator on the instantaneous hyperplane family. It is
clear that W„(41ir)P„=O, since the right-hand side of
Eq. (83) then becomes equivalent to Eq. (66).

VI. GENERALIZED WEINBERG THEORY

For bosons, Eq. (66) is complicated by the appearance
of the sign operator e and the operator —p„p„ taken to
a half-integral power. However, an equivalent equation
can be found such that for integral spin, the sign
operator does not appear. Toward this end, one may



WAVE EQUATIONS ON A HYPERPLANE 1355

consider the 2(2s+1)-component functions P studied
by Weinberg which satisfy

As before, for the rest family of hyperplanes,

I 7[alp[el (~)
since 5(»)= 1. Then Eq. (94) becomes

(97)

together with the auxiliary condition

(p„p„+~)p= o

in the instantaneous hyperplane family. Sankaranaray-
anan and Good'4 and Nelson and Good" have shown
that the Weinberg function P is related to the spinor
4 by

lt =I:l(1—v )+l(1+7 )s]lt,
where f satisfies

( PPP—P) '(PPP.+2~')0'(» T~)
= ( i)"~—"v~.lp(.A" (~~ T~). (98)

This is the manifestly convariant generalization of the
Weinberg theory for arbitrary spin and mass. It is
particularly simple for integral spin, since e"=1 when
operating on lt, and —p„p„ is taken to an integral
power. Equation (98) can be obtained directly from
Eq. (66) by using the relationship

Hf =i8$/Bt. (8&) lt' (» T~) = I3(1—75)+-'(1+75)~34"(» T~) (99)

2E'cp = —(1+P)8'p/Bt'.

This equation contains the condition

Pv=P,

(92)

(93)

as can be seen by operating on Eq. (92) with 1—P, which
corresponds to the Foldy-Wouthuysen form of Eq. (84).
In addition, Eq. (93) with Eq. (92) implies the Klein-
Gordon equation, which is of course equivalent to
Kq. (85). Consequently, Eq. (92) gives rise to Weinberg
functions without any auxiliary conditions. Under the
transformation A(Tt), Eq. (92) becomes

2(p.p.+~')~'(~,T) = L1+ (—i)"nl.lvl. lj
&&('p.)V(., ), (94)

Corresponding to g, a Foldy-Wouthuysen function p
can be dined by

P=TN'E '~'SP. (88)

Since y5 and 8 commute with E '~ S,

9 = Lk(1 75)+—$(1+7~)PI~, (89)

where s operating on q has been replaced with p.
The matrix operator in Eq. (89) has no inverse;

thus g satisies no Hamiltonian-type equation as does
y. However, q does satisfy a second-order equation in t.
Combining Eq. (89) with Eq. (53) yields

,'(I v)-+ :—(1+v K-P ~=i~~/~t (90.)

Commuting P to the left and then applying iB/Bt gives

2E(1+P)X-,'(1+7,)i8y/Bt= —(1+P)8'P/BP, (91)

or, equivalently,
vlvlpl l ( Pvpv)~jP("t»T&) (102)

(—p„p„) -'j'(~„T,)=o. (103)

Taken with Eq. (100), Eq. (102) implies the Klein-
Gordon equation. On the other hand, Eq. (102),
together with the Klein-Gordon equation, is the
Weinberg theory for integral spin.

For spin 1, Eq. (98) is

(vp,P.P,+PpPp+2~')P(», TR)=o, (1o4)

which is the spin-1 free-particle equation studied by
Shay and Good." It is apparent that the spin-1 case
admits only the massive-particle solution.

For spin 0, Eq. (98) is

2~V'(~~ T~) =PI—ps(1+P)k'(» T~) (1o5)

but only if the Klein-Gordon equation is also used.
If Eq. (98) is rewritten as

2TN'( —p„p„) -'lt'(g, ,Tz)
= I:( i)""'v—l.lpl.l+ ( P.p.)'3—4'(» T~)

then operating from the left with ( i)"—i"vl„lpl„l—(—p„p„)' gives

2m'( —p„p„) 'L(—i)"8'vl„lpl„l
—(—Pppp)'l4'(n~ T~) =o (101)

where Eq. (67) has been used to eliminate the right-
hand side. It is then clear that for spin greater than 1,
p(Tt~, T~) contains both the massive- and massless-
particle solutions

where

The Weinberg function lt'(q, T) is then given by

(95)
However, p('gag Tg)=w ~'p'('g~, T~) and pp= p, since
S=A.=1 for spin 0. Therefore Eq. (105) is just the
Klein-Gordon equation

4'(nF) =~'(PIP +~') "'~(n)9'(~lT) (96)
'4 A. Sankaranarayanan and R. H. Good, Jr., Nuovo Cimento

36, 1303 (1965}."T. J. Nelson and R. H. Good, Jr., Rev. Mod. Phys. 40,
508 (1968).

(p.p.+~')4'(~, )=o (1o6)

Minimal electromagnetic coupling may be introduced
by replacing p„with x.„ in Eq. (98). For integral spin

"D.Shay and R. H. Good, Jr. (unpublished).
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this gives

(—„„)'-'(„„+2m')[t'(rfz, n)
= (—1)'7[.[~[ ]it'(nir, ri ) (107)

As is the case for Kq. (74), Eq. (107) is no longer
factorable into massive- and massless-particle parts.
Furthermore, since the sign operator g is not well
defined when interactions are present, p(rfrr, rg) is not
related to f(rfir, re) in a simple way.

VII. CONCLUSIONS AND SUMMARY

The hyperplane formalism presented in this paper has
made it possible to write for any spin a manifestly co-
variant Foldy-Wouthuysen transformation, Eq. (63),
and Foldy-Kouthuysen wave function which satisfies
a manifestly covariant wave equation given by either
Eq. (57) or Eq. (94). In the same sense, manifestly
covariant Hamiltonians and polarization operators,
Eqs. (79) and (81), can also be obtained. By specializing
to the particular hyperplane observer which corresponds
to the particle rest system, the .usual manifestly co-
variant equations are obtained for spin 0, —,', and 1, and
for higher spins new wave equations without auxiliary
conditions are obtained.

Furthermore, as pointed out by Mathews, '7 the
various wave equations and operators presented here
are unique in the sense that they are obtained by a
continuous I.orentz transformation from well-defined
rest-system wave equations and operators.

It is appropriate to use Eq. (66) only for half-integral
spin and Eq. (98) for integral spin since, besides the
simplicity of these equations for this case, denly then in
the second quantized theory are local anticommutation
and commutation relationships for the fields obtained. "

The fact that, for free particles, zero-mass solutions
as well as massive solutions are contained in the same
wave equation is interesting since there seems to be no
basis on physical grounds for rejecting these solu-

'r P. M. Mathews, Phys. Rev. 143, 978 (1966).

tions. ' Furthermore, when interactions are present, the
wave equation no longer separates into two distinct so-
lutions. The spin- —,

' case is an exception. For example,
before putting in the electromagnetic interaction, Eq.
(44) can be left unaltered, written as Eq. (46), or sepa-
rated as Kqs. (47) and, (48). Then Kq. (44) becomes

or
imp„7r„f' =rr„rr„f' (108)

y„s „(y„s.,—im)f'= 0. (110)

The exact Green's function then separates into two
terms:

where

and

G =G,/itis G./—i n,

G.= ty„(p„—eA„)—img
—'

G,=b, (p,-e~,)j-'.
The theories described by Kqs. (109) and (110) are
di8erent from the usual Dirac equation with fields
which can be obtained directly from Eq. (47). Both
Eqs. (109) and (110) are sufficiently interesting to bear
further investigation.
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"One could argue by Eq. (41) that v„ is restricted to values
that correspond to instantaneous hyperplanes in the rest frame of
the particles and that this restriction makes sense only if the
particle has a rest frame. This would then provide a physical
reason for rejecting the massless solutions. The authors, however,
take the alternative view that Eqs. (66) and (98) are of interest
independently of their derivation. The advance represented by
these equations is that they are manifestly covariant without any
auxiliary conditions. Rejection of the zero-mass solutions is
equivalent to reintroducing the Klein-Gordon equation as an
auxiliary condition, as in steinberg's work.

t y„m„+(e/2m)o„„Ii„„5$'=(—i/m)(y„s„)[t',
Ii„„=(c[/c[x„)A„—(r)/r)x„)A„, (109)

an equation with an anomalous magnetic-moment term.
On the other hand, Eq. (46) becomes


