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The diagonal elements of the three-particle density matrix for He' have been formulated in terms of
Wiener functional integrals in order to compute both that part of the pair distribution function linear in
the density and the third virial coefBcient. The three-particle interaction energy was taken to be a sum of
Lennard-Jones (12-6) potentials between pairs of particles. Evaluation of the Wiener integrals was carried
out by a Monte Carlo sampling technique to yield the pair distribution function and third virial coefficient
for temperatures from 273 to 5'K. Comparison of the linear portion of the density expansion of the pair
distribution function gave qualitative agreement with experimental values for the pair distribution function
in liquid He' measured by neutron diffraction. The values of the third virial coefBcient calculated by this
method are consistently smaller than the experimental values and consistently larger than the classical
values of this quantity over the given temperature range.

I. INTRODUCTION

HREE—BODY computations in quantumstatistics
are dificult and consequently rare, but they are

important for an understanding of the equation of state
of quantum-mechanical systems. Here we describe some
three-particle computations on He'; in particular, the
three-particle term in the density expansion for the
pair distribution function and the third virial coeKcient.
These computations cover the temperature range 5 to
273 K. At the low end of this range we were able to
compare our estimate of the pair distribution function
with the measurements of Henshaw on liquid He4; the
good agreement is probably the most interesting result
of these computations. We feel that this result is par-
ticularly interesting since it is usually not supposed that
the two leading terms in the density expansion of the
pair distribution function can satisfactorily describe
the situation in a liquid. Qn the other hand, our results
are not in good agreement with the experimental values
of the third virial coefficient; the reason for this lack
of agreement is probably connected with our use of the
Lennard-Jones (12-6) potential.

In these computations the Wiener integral formula-

tion has been used. We have described this method
already in its application to two-particle computations
on He'. Another possible approach to these computa-
tions is the binary collision expansion of Yang and Lee';
Larsen' and Pais and Uhlenbeck4 have made calcula-
tions of the third virial coefficient in this way. Still
another approach is to use the Wigner-Kirkwood ex-
pansion. The advantages which the Weiner integral
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approach appears to have are: Its mathematical
properties are well understood; it provides a useful
framework for making qualitative and semiquantitative
estimates; and it is relatively simple from a computa-
tional viewpoint. Of particular importance is the fact
that it is a completely trivial matter, that is, it requires
no change in program logic, to increase the accuracy of
a computation; the only requirement is a greater
expenditure of computation time.

X= (O'P/2srns) '", (2.2)

where m is the particle mass. The diagonal elements of
the density matrix are

Wg(1,2, ,N) =(1&2, ,N~e &~"~1,2, ,N), (2.3)

where Hz is the Hamiltonian for the S-particle system
and the normalization is chosen so that the diagonal
element is unity when the potential energy is identically
zero.

The pair distribution function g(rrs) is defined as the
relative probability of Gnding particle 1 within the
volume element d'1 at 1 and, simultaneously, particle
2 within volume element d'2 at 2. Normalization has
been chosen to satisfy

g(rrs) ~ 1, as rrs ~co . (2.4)

This function can be expressed' as a power series in the

e J. de Boer, Rept. Progr. Phys. 12, 305 (1949).
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II. NOTATIONS AND DEFINITIONS

The spatial coordinates of the ith particle will be
denoted by i or r;, and the distance between a pair of
particles, i and j, by r;;. Reciprocal temperature P is

P= &/hr (2.1)

and the thermal wavelength X is
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density n, namely

g(rts) = Ws(1,2)L1+P tt'g;(rts)],
i~1

(2.5)

then the conditional Wiener integral of this functional
is denoted by

E(F[r(r)][r(P)=R),

where the coeKcient of the term linear in the density is

gt(r ts) = Ws(1,2) ' (Ws(1,2,3)—Ws(1,2)Ws(1,3)

the condition on the Wiener integral being that r(P) =R.
For the present we regard r(r) and R as vectors with an
arbitrary number of components.

Let the Hamiltonian for an iV-particle system be

—Ws(1,2)Ws(2, 3)+Ws(1,2)]d'3. (2.6)
IP

&or= — Z ~'+ Uar(R),
2Wi 1

(3.1)

It is the computation of this quantity which is the
central part of the computations described here.

The virial expansion for the pressures P is

then the general density matrix element can be ex-
pressed as a conditional Wiener integral of the functional

PP Vs B(T) C(T)=1+ + +
So Vo Vo'

where Eo is Avogadro's number and Vo the molar
volume. The third virial coeKcient C(T) is given by

FLr(r)] = exp —P

namely

Utr~ r(r)+ R
&(2~)us

+r(R' —R) ~dr, (32)

C(T) =~ass (Ws(1,2)—1)d2
(R

~

e-&~&
~

R') = exp f —(sr/Xs) (R'—R)s)

XEfFLr(r)]~ r(1)=0) . (3.3)

gt(rts) W,(1,2)d2 . (&.8)

The interaction between particles i and j is assumed
to be described by the Lennard-Jones (12-6) potential
with the de Boer—Michels parameters7 for He4:

(2.9)

~=14.04)&10 "erg, 0=2.56' 10 ' cm.

The interaction between three particles is assumed to
be described by a sum of these pair potentials:

Us(1,2,3)= V(rts)+ V(rts)+ V(rss) . (2.10)

Although the details of the computation depend on
these assumptions, the main ideas do not. It would,
for instance, be possible to carry through these compu-
tations with an interaction which is not pairwise
additive.

III. WIENER INTEGRAL FORMULATION OF
THE DENSITY MATRIX

A. Expression of Density Matrix Elements in
Terms of Wiener Integrals

This relationship holds only for Boltzmann matrix
elements. To take the symmetry requirements into
proper account, these Boltzmann matrix elements must
be combined in an appropriate way.

A useful intuitive picture of the Wiener integral is
obtained by thinking of an imaginary motion of a system
of S particles over a unit "time" interval, 0&v&1. At
time v=0 the coordinates of the particles are given by
R and at time r=1 by R'. The quantity (R'—R)' is
the sum of the squares of the distances between the
initial and 6nal positions of each particle, and the
Wiener integral in Eq. (3.3) is the average, over all
possible paths of the motion, of the Boltzmann factor,
s ~&~», with the potential energy replaced by (Utr), its
average over the path. The paths are weighted by
Wiener measure which is related to the average over
the path of the total kinetic energy of the system.

It should be noted that (2s) "9r(r) is a measure of
the deviation of the motion from the shortest straight
line path from R to R', and as the classical limit is
obtained by letting X -+ 0, the deviation vanishes in this
limit. The oG-diagonal matrix elements vanish in the
classical limit since

limexpf —(srjhs)(R' —R)s) =0, (R'&R). (3.4))~o

The diagonal element approaches the Boltzmann factor
Since we have discussed the main formulas else-

where, ' our account here will be brief. Let FLr(r)] be a
functional of the continuous function r(r), with r(0) =0, since

lim(R [
e-»&

~
R)= s—st'&&» (3.5)

e K. Hnang, Statssttcal Mechaascs Qohn Wiley tk Sons, Inc. ,
New York, 1963), Chap. 14, Secs. 14.1 and 14.2.

~ J. de Boer and A. Michels, Physica 6, 409 (1939).
s L. D. Fosdick, J. Math. Phys. 3, 1251 (1962).

EfC
~
r(1)=0) =C (3.6)

when C is a constant with respect to the Wiener
integration.
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V, ( r(.)+(2,1,3)
s (2s)'"

+rL(1,2,3)—(2,1,3)] idr (3.10)

P V,i r(.)+(2,3,1)
s (2s)'"

+ [(1,2,$)—(2,3,1)])d . (3.lt)

The factors multiplying the Wiener integrals in
these expressions yield a signi6cant estimate of the
size and temperature dependence of these o6-diagonal
elements for intermolecular. potentials for which the
particles are characterized by strong repulsive cores.
Suppose the three-body potential satisfies

+s(rt, rs, rs) = ee, 1f 0';q(0 for any s,j.
The Wiener integrals in Eqs. (3.8) and (3.9) must
vanish if the initial distance between any pair of
particles is less than 0. Hence, wherever the matrix
element is nonzero, the exponential factors satisfy

2Ã
exp ——(1—2)' (exp—

S. Uyyer Sounds on Off-Diagonal
Matrix Elements

Both diagonal and off-diagonal Boltzmann matrix
elements are involved in the calculation of gt(rts) for
a Bose or Fermi system. For example, in the evaluation
of the three-particle Bose or Fermi matrix element

(1,2,3 f
e-s~'(1,2,3)p,

the sign denoting Bose (+}or Fermi (—), two types
of off-diagonal 8oltzmann matrix elements arise;
specifj.cally,

(1,2,3(s-~~&( 1,2,3)~
=(1,2P[s-s~'[1,2,3)+(2,1,3[e s~'[ 1,2,3)

~(3 2,1Is s~'I 1,2,3)+(1,3,2 I
e-s"III,23)

+(2,3,1[e-~"s[1,2,3)+(3,1,2[s-~ 3(1,2,3), (3.7)

where the matrix elements on the right are Boltzmann
matrix elements. Expressing the two types of Boltzmann
o6-diagonal elements in terms of Wiener integrals, we
have

(2,1,3 [
e-s~&

( 1,2,3)
= exp{—(2s/V)(l-2)')E{Ft~ r(1)=0) (3.8)

and

(2,3,1~ s-&"
~ 1,2,3)=exp{—(s/V)

XL(2-1)'+(3-2)'+(1-3)'j)&P'st r(1)=o) (3 9)

where

for the two-particle exchange, and

exp —L(2—1)'+ (3—2)'+ (1—3)s)

Bso'
(exp — (3.13)

for the three-particle exchange.
For He4, approximating the repulsive core diameter

by the parameter

expL —-'s~'(~/l )'+0((~/&)'")). (3.14)

Qualitatively, the increase in the constant multiplying
—X ' in the exponent comes about because the %iener
integral in Kq. (3.3), as well as the multiplying factor,
decreases exponentially with increasing temperature.
This is due to the fact that the set of paths for which the
"motion" of the system from time v =0 to time v = 4

brings the two exchanged particles no closer than 0 from

each other for any r is assigned exponentially smaller

Wiener measure as T~~.
I S. Y. Larsen, J. E. Kiipatrlck, E. H. Lich, ancl H. F. Jordan,

Phys. Rcv. 140, 129 (1965)."S. Y. Larsen, K. Witte, and J. E. Kilpatrick, J. Chem.
Phys. 44, 213 (1966).

xa E. H. L&cb, J. M@th. Phys. 8, rQ (gag).

~=2.56X10-s cm

of the Lennard-Jones (12-6) potential, one 6nds that
the larger of the two multiplying factors —that for the
two-particle exchange —is approximately e ". Thus
at 5 K one expects the o6-diagonal elements to be
smaller than the diagonal elements by a factor of at
least 0.05. The argument for the two-particle exchange
term in (1,2~ e &~'~1,2)~ is the same as the argument
for the similar three-particle term in Eq. (3.7) and yields
the same result. Due to restrictions of computing time,
the numerical scheme developed below for the calcu-
lation of the diagonal matrix element is limited in
accuracy at low temperatures. In all cases, the above
bound on the exchange terms shows them to be negli-

gible compared to the numerical uncertainty of the
direct term. Therefore, in subsequent sections the ex-

change terms will be discarded, and the diagonal
Boltzmann matrix element will be used as if it were the
same as the diagonal element for a Bose or Fermi
system.

The above argument was Grst used' in connection
with the two-particle exchange term in the second virial
coeScient. The suppression of this two-particle ex-

change term with increasing temperature is actually
somewhat stronger than is indicated above. This is
veri6ed both by numerical calculations'" and by
upper and lower bounds obtained analytically by Lieb, "
who shows that at high temperatures the term is asymp-
totically proportional to
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C. Approximation of the Diagonal Matrix Element
by a Multiple Riemann Integral

The calculation of the diagonal matrix elements for
Boltzmann statistics is now reduced to the evaluation
of a Wiener integral. For the diagonal element of the
three-particle density matrix, Eq. (2.3) becomes

Ws(1,2,3)=E exp —P Usl r(r)
p

l (2z)'Is

Except in very special cases, notably a harmonic oscil-
lator potential, it is necessary to use an approximation
scheme to evaluate this Wiener integral. Such algo-
rithms have been proposed and applied by several
authors. '»" "

The simplest algorithm uses the approximation

~V'Lr(~) 7 Ir(P) =R)

Eq. (3.16). This simple algorithm is adequate for one
or two particles under the inQuence of a computationally
simple potential and has been applied successfully to
such problems. ' ' ' However, as the evaluation of the
integrand of the multiple integral becomes more com-
plex, the computing time requirements become very
large. For this reason, methods have been pro-
posed" ""for reducing the multiplicity of the integral
to be evaluated. The present calculation makes use. of
a slight modi6cation of the procedure developed by
Fosdick. "

The principal idea of the technique used here for
reducing the multiplicity is to make use of the fact that
it is possible to express the Wiener integral in Kq.
(3.15) as a Riemann integral of a product of p Wiener
integrals involving a smaller value of P (higher tempera-
ture), for which good approximations can be obtained.
This possibility rests on two important properties of
the Wiener integral. The 6rst property is a separability
property: Let the functional Fl r(r)7 be expressible as
a product

(3.21)

which comes directly from the de6nition of the Wiener
integral, namely

&VLr(r)7lr(P) =R)

where
r; t(r(r; (rp ——0, p.„=1)

in each factor of this product, then

~P'Lr( )7lr(1) =0)

(3.22)

FLr( ' p)7d (3.1&)

where each component of r(r; p) is a piecewise straight
line with changes in slope at r~, r2, ~, r~~, and

r(r;; p) =r(r;)= r;, (all i—)
rp=0, rs=P,

and the measure dp„ is the Gaussian

(Rs
dye ——(2zP) s&~ expl —g (2s.(7 ~t—7$))-s&1

&2P

(3.18)

(3.19)

(r,+t—r;)'~- ~t
)& expl —

I Q dr;, (3.20)
& 2(.,„-„)i

where dr; represents a volume element in the 3E-
dimensional coordinate space of an 1V-particle system.

Since p is large, the Monte Carlo method is used to
evaluate the integral, multiplicity p —1, on the right of

~ R. H. Cameron, Duke Math. J. 18, 111 (1951)."L.D. Fosdick, Math. Comp. 19, 225 (1965).
'4 I. M. Gel'fand and ¹ N. Chentsov, Zh. Eksperim. i Teor.

Fiz. Bl, 1106 (1956) LEnglish transl. :Soviet Phys. —JETP 4, 945
(1957)j."A. G. Konheim and W. L. Miranker, Math. t cmp. 21, .49
(1967).

r(r; t)=0. (3.24)

It is important to recognize that Eq. (3.23) is an
equality; it is not an approximation. The functional we
are concerned with can be factored, with

f;I r(~)7= exp —P „,(r(r)+r'-~)
&(2z.)'"

l+(1,2,3) Idr ; (3.25)
)

hence it is possible for us to use Eq. (3.23). A formal
derivation of this separability property follows easily
from Eq. (3.17). The second property of the Wiener
integral, useful to us now, is the following: Let the
Wiener integral be defined for a particular time interval
(O,P), and consider a change in time scale, namely

r'= ps (3.26)

The new time interval is (O,P'), and the Weiner inte-

where dp~ is deaned in Eq. (3.20), and for each Wiener
integral on the right of Eq. (3.23) the time interval is
(r; q, r~) with
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gration (O,P) is related to the Wiener integral on (O,P')
by

zpLr(r) jlr(p) =R)
=~V'I (1/v'p) r(r') jIr(p') = (v'p)R) (3»)

Again, this property follows easily from Eq. (3.17).
There is, actually, an obvious third property which is
used here; namely, that dp,„is invariant to a change of
origin of the space coordinate or of the time coordinate.
Now let us suppose that r;—v; ~ is a constant,

series in q about g=o, and 6nally setting g=i in the
resulting series. Upon exchanging the order of Wiener
integration and integration with respect to v, the
%'iener integrals have integrands which are products of
the path variable r(r) and can be performed analyti-
cally. "The result to order T ' is

Us(r+r(r s))d—r

r;-r; 1=1/p. (3.28) '(fsUs(r+r(s r))r(—1—r)(fr. (3.33)

+00f= ~) o II &(&'I r(r)j I r(1)=o) (3.29)

Then, making use of the above properties, we 6nd for
our functional

Z(FI r(r)ZIr(1) =0}

If Eq. (3.33) is used for the Wiener integrais on the
right side of Eq. (3.29), one obtains the approximation

&PLr( )3lr(1)=8

~I P[~(r; p)jC., (334)

where now each Wiener integral on the right is dedned
on the time interval (0,1) and

p ' ( X (r(r)
l's,

l r(r)]=exp —— Usl I
+r

P e & (23r)"'kQP

+r(r;—r; 1) I I . (3.30)

pX'
C„=g exp—

I-I 4srP' p

VsUs Lr; 1+r(r;-r 1)j
(2sr) ifs

+((,3,3)).(3-.)3. . (3.33)

Notice that in the last equation we have the factors

P/P and )(/QP; hence each Wiener integral in the
product on the right of Kq. (3.29) can be regarded as a
Wiener integral like that in Eq. (3.15) except that now
the temperature is higher by a factor p:

p)12 1

C,=g
4srps

IysUsl Lr;-I+r(r' —r'-1)j
&(2w)»s

If, for each i =1, 2, ~, P, the exponential in Eq. (3.35)
is replaced by the 6rst two terms in its power series
cxpaIls1011, 1t, ls sccI1 that 'to order p

r'= pT' (331)

We make use of this result by 6nding a high-temperature
approximation for the Wiener integral and using Kq.
(3.29) to extend its range of validity.

The high-temperature approximation to be used is the
well-known Wigner-Kirkwood expansion"'7 in powers
of p and Xs. The most useful form of this expansion for
the following work will be the expansion for the quantity

Equation (3.34) with Eq. (336) for C„ is precisely
the formula obtained by I'osdick, "who shows that if
U& is suKciently regular, the formula is correct to order
p-'. In the present application, where

G=lnZ exp —P
0

)(.

U,
l

r(r)+r
(23r)"'

U, (1,2,$)= Q V(r;,)

+ (s—r))3 r(() 0. (3.33)=

The expansion is carried out by introducing a parameter
si multiplying the path, r(r), expanding G as a Taylor's

"J.O. Hirschfelder, C. F. Curtis, and R. B. Bird, Moleemlw

TI(eory of Gases and Lsggs(gs {John Wiley R Sons, Inc. , New York,
19S4), Chap. Q.

IVT. Kihara, V. Midzuno, MId T. Shizume, J. Phys. Soc.
Japan 10, {1NS).

with V(r) a (12-6) Lennard-Jones potential, the regu-
larity conditions are not satis6ed due to the singularity
of V (r) at r= 0. It has been found from calculations of
the two-particle density matrix elements that the use
of Eq. (3.35) for C„gives better results for small p
than are obtained, using Eq. (3.36) because at the singu-
larities of Us, Eq. (3.35) is bounded in absolute value
while Eq. (336) is not. For this reason the exponential
form for C„will be used in the following calculations.

"LM. GeVfand and A. M. Yaglon), J.Math. Phys. 1,48 {1960).
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The Wigner-Kirkwood expansion can be carried out
in the above manner to obtain approximations which are
correct to order p for any tm under the appropriate
regularity conditions on U. However, the increasing
complexity of the C„obtained in this way causes an
increase in computing time which must be balanced
against the decrease obtained by using a smaller value
of p in Kq. (3.34). The special case p=1, which is
equivalent to expanding the logarithm of the diagonal
matrix element directly, is simplified by the fact that
the v integrals may be done immediately. The result
of the expansion to order T ' in this case is

inE exp —P Us~ Lr(r)+(1,2,3)j ~

I (2s.)'"

Xdr r(1)=0 ~—PUB(1,2,3)—
24m

V'UB(1,2,3)

P'M pX4

+ (~Us(1,2,3)$'+ V'Ug(1, 2,3) . (3.37)
48m 96(b-'

h' 3 h2

(eV'-. '+2V»'+s Vo') (4 2)
2m s-& 2m

so that the coordinates r, , r~m, and Q behave as inde-
pendent particles of masses 3m, ~m, and 3', respectively.

Taking U3 to be the sum of pair interactions, as in
Kq. (2.10), and noting that r» ——3—1=Q+Br» and
r2~ ——3—2=Q ——', r&2, it is seen that Ws(1,2,3) can be
separated into the product of a c.m. factor which is
independent of U3 and a factor containing only the
relative coordinates, r~m and Q:

Wg(1,2,3)=(1,2,3(e e '~1,2,3)
=(r, [e e ' (r. )(r~2,Q)e e "&[r»,Q), (4.3)

IV. EVALUATION OF g~(r»)

A. Multiple Integral Approximation for g~ (r~2)

The complexity of the three-particle functions enter-
ing into the calculation of g~(r») can be reduced some-
what by consideration of the symmetries of the problem.
Since there is no fixed external field, the density matrix
must depend only on the relative positions of the
particles, and hence the erst simpli6cation should be to
separate out the c.m. motion. Define the usual c.m. and
relative coordinates for a system of three particles
(Fig. 1) by

r, =g(1+2+3),
rj2=2—1,
Q=3—-,'(2+1).

The Jacobian of this transformation is unity, and
furthermore

FIG. 1.Center-of-mass and relative coordinates for three particles.

is the kinetic energy of the c.m. motion and

&re~=—
h'Vg'

+Ua(r», Q)
2(m/2) 2(2m/3)

(4.5)

is the Hamiltonian operator for the relative coordinates.
Since we associate a diGerent mass with each particle
coordinate, it is necessary to distinguish between the
thermal wavelengths associated with these coordinates;
we have

=X/V3, X»=XV2, Xo=X+se. (4 6)

Ug(r(r), q(r); r», Q)dr
0

Xr(1)=q(1)=0, (4g)

where

U&(r(r), q(r); r», Q) = V((X/gn. )r(r)+r»)
+VL() /2V'~)(~e(r)+r(r))+Q+ lr»j
+VP(X/2+m)(VSq(r) —r(r))+Q —~r~mj (4.9)

and V(r) is given by Eq. (2.9).
The c,m. motion can also be eliminated from the

two-particle density matrix elements occurring in the
expression for g&(r»), Eq. (2.6). A typical two-particle
diagonal matrix element is

t X

W2(1,3)=E exp fi V~
—q(r)+Q+-', ~r&»r

s. )

The normalization of the density matrix elements
yields

(r,
~

e-ex'
( r, )=1 (4.7)

so that, using Eq. (3.15), the diagonal density matrix
element can be expressed in terms of a Wiener integral
over paths in the six-dimensional relative coordinate
space of r» and Q:

where
E, =—k'Vm. /2(3m) (4.4)

Xq(1)=0 . (4.10)



H. F. JORDAN AND L. D. FOSDICK

One can thus write

g1(r»)=W2(12) '

X d'Q[E{F»8(r(r),q(r)) ) r(1)=q(1)=0}

—~{F (( ))P (q())l (1)=q(1)=0}
—~{F12(r(r))F28(q(r))Ir(1)=q(1)=0}

(4.11)

where

F»3(r(r)eq(r))

+E{F»(r(r))( r(1)=0}],

1

= exp —P U8(r(r), q(r); r12,Q)dr, (4.12)
0

which appears in g1(r12) can thus be reduced to a twofold
integral.

Equations (4.9) and (4.12)—(4.15) show that F»8
can be written as a product:

F128(1'(T) q(T)) P12(r(r))P13(2V3«(r)+21(r))
XF28(—,V3«(r) —2r(r)). (4.19)

It should be noted that if r(r) and q(r) are conditional
Wiener paths with r(0)=q(0) =r(1)=q(1)=0 and
variance [r(1—r)]'", then the linear combinations

s ( )= lv3«( )+lr( ) (4 2o)

are conditional Wiener paths with the same distribu-
tions as r(r) and q(r).

We now de6ne the quantity

F12(r(r))=exp —P V~ r(r)+r» ~dr, (4.13)
) ' ' where

g.(r») = d'Q G.(r», Q), (4.21)

P»(«(r))

and

P»(q(r))

Vi q( )+Q+-,'r id, (4.14)
X'

= exp —p q(r)+Q —xr» I«(4 15)
x

g1(r12) = 23T sin8od8o po dpoG(r», po, 8o) . (4.18)

The integral over the position of the third particle

Since the expectation value is a linear operator, the
quantity g1(r») can then be written in terms of a single
Wiener integral:

er(rrr) 3r (1,3) 'ferQZ=(ter(r( )e()),
P12(I'(T))F18(q(r)) P12(1'(T))F23(q(T))

+F12(r(r))~r(1)=q(1)=0}. (4.16)
Now let

G(r12,Q) =W2(1,2) '[W8(1,2,3)—W2(1,2)W2(1,3)
—W2(1,2)W2(2,3)+W2(1,2)] (4.17)

be the Q integrand of g1(r12). Noting that the interaction
potentials depend only upon the magnitude of the
separations, r~2, F3, and r~3 between the particles, it
can be seen that if r12 is taken to lie along the axis of
polar coordinates, (pO, 8O, 32O), for Q, then G(r12,Q) is
independent of the direction of the polar axis and of

q @. Thus one can write

G,(r12,Q) =W2(1,2) 'Z{F»8(r(r),q(r))
P12(r(r))P13(s+(T)) F12(r(r))P23(s (T))

+P (r(r)) I r(1)=«(1)=0} (4 22)

Because of an oversight, the quantity g, (r») rather than
g1(r») was originally calculated. The difference between
these two quantities arises because, although the dis-
tributions of the arguments of F18 and F23 in Eq. (4.22)
are the same as the distributions of the arguments of
these functions in Eq. (4.16), the use of a linear combi-
nation of q(r) and r(r) as the argument of F18 in Eq.
(4.22) introduces a spurious correlation between

F»(s+(r))

and the functional F»(r(r)) multiplying it and similarly
for the product F12F23. The two factors in these products
should be uncorrelated since they arise from the product
of two independent Wiener integrals. The function
g1(r12) can be written as the sum of g, (r12) and a term
which corrects for the unwanted correlation

where

and

gl(r12) g (T12)+ge(T12)

g.(T12)= d'Q G.(r», Q)

(4.23)

G.(«2,Q) =W2(1 2) '&{F»(r(r))[P»(s+(T))—P»(q(r))
+F„(s (r)) F,8(q(r))] ~

r(1) q(1) 0} (4 24)

The numerical calculation will thus involve separate
evaluations of the terms g, (r12) and g, (r12).

Using Eq. (4.19), the quantity G,(r», Q) can be
written in the form

G,(r12,Q) =W2(1,2)-'&{F12(r(r))[P18(s~(r))—1]
X[F28(s (r)) 1]~r(1)=q(1)=0}. (4 25)

The results of Sec. III C may now be used in order to
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termS of m~ PJtj 1ed G,(rss, Q) .
) e. Let

Gq(f»yM)
dime»Ionac ra» o&cr . .

Rth dcaned '"
Riem»n '"tcgra

straight-line Par(r; P) b the broken s ra' - a

8Am

( ( P))=~»(r(r' P) exp —P--D12r v, r, s r,—. r» r(1—r)drEr, s+r(r;—r; s)j+r» (4.26)

p)(s
( ( p))=~»(q(r;p)) expDgsq v,

s pcs
D23 Q V")( ( P))=~»(q(r;P exp—

—)d (4 27)i— &(qi qi-r) j+0+sr» & ~ & &
p ~Eq'-s r q' —'-

,'r» —r—1 r)dr—, {4.28)+r(q;—q s)110——,'r» r 1 r-Eq*-s

V"{r)= |7sV{r).

thenRtlons foI' Gg Rnd Gg RI'e tThe RpproxllTlatlons oI'

G,(res, Q) Ws(1,2) '

D»(r(r*' P))ED»(s+(r P))—&

(4.30)&& D»(s (r P)) &j-di .A) s—~

G,(.„,Q)=W, (1,2 -'

=g~=0, then

G.(r»,Q)= Ws(1,2) '

D»(r"))ED»(s+(")—&

D ( "') &jdu. A—usn (4.33)X Dsss

G,(rss, Q) = Ws(1,2) '

D s r(u))ED»(g (n)) —D»(q(n))» r

(4.34)'"')—D»(q"') j@.A~sn+Dss(s- ss

D»(r(r P))
D»(r(n))

Dgs(q(

ss — —D»(q(r P))jdl ./us&+D»(S-(r; P) — »

r' P)XEDs

@&here

dps, ——(2sr) s)s(2sr/P)-s»'

Q d'b;, (4.32))(exp

vrith b=r or q.
e order of

q(thc lntcgI'R s 0

the order of accuracy o s.
3 -dIDlcnslona vcc an(» bete - a vcc
, respectively,

that jo=q~=r„e E . (4.20). Recal sngextension of Eq.

s

r'-x+ru
~]

4v ', ..'+v~ ..+.„~4V~ —,'(r;+r s)+ru
~

D(ss~(q'"')

q*-x+0+sr»
~

=exp g q,

'('+q )+0+-'
Egsr

+Vl
—

q +0+mr's

l(q'+q- )+0+4V" —, q; . r s, (4.36)

-'(ri+;—)+ , (4.3S)+-— V"—
2~p
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Since the sets over which the two integrations are
carried out are complements, the integrals may bc
combined into an integral over the whole space. Bearing
in mind that the variable of integration, x, may just
as well be replaced by x~, one obtains the result

two-dimensional grid in Q and apply a standard numeri-
cal integration technique. If we perform this last two-
fold integration by a Monte Carlo technique, however,
the sampling may be combined with that for the
6(p—1)-fold integrals. The procedure then is to generate
M samples Dr&&»,«, (»,Q&), t= 1, 2, ~ ~, M] and to form

x(x') =P(x')ra(x') J p*(x(x')d) 'x
M

ge(r» ~)=—Z ~(«"' «~"' Q~)1' '(Q)) (46&)

~ p*(xr
(
x'r)d& 'x~ (4 63)

=22(x')w(x'),

where the 6nal step makes use of the normalization
condition on p*(x~ x') t Eq. (4.52)j.

It can be seen from the definitions of p(x'(x) and
p*(x'(x) that there can be only one ergodic class since
the probability of the one step transition from any
vector, x, to a vector in the volume d~'x' about x' is
strictly greater than zero for all vectors, x', satisfying
E(x'))0. Equation (4.46) is thus satisfied for the p(x'

~
x)

deined above, and a procedure which generates a
Markov chain with this transition function is a valid
importance sampling scheme for the present problem.
The transition from a vector x of the chain to the next
vector x' can be made using p—1 normally distributed
random variables and one uniformly distributed
random variable. Let

X =X (4.66)

It can be seen that the probability of x" given x is
p~(x"

~
x) while the probability of x' given x is p(x'~ x).

C. Integration over the Position of the
Third Particle

Besides the 6(p—1)-fold. integration arising from the
approximation to the Wiener integral, it is also necessary
to perform the twofold integration over the position of
the third particle. This is the integration over (p(),8o)
in Eq. (4.18). Since a large number of Monte Carlo
samples are necessary for reasonable accuracy in the
Wiener integral approximation, it is impractical to
compute G,(r»,Q) and G.(r»,Q) at each point of a

~'"=V'(1/2p) 4+s(&' ~"+&~~)
i=1 2 ~ ~ p—1 (4.64)

where (;, i=1, 2, , p —1, are normally distributed
random VR11ables with mean 0 Rnd varlRnce $. If
8{x")&E(x),generate a random variable f' which is
uniformly distributed on the interval (0,1) and set

x'=x", if f&P(x")/E(x)
(4.65)=x, otherwise.

If P(x")&I'(x), set

where d stands for e or e, i. is defined by Eq. (4.40),
r&&» is generated from the Markov chain, q~&» is pro-
duced by the straightforward sampling scheme for
Wiener paths, and Q,= (po, 8o,0) is picked according to
a two-dimensional distribution

or
I'(Q)d'Q= I'.(po) I e(oo)ddt) g (4.68)

lim ge(r», M) =ge(r»)

with probability 1, where ge(r») represents either
g,(r») or g,(r») depending on the form of the integrand
1,(r(n) «(» Q)

Including the integration over Q in the Monte Carlo
scheme will increase the number of samples necessary
for a given accuracy since L(r(», «(», Q) will have an
increased variation on being taken as a function of Q
as well as of r&» and q&». The variation with respect
to Q turns out to be the dominant part of the variance
of the Monte Carlo scheme at moderate temperatures
with the distribut;ions of r&» and q|:» being fairly
sharply peaked about r~»=q&»=—0. This variance io
Q can be reduced somewhat by making use of the
latitude that exists in the choice of the distribution
I"(Q). Qualitatively, the variance with respect to Q will
be reduced if the global behavior of I'(Q) is similar to
that of 1.(r(», «(~),Q) as a function of Q. Since l. is also
a function of r("' and «(», computing time restrictions
indicate that it would probably not be worthwhile to
develop an elaborate importance sampling scheme in
the variable Q. The choice of I'(Q) will therefore be
restricted to distributions which can be generated
easily from uniform or normally distributed pseudo
random numbers.

In order to get an idea of the form of L{r(»,«(»,Q)
as a function of Q, one must consider g,(r») and g,(r»)
separately. For the function g,(r») the integrand is

J,(r(n) «(n) Q) —LD»(s {y))

X(D»(s (»)—1j, (4.71)

I'(Q)d'Q= 1.(Q.)1,(Q,)dQ.dQ„, (4.69)

in Cartesian coordinates. If Eq. (4.69) is used, a factor
of x' must be included in l. if the range of Q„ is —~
&Q„&0(). One will then have from the law of large
numbers that
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Q in the numerical computations to follow was

p (Q)d2Q= ((22.)»2p,)-1o-o '»v '

x((2-) '".)- ~"'- "de~e. , (4»)
where the standard deviations y, and y„were chosen
empirically to minimize the variance of g, (r12', M) for
a small value of M.

If one tries to take r("'=q(»—=0 in 1,(r(»,q(», Q),
the function vanishes. In fact this function vanishes
to order T ' in the Wigner-Kirkwood expansion, and it
is thus to be expected that the correction term g, (r12)
will be negligible except at low temperatures and for
small r». In order to find an scient sampling scheme
for g.(r»), advantage can be taken of several symmetries
of the integrand. The function g. can be written as the
sum of two integrals:

~ s a2g where
g (r12) g (r12)+g."'(r12) (4.76)

»G. 2. f13(~19 Q}Xf/3(r1&, Q} as a function of Q
for r12=1.10 and T=20'K.

while for g,(r12) the integrand is

1,(r(» q(u) Q) —
1
D12(s~(2))—D12(q(n))

+D22(s (»)—D22(q(»)). (4.72)

Since the distributions of r&» and q&» are peaked near
r&»= q&»=—0, the function

L,(O,O,Q) = [exp{—)j)lV(Q+-', r12)
—(pX2/22rp) V"(Q+ 2r12) )—1]Lexp{—p V(Q —2r12)

—(pX2/22r p) V"(Q—2r12) )—17 (4.73)

gives some idea of the variation of I., with respect to
Q. Equation (4.73) is just the second-order Wigner-
Kirkwood approximation to the classical cluster function

f12f22 (&
&(r12) -1)(s-v(r22) 1) (4 74)

so that the behavior of this classical function with

respect to Q will give some idea of the global structure
of l., as a function of Q.

Figure 2 shows a rough contour map of f12f22 for
T=20 K andr»=1. 1o, whereo isde6nedby Eq. (2.10).
The structure of this cluster function is too complex to
attempt to fit it in detail with a simple probability
distribution. It can be seen, however, that the structure
of'the function is centered about Q=O and that the
function becomes negligible at a distance of two or
three times o in the Q„direction and at a slightly larger
distance in the Q, direction. A reasonable sampling

distribution for such a function might be a two-dimen-

sional normal distribution with a standard deviation

on the order of o in the Q„direction and a standard
deviation in the Q, direction on the order of o+const
&(r». The distribution used for the integration over

1
g "'(r») = d'Q

W2(1,2)

x+{F12(r(&))LF12(s+(r))—F»(q(r))]1

Xr(1)=q(1)=0), (4.77)

g (2)(r12) =
W2(1,2)

X+{F12(r(r))1F23(s-(r)) F22(q(r))31

Xr(1)=q(1)=0), (4.78)

and where F», F12, and F22 are de6ned by Eqs. (4.13),
(4.14), and (4.15). Both g, (') and g, (') are functions of
the magnitude r» only so r» may be replaced by —r»
wherever it appears in g, (')(r12). Furthermore, Wiener
measure on r(r) is invariant to the replacement of
of r(r) by —r(r). If one makes the two changes of
variables r»~ —r12 and r(r) -+ r(r) in g, (—'), then

F»(r(r)) is unchanged due to the spherical symmetry
of V(r), while

and

Thus

F»(s-(r)) ~F»(s+(r))

F22(q(r)) ~ F12(q(r)) .

g, ' (r»)=ge ' (r»)

(4.79)

(4.80)

(4.81)

and g, (r») may be written as

g.(r12) =
8'2(1,2)

X~{F.(.())LF (;())-F (q()))l
Xr(1)=q(1)=0}. (4.82)

In this last form a more natural origin for the inte-
gration over Q is Q=2(—r12), so let the variable of
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integration be changed to

Q Q+sr12 ~

Then

where

g.(ass) = d'O'G. (r»,Q'),

F»(r(&))
G,(r», Q') =2E t F»(Q', s+(r))

Ws(1,2)

(4.83)

(4.84)

with the sampling in the Q integration. The principle
of the antithetic variates method is to generate several
correlated samples simultaneously, in such a way that
their sum has a considerably smaller variance than the
samples taken independently. In the present case it is
recognized that g, (rss) is small so that one tries to corre-
late the samples in such a way that their sum is near
zero.

From Eq. (4.85) it can be seen that the cylindrical
symmetry of G.(r»,Q) about the Q, axis requires that

—F»(Q', q(r))j lr(1),q(1)=0, (4 85) G.(r», Q) =—G.(r», l o,ea+s~, v q) (4.89)

and where

F (Q',q(~)) =e"p ) X

V1
—q(r)+Q' ~dr . (4.86)

pcs(Q 0) =s-P&(o) (4.87)

with respect to Q. This function is the limit of both of
the terms in the square brackets in Eq. (4.85) for
r(s) =q(r)—=0. For pq&0, Fss(Q, O) goes to zero rapidly.
The function has a maximum at p~~1.120 and ap-
proaches one asymptotically as (1+0'jpos) for po»0.
The integrand in Eq. (4.84) should thus be zero for
p@«g and approach zero again for p@)&0.as both terms
in the di8erence approach unity. A simple probability
distribution with this same qualitative behavior is the
X' distribution with e degrees of freedom for e&4.
For the Q integration in g.(r») then, a X distribution
with 12 degrees of freedom was used for pq and )q = cos8q
was chosen from a uniform distribution, —1&)@&1.
Thus we define

The prime on Q' will be dropped for the remainder of
the discussion of g, (r~s). In spherical coordinates the
cylindrical symmetry in q @ is not altered by the change
in origin provided the polar axis remains in the Q,
direction.

The integrand of g, (r~s) is the difference of two terms
depending on Q. This difference will be small if both
terms are small or nearly equal, so we consider the
behavior of

Thus the range of eg can be restricted to 0&8g&x,
(0&go&1) and the integrand taken as the sum of
G,(rss, Q) and G,(r», —Q). Another pairing of samples
can be made due to the fact that the probability of a
Wiener path q(r) is the same as the probability of
—q(r). Since successive path approximations q&» are
chosen independently, the samples for qt» and —q&»

may be combined.
From Eqs. (4.34), (4.35), (4.36), and (4.40) it is seen

that the integrand of the multiple integral approxi-
mation for G,(r»,Q) as given in Eq. (4.85) is

L (r"',q'"',Q) =2LDis(Q, s+'"')—D»(Q, q'»)], (4.90)

where —Ps (X
Ds.(Q,q'"')=exp Z I1- «,+Q1

6p '-s kgsr

t' X
+4I'I -'(q*+q )+Q 1+I'I q,+Q

1

kgsr i 4/sr j

+ l'";(q;+q; s)+Q . (4.91)
2mp

Then if r~&» is generated from the Markov chain,
q&&» is generated by the straightforward scheme for
Wiener paths, and Q~ is chosen from the distribution
I', (Q) de6ned by Eq. (4.88), but with $o restricted to
the range 0& (o&1, then with probability 1,

PcI',(Q)d'Q=
6~y, '

(4.88)
3f

g,(rss)= lim —Q A(r, &»,q, &»,Q,)1' (Q,), (4.92)~""3f~-~

The number of degrees of freedom and the value of y~
were chosen empirically during preliminary computa-
tions to minimize the variance of g.(r»,' M) for small M.

In initial calculations of g,(r»,' 3l) it was found that
g, (r~s) was indeed small compared to g, (r~s) but that
the variance of g,(r~s, M) was quite large. It was thus
necessary to apply a further variance reducing tech-
nique to the Monte Carlo sampling in the calculation
of g,. The technique used was the method of anti-
thetic variates described by Hammersly and Hands-
comb, " and although it applies to the Monte Carlo
sampling as a whole, it is best described in connection

where the antithetic variates sample

g(r(n) q(» Q)
is defined by

Q(r(» q(» Q)=sLL„(r(» q(» Q)
+I (r(» q(» —Q)+L, (r(» q(n) Q)

+I (r(» q(» Q)) (4 93)

This sum should be more nearly zero than its component
terms, since the portion of L, which is antisymmetric
in Q will cancel between terms 1 and 2 and between
terms 3 and 4 on the right side of Eq. (4.93), while
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V. NUMERICAL RESULTS

A. Result s and Accuracy Considerations

Using the methods developed in the preceding sec-

tions, g, (rqs, 20 000) and g,(rts, 20 000) were calculated
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2.5 ~

2.0"

of He' at 260'K amounts to only 0.7'Po of the total. It
will be seen that an error of this magnitude is negligible
compared to the Monte Carlo sampling error.

As an estimate of the Monte Carlo sampling error,
the sample standard deviations of the sample means,
g,(r», 20000) and g,(r», 20000), were computed. The
numerical results for g~(r», 20000) and the associated
error estimates are shown plotted against r~m/0 for
T=5, 10, 20, 30, 40, 50, 75, 100, and 273.18 K in Figs.

1.0"
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for temperatures T=S, 10, 20, 30, 40, 50, 75, 100, and
273.18'K, and for values of r~2 in the range 0.6&x»/0
&4.0. The third virial coefficient C(T) was computed
for all but the lowest temperature, 5 K, using Eq.
(2.8). A straightforward numerical integration was
performed over r» with g&(r») approximated by g,(r»,
20 000)+g,(r», 20 000) and with the values of Wm(r~2)

given in Ref. (1). The computations were performed
on the Illiac II computer located at the University of
Illinois. The details of the computation are summarized
in Appendix B. A summary of the results for g~(r»,'

20000)=g, (r~m, 20000)+g,(r~2, 20000) over the range
of temperature is shown in Fig. 3.

There are two sources of computational error which
cause g~(r», 20 000) and C(T) to differ from the correct
theoretical values of g~(x~2) and the third virial coeKcient
for the interaction potential of Eqs. (2.10) and (2.11).
These are the errors introduced by the p-fold integral
approximation to the Wiener integrals and the Monte
Carlo sampling error. The order p of the approximations
r&» and q&» to the Wiener paths r(t) and q(t) was
chosen for each temperature T so that pT&260~K.
Thus the accuracy of the multiple integral approxi-
mations at any temperature is at least equal to the
accuracy of the two-term Wigner-Kirkwood approxi-
mation t first two terms in Eq. (3.37)j at 260 K. As an
estimate of this accuracy, the third term in the Wigner-
Kirkwood approximation to the second virial coe%cient

-2.0

-5.0

~ ~

-4.0"
Fto. 12. X 'g~ and sampling error for T=273.18'K.

4—12, respectively. The length of the error bar associ.ated
with X 'g~(r», 20 000) is equal to twice the sum of the
sample standard deviations of ) 'g, (rqm', 20000) and
X 'g, (r», 20000).

Although the Monte Carlo sampling connected with
the Wiener integration and with the Riemann inte-
gration of G(r», Q) over the position Q of the third
particle is done as a single process, it is convenient to
consider the sampling error to be a sum of separate
contributions from these two sources. The sampling
error in the integration with respect to Q depends on
the variation of G(rtq, Q)i' '(Q) as a function of Q. Since
G(r», Q) contains functions of the form e &"&o+'&'"&

which have an increasing variation in Q as p increases,
it is to be expected that the sampling error due to the

Q integration will increase with decreasing temperature.
A factor of P also multiplies the exponent of the func-

tjonal integrand of the Wiener integration so that the
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fy2 at T=5 I due to the amount of computation time
involved in the Monte Carlo procedure for large values
of the order p of the Wiener integral approximation

=52 at T=5 K). Considering the a posteriori
information on e ath ccuracy of the two-term Wigner-
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The pair distribution function for liquid e ium,
however, has been measured by neutron diGraction for
several values of the density. '4 Figures 17 and 18 show
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FIG. 19.The pair distribution function as a func-
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Fig. 19.
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compensating errors in these two approximations, Figs.
j.7 and 18 indicate that both approximations are fairly
good for the pair distribution of liquid He4 at 5 K.

Using Eq. (2.8), the third virial coefficient C(T) was
evaluated for all temperatures at which g(ris) was
calculated except for 5 K. C(5 K) was not calculated
partly due to the large sampling errors in gi(r») at
5'K, but primarily due to the fact that values of gi(ris)
for r1~&2,8o. give a large contribution to the integral
for C(5'K) and no numerical results were obtained for
this range of r12. Figure 20 shows the numerical results
for C(T) compared to the values adopted by Keesom"
for the experimental third virial coeKcient and the
values calculated classically from the Lennard-Jones
(12-6) potential. "

Over almost Rll of the temperature range the com-
puted values fall consistently below the experimental
results. Since Kq. (2.8) does not depend on the neglect
of higher-order terms in the cluster expansion, the cause
of this diGerence is evidently the choice of the pairwise
additive Lennard-Jones (12-6) potential as the correct
three particle potential for helium. Some recent calcu-
lations by Sherwood, De Rocco, and Mason'6 indicate
that nonadditive three-body forces may have a sizeable
effect on the third virial coefficient of He4. The ways
in which gi(r») and C(T) differ from the experimental
values can be reconciled qualitatively. Figures 17 and 18
indicate that the calculated gi(r») is fairly consistently
larger than the experimental gi(ris) On pe.rforming the
integration over d2 in Eq. (2.8), this would lead to a
C(T) which wouM be smaller than its experimental
value, as is veri6ed in Fig. 20.

APPENDIX A: LEMMA FOR THE
PROOF OF EQ. (4.58)

I.emery:

p*(x'
I x)w(x) =pe(xr

I
x'r) w(x'r) . (4.58)

I'roof: From Kqs. (4.48) and (4.50) it follows that

{.-i)/s
p*(*'I*")w(*")=

I

—
I

(2~)i/sI —
I

I 2~)

y-1
&«xpL —p Z (*'—-'(x -i'+x~i"))'

——,'P Q (x r—x i'r)sj. (A1)
1

By the definition of x, xi =x~i, s=o, 1, ~ ~, p, so
Eq. (A1) becomes

(A {s-~)/s ( p l s/s

p*(*'I*") ( ")=I —
I

(2 )'"I —
I

&~i &2w)

has been shown to be computationally feasible in a
situation where the amount of computation involved
in integrating the original partial diGerential equa-
tion giving rise to the Wiener integral would be
prohibitive.

C. Condesion

The comparisons of Sec. V 3 point to two conclusions

regarding the physics of the He4 system. The 6rst is that
quantum mechanical calculations based on the cluster
expansion and assuming a pairwise additive Lennard-
Jones (12-6) potential can produce a reasonable quali-
tative 6t to the pair distribution function in liquid He'.
Secondly, the consistent deviation of the calculated
third virial coeScient from the experimental values over
the full temperature range indicates that the choice of
the latter potential for the three-body interaction in
He4 is not good enough to yield quantitative agreement
with experiment.

From the mathematical viewpoint, it has been shown

that the %iener integral may be a useful computational
tool. The upper bounds of Sec. III 3 indicate that the
expression of a quantity in terms of Vhener integrals
can yield qualitative and semiquantitative information
on the size and behavior of that quantity. Finally, the
numerical evaluation of a gener integral expression

"W. H. Keesom, Hdsg/s (Elsevier Publishing Co., Inc. ,
New York, 1942), Chap. 2.

'6 A. E. Sherwood, A. G. De Rocco, and E.A. Mason, J. Chem.
Ihys. 44, 2984 (&96').

y—1

&&expt:—p Z (x~*—s(x~~i+x~ -i'))

sp Z (x—~'' x~~i')'j (A—2)

Setting J=p—s, one 6nds that

(p) {s-I)/s ( p ) s/s

p'(x Ix'r)w(x' )= I

—
I

(2s.)'nI —
I

y-1 y-1 y-1
Xexp —p P xp+ p g x)x/+i+ p P xixs i'

l~1 l=l l~2

y-1 py i
—p g —,'(x)+)+xi i')' ——g (xi')s

l~1 2 l~0

+p Q xj'x/+i' —Q (xi')', (A3)
l~1 2 l~l

RIll making use of the fact thRt $0=8@=$0=Kg =Os
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this becomes

/p~
(y-))/2

/ p ~
y/?

p*(x )x' )u(x' )=( —
(

(2s)'/'( —
)

&2s i

XexpL —p p (x)') +p g x x; g'+p Q x x;+g

—p Z k(x)+~+x)-~')' —p Z x)'+ Z»x/-~j (A4)
5~1 j~1

where j =l+1. Equating the dummy subscripts and
combining the sums, one obtains

(p) (~i)/. ( p )./2
p*(x [x'r)w(x' )=

(

—
)

(2s)'/'~ —
)

&xi

XexpL —p g (x('——,'(x/+~+x) i'))'

and

D»(rq(y))
r&(» = r/(» with probability (B2).

D»(r~~(»)

D»(rg(»)
r&(»=rg 1&» with probability 1— (B3)

D12(rt 1)-

the coordinate variables of which are independent and
normally distributed with mean 0 and variance 1.

(2) Generate an M-step Markov chain (r, (»~t=i,
2, M} with stationary probability

D»(r (»)
dpi' y

Wg(1,2)

by first generating rg(», using the procedure described
by Eq. (4.64), and setting r, &»=r, &» if D»(r, (»)
)D»(r, ((»), while if D»(r, & ))(D»(r& ~(») set

(3) Generate M independent random vectors Q,

xg —x( y =p x xwx = (Q.,Q„,O) „&=1,2, , M according to the probability
F,(Q)d'Q.

(4) Form the average
which completes the proof.

APPENDIX 8: DETAILED COMPUTATIONAL
PROCEDURE FOR g, (r»M), g, (r», M),

AND C(T)

The step-by-step procedure for computing the ap-
proximation g, (rq2,

' M) to g,(r») is as follows:

(1) Generate M independent Wiener path approxi-
mations consisting of 3p-dimensional vectors q~&», f= 1,
2, , M drawn from a probability distribution dp, „
by Eq. (4.38), (10=q„=0,

e'- (1- /p) -(1/p)(1-~/p)-'"
e'= +4'

1—(~-1)/p - 1—(~-1)/p-

M

g.(r», M) =—Z L.(«"',(1,'», Q,)r;&(Q,). (B4)
M g-1

Equations (4.71), (4.35), (4.36), (2.9), and (4.75) are
pertinent to the above procedure.

The procedure for computing the approximation
g,(r»,' M) to g, (r(2) is the same as that for g.(r»,' M)
except that steps (3) and (4) are modi6ed.

(3') Generate M independent random vectors Q&
= (po, e(bO) &, 1=1, 2, ~ ~, M according to a probability
1'.(Q)d'Q

(4') Form the average

M

g.(r»,' M)=—g A(r/(», q&(», Q&)F (Q/). (B5)

i=i, 2, , p—1 (Bi)
Equations (4.93), (4.90), (4.91), and (4.88) are ad-

where the g; are three-dimensional random variables, ditionally needed for the computation.


