PHYSICAL REVIEW

VOLUME 171,

NUMBER 1 5§ JULY 1968

Three-Particle Effects in the Pair Distribution
Function for He* Gas*

HArry F. Jorpant
Depariment of Elecirical Engineering, University of Colorado, Boulder, Colorado

AND

Lrovp D. Fospick
Department of Computer Science, University of Illinois, Urbana, Illinois
(Received 6 November 1967)

The diagonal elements of the three-particle density matrix for He! have been formulated in terms of
Wiener functional integrals in order to compute both that part of the pair distribution function linear in
the density and the third virial coefficient. The three-particle interaction energy was taken to be a sum of
Lennard-Jones (12-6) potentials between pairs of particles. Evaluation of the Wiener integrals was carried
out by a Monte Carlo sampling technique to yield the pair distribution function and third virial coefficient
for temperatures from 273 to 5°K. Comparison of the linear portion of the density expansion of the pair
distribution function gave qualitative agreement with experimental values for the pair distribution function
in liquid He* measured by neutron diffraction. The values of the third virial coefficient calculated by this
method are consistently smaller than the experimental values and consistently larger than the classical
values of this quantity over the given temperature range.

I. INTRODUCTION

HREE-BODY computations in quantumstatistics
are difficult and consequently rare, but they are
important for an understanding of the equation of state
of quantum-mechanical systems. Here we describe some
three-particle computations on He?; in particular, the
three-particle term in the density expansion for the
pair distribution function and the third virial coefficient.
These computations cover the temperature range 5 to
273°K. At the low end of this range we were able to
compare our estimate of the pair distribution function
with the measurements of Henshaw on liquid He?; the
good agreement is probably the most interesting result
of these computations. We feel that this result is par-
ticularly interesting since it is usually not supposed that
the two leading terms in the density expansion of the
pair distribution function can satisfactorily describe
the situation in a liquid. On the other hand, our results
are not in good agreement with the experimental values
of the third virial coefficient; the reason for this lack
of agreement is probably connected with our use of the
Lennard-Jones (12-6) potential.

In these computations the Wiener integral formula-
tion has been used. We have described this method
already! in its application to two-particle computations
on He*. Another possible approach to these computa-
tions is the binary collision expansion of Yang and Lee?;
Larsen® and Pais and Uhlenbeck? have made calcula-
tions of the third virial coefficient in this way. Still
another approach is to use the Wigner-Kirkwood ex-
pansion. The advantages which the Weiner integral
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approach appears to have are: Its mathematical
properties are well understood; it provides a useful
framework for making qualitative and semiquantitative
estimates; and it is relatively simple from a computa-
tional viewpoint. Of particular importance is the fact
that it is a completely trivial matter, that is, it requires
no change in program logic, to increase the accuracy of
a computation; the only requirement is a greater
expenditure of computation time.

II. NOTATIONS AND DEFINITIONS

The spatial coordinates of the ith particle will be
denoted by 1 or r;, and the distance between a pair of
particles, ¢ and 7, by 7;;. Reciprocal temperature g is

B=1/kT 2.1)
and the thermal wavelength X is
A= (h*B/2wm) /2, (2.2)

where m is the particle mass. The diagonal elements of
the density matrix are

WN(I)Z;' : ',N)=<1)2)' * 'yN]e—ﬁHN[ 1)2" ) ':N>)

where Hy is the Hamiltonian for the N-particle system
and the normalization is chosen so that the diagonal
element is unity when the potential energy is identically
Zero.

The pair distribution function g(r:2) is defined as the
relative probability of finding particle 1 within the
volume element d°1 at 1 and, simultaneously, particle
2 within volume element d32 at 2. Normalization has
been chosen to satisfy

(2.3)

(24)

This function can be expressed® as a power series in the

glrie) — 1, as rpp—o.

& J. de Boer, Rept. Progr. Phys. 12, 305 (1949).
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density 7, namely

g(m)=wz<1,2>[1+§ W], (25

where the coefficient of the term linear in the density is
)= W:0.2)7 [ DVa0,23) - WA 2W A1)

—W(1,2)W2(2,3)+W2(1,2)]d%3.

It is the computation of this quantity which is the
central part of the computations described here.
The virial expansion for the pressure® P is

PBV, B(T) C(T)
S
No Vo Vet

(2.6)

" @7

where N, is Avogadro’s number and ¥V, the molar
volume. The third virial coefficient C(T') is given by

(1) =%No’-{[ f Ws(1,2)— 1)d2]2
- f gl(m)Wz(l,Z)dZ}. (2.8)

The interaction between particles  and j is assumed
to be described by the Lennard-Jones (12-6) potential
with the de Boer-Michels parameters? for He*:

oo+ (2)-(2)]

k=14.04X10""% erg, ¢=2.56X10"8 cm.

(2.9

The interaction between three particles is assumed to
be described by a sum of these pair potentials:

Us(1,2,3)=V(r12)+V(ris)+V(rss).

Although the details of the computation depend on
these assumptions, the main ideas do not. It would,
for instance, be possible to carry through these compu-
tations with an interaction which is not pairwise
additive.

(2.10)

III. WIENER INTEGRAL FORMULATION OF
THE DENSITY MATRIX

A. Expression of Density Matrix Elements in
Terms of Wiener Integrals

Since we have discussed the main formulas else-
where,!:® our account here will be brief. Let F[x(r) ] be a
functional of the continuous function r(r), with r(0)=0,

®K. Huang, Statistical Mechanics (John Wiley & Sons, Inc.,
New York, 1963), Chap. 14, Secs. 14.1 and 14.2.

7 J. de Boer and A. Michels, Physica 6, 409 (1939).

8 L. D. Fosdick, J. Math. Phys. 3, 1251 (1962).
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then the conditional Wiener integral of this functional

is denoted by
E{F[x()]|x(B)=R},

the condition on the Wiener integral being that r(8)=R.
For the present we regard r(r) and R as vectors with an
arbitrary number of components.

Let the Hamiltonian for an N-particle system be

N
Hy=——3 V24+Ux[R),
m =1

3.1

then the general density matrix element can be ex-
pressed as a conditional Wiener integral of the functional

A
2 —r()+R

+7(R'— R))dr} , (32)

Pt 1o | 5 | 1 s

namely
(R|e=##%|R’)=exp{— (x/\) (R'—R)?}
XE{F[x(r)]|x(1)=0}. (3.3)

This relationship holds only for Boltzmann matrix
elements. To take the symmetry requirements into
proper account, these Boltzmann matrix elements must
be combined in an appropriate way.

A useful intuitive picture of the Wiener integral is
obtained by thinking of an imaginary motion of a system
of NV particles over a unit “time” interval, 0<7<1. At
time 7=0 the coordinates of the particles are given by
R and at time 7=1 by R’. The quantity (R’—R)? is
the sum of the squares of the distances between the
initial and final positions of each particle, and the
Wiener integral in Eq. (3.3) is the average, over all
possible paths of the motion, of the Boltzmann factor,
¢~fUN), with the potential energy replaced by (Uy), its
average over the path. The paths are weighted by
Wiener measure which is related to the average over
the path of the total kinetic energy of the system.

It should be noted that (27)~'/2Ar(7) is a measure of
the deviation of the motion from the shortest straight
line path from R to R/, and as the classical limit is
obtained by letting A — 0, the deviation vanishes in this
limit. The off-diagonal matrix elements vanish in the
classical limit since

1)‘1_13‘); exp{—(r/A)(R'—R)?}=0, (R’#R). (34)

The diagonal element approaches the Boltzmann factor
lin(}(R l e“ﬂHNI R) = e_ﬂUN(R) , (3.5)

since
E{C|r(1)=0}=C (3.6)

when C is a constant with respect to the Wiener
integration.
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B. Upper Bounds on Off-Diagonal
Matrix Elements

Both diagonal and off-diagonal Boltzmann matrix
elements are involved in the calculation of gi(r12) for
a Bose or Fermi system. For example, in the evaluation
of the three-particle Bose or Fermi matrix element

<112:3 l e—ﬂHal 1;273>:i: ’

the sign denoting Bose (4) or Fermi (—), two types
of off-diagonal Boltzmann matrix elements arise;
specifically,
(17213 I ¢PHs l 17273):!:
=(1,2,3|e#13|1,2,3)2=(2,1,3| #H3[1,2,3)

£(3,2,1| 73] 1,2,3)=(1,3,2[ ¢#H3[1,2,3)

+(23,1|e5(1,2.3)+(3,1,2[e#3[1,2,3),  (3.7)
where the matrix elements on the right are Boltzmann
matrix elements. Expressing the two types of Boltzmann
off-diagonal elements in terms of Wiener integrals, we
have
(2,1,3]e#5]1,.2,3)

=exp{— (2r/N)(1-2)*} E{F:|r(1)=0} (3.8)

and
(233:1 [ ¢PHs I 1’2)3>= exp{— (7"/)\2)

X[2-1)*+(3-2)*+(1-3)" I E(F[r(1)=0}, (3.9)

where

1
F1=exp{—ﬁ Us(

0

(2) 1/2r(7)+ (2;1>3)

+T[(1',2,3)—(2,1,3)])drl (3.10)

and

1 A
F2=exp[—6/ U3<
0 2r

+7[(1,2,3)— (2,3,1)])031} . (3.11)

1/zr(7)+(2’3’1)

The factors multiplying the Wiener integrals in
these expressions yield a significant estimate of the
size and temperature dependence of these off-diagonal
elements for intermolecular potentials for which the
particles are characterized by strong repulsive cores.
Suppose the three-body potential satisfies

Us(ry,ra,r5) =, if 7;<0 for any 4,7.

The Wiener integrals in Egs. (3.8) and (3.9) must
vanish if the initial distance between any pair of
particles is less than o. Hence, wherever the matrix
element is nonzero, the exponential factors satisfy

2

exp{—%(l—ZV} <exp{—-2—7>r\-:—} 3.12)
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for the two-particle exchange, and

exp —%[(2—1)2+(3—2>2+(1—3>=3}

3ra?
<exp{ —-—)\-2—']’ (3.13)
for the three-particle exchange.

For He?, approximating the repulsive core diameter
by the parameter

e=2.56X10"% cm

of the Lennard-Jones (12-6) potential, one finds that
the larger of the two multiplying factors—that for the
two-particle exchange—is approximately e~%¢7. Thus
at 5°K one expects the off-diagonal elements to be
smaller than the diagonal elements by a factor of at
least 0.05. The argument for the two-particle exchange
term in (1,2|¢#H#2|1,2), is the same as the argument
for the similar three-particle term in Eq. (3.7) and yields
the same result. Due to restrictions of computing time,
the numerical scheme developed below for the calcu-
lation of the diagonal matrix element is limited in
accuracy at low temperatures. In all cases, the above
bound on the exchange terms shows them to be negli-
gible compared to the numerical uncertainty of the
direct term. Therefore, in subsequent sections the ex-
change terms will be discarded, and the diagonal
Boltzmann matrix element will be used as if it were the
same as the diagonal element for a Bose or Fermi
system.

The above argument was first used® in connection
with the two-particle exchange term in the second virial
coefficient. The suppression of this two-particle ex-
change term with increasing temperature is actually
somewhat stronger than is indicated above. This is
verified both by numerical calculations® and by
upper and lower bounds obtained analytically by Lieb,
who shows that at high temperatures the term is asymp-
totically proportional to

exp[—r(e/N)?*+0((a/N)**)].

Qualitatively, the increase in the constant multiplying
—X\~2 in the exponent comes about because the Wiener
integral in Eq. (3.3), as well as the multiplying factor,
decreases exponentially with increasing temperature.
This is due to the fact that the set of paths for which the
“motion” of the system from time =0 to time r=1
brings the two exchanged particles no closer than ¢ from
each other for any 7 is assigned exponentially smaller
Wiener measure as ' —,

(3.14)

9S. Y. Larsen, J. E. Kilpatrick, E. H. Lieb, and H. F. Jordan,
Phys. Rev. 140, 129 (1965?

1S, Y. Larsen K. Witte, and J. E. Kilpatrick, J. Chem.
Phys. 44 213 (1966).

11 E, H. Lieb, J. Math. Phys. 8, 43 (1967).
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C. Approximation of the Diagonal Matrix Element
by a Multiple Riemann Integral

The calculation of the diagonal matrix elements for
Boltzmann statistics is now reduced to the evaluation
of a Wiener integral. For the diagonal element of the
three-particle density matrix, Eq. (2.3) becomes

1(7)

1
ws1,2,3)=E {expl:—ﬁ 0 U 3((21r)”2

+ (1,2,3))d‘r:| ()= 0} . (3.15)

Except in very special cases, notably a harmonic oscil-
lator potential, it is necessary to use an approximation
scheme to evaluate this Wiener integral. Such algo-
rithms have been proposed and applied by several
authors.1:8:12-15

The simplest algorithm uses the approximation

E(FLe()]|x(8)=R)
—+0 -0
z/ / FLx(r; $)Jdup, (3.16)

which comes directly from the definition of the Wiener
integral, namely

E{F[x(r)]|2(8)=R}

=lim

P—>0

+0 o0
/ FLx(r; p)1dup, (317)

—o0 —o0

where each component of r(7; p) is a piecewise straight

line with changes in slope at 74, 73, «*+, 751, and
t(r;; p)=r(r)=r;, (all7) (3.18)
70=0, 7,=8, (3.19)

and the measure du, is the Gaussian

= (2mB)*N12 exp(fﬁ)[ﬁl Qr(rip1—7i)) 3N/

=0
X exp(

where dr; represents a volume element in the 3N-
dimensional coordinate space of an N-particle system.

Since p is large, the Monte Carlo method is used to
evaluate the integral, multiplicity p—1, on the right of

M):I I dri, (3.20)

(Tz+1‘"' Tz)

12R. H. Cameron, Duke Math. J. 18, 111 (1951).

BT, D. Fosdick, Math. Comp. 19, 235 (1965).

4T, M. Gel'fand and N. N. Chentsov Zh. Eksperim. i Teor.
Fiz. 3)1 1106 (1956) [English transl.: Soviet Phys. —JETP 4,945

(195
(1;'; 17\) G. Konheim and W. L. Miranker, Math. Ccmp. 21, 49
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Eq. (3.16). This simple algorithm is adequate for one
or two particles under the influence of a computationally
simple potential and has been applied successfully to
such problems.!:3:% However, as the evaluation of the
integrand of the multiple integral becomes more com-
plex, the computing time requirements become very
large. For this reason, methods have been pro-
posed!2:13:15 for reducing the multiplicity of the integral
to be evaluated. The present calculation makes use of
a slight modification of the procedure developed by
Fosdick.1®

The principal idea of the technique used here for
reducing the multiplicity is to make use of the fact that
it is possible to express the Wiener integral in Eq.
(3.15) as a Riemann integral of a product of p Wiener
integrals involving a smaller value of 8 (higher tempera-
ture), for which good approximations can be obtained.
This possibility rests on two important properties of
the Wiener integral. The first property is a separability
property: Let the functional F[r(r)] be expressible as
a product

FIx) =11 £x()], (3.21)
where
1ia<7<7; (10=0, 7,=1) (3.22)
in each factor of this product, then
E{F[x(r)]|r(1)=0}
[ [n Al
- i—tia}dup, (3.23)

where du, is defined in Eq. (3.20), and for each Wiener
integral on the right of Eq. (3.23) the time interval is
(‘r.'_l,'l',') with

l'(‘r.'_l) =0. (324)

It is important to recognize that Eq. (3.23) is an
equality; it is not an approximation. The functional we
are concerned with can be factored, with

e f Us(

((r)+ri)

(2m)v2

+(1,2,3) )d‘r]; (3.25)

hence it is possible for us to use Eq. (3.23). A formal
derivation of this separability property follows easily
from Eq. (3.17). The second property of the Wiener
integral, useful to us now, is the following: Let the
Wiener integral be defined for a particular time interval
(0,8), and consider a change in time scale, namely
'=pr. (3.26)

The new time interval is (0,8'), and the Weiner inte-
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gration (0,8) is related to the Wiener integral on (0,8")

by

E{F[x(r)]|x(8)=R}
=E{F[(1/v/p)x(r)][x(8)=/pR}. (3.27)

Again, this property follows easily from Eq. (3.17).

There is, actually, an obvious third property which is

used here; namely, that du, is invariant to a change of

origin of the space coordinate or of the time coordinate.
Now let us suppose that 7,—7;_; is a constant,

(3.28)

Then, making use of the above properties, we find for
our functional

E{F[x(r)]|r(1)=0}

Ti—Ti-1= l/p.

00 -+00 P
-[ - [ a1 LI =0), 629

where now each Wiener integral on the right is defined
on the time interval (0,1) and

N oyr()
3 —”“(—"‘+ Ii1
2m)V2\/p

+r(r.~—r,-_1)))]. (3.30)

Notice that in the last equation we have the factors
B/p and N/A/p; hence each Wiener integral in the
product on the right of Eq. (3.29) can be regarded as a
Wiener integral like that in Eq. (3.15) except that now
the temperature is higher by a factor p:

T'=pT.

hi[r(r)]=exp|:—gfol U

(3.31)

We make use of this result by finding a high-temperature
approximation for the Wiener integral and using Eq.
(3.29) to extend its range of validity.

The high-temperature approximation to be used is the
well-known Wigner-Kirkwood expansion!®:!? in powers
of B and A2 The most useful form of this expansion for
the following work will be the expansion for the quantity

1 A
G=lnE{exp[—ﬁ / Ua((z )llzr(r)+r
0 T

+7r(s— l‘))d'r]

The expansion is carried out by introducing a parameter
7 multiplying the path, r(r), expanding G as a Taylor’s

r(1)=0] . (3.32)

16 J, O. Hirschfelder, C. F. Curtis, and R. B. Bird, Molecular
Theory of Gases and Liquids (John Wiley & Sons, Inc., New York,
1954); Chap. 6.

17T, Kihara, Y. Midzuno, and T. Shizume, J. Phys. Soc.
Japan 10, (1955).
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series in 7 about =0, and finally setting y=1 in the
resulting series. Upon exchanging the order of Wiener
integration and integration with respect to 7, the
Wiener integrals have integrands which are products of
the path variable r(r) and can be performed analyti-
cally.!® The result to order 72 is

G~—p / Us(e+7(r—s))dr

ﬁ)\z 1
— fo Ve r(s—n))r(1—r)dr.  (3.33)

If Eq. (3.33) is used for the Wiener integrals on the
right side of Eq. (3.29), one obtains the approximation

E{F[x(r)]|x(1)=0}

~[ [ dusFTe(r; P)ICs, (3.3)

where

» Bz 1 , A
Cp=g expl:-z}quz/; \% Us((zw)llz[l'.;_l-l"T(ti—l'i...l)]

+ (1,2,3))1(1— T)dT] . (3.35)

If, for each =1, 2, - - -, p, the exponential in Eq. (3.35)
is replaced by the first two terms in its power series
expansion, it is seen that to order p~2,

P 5)\2 1 \ )\
Cp—g [1_.4#?2 /o v Ua((27r)1/2[n_1+7(n_ ri-1)]

+(1,2,3))T(1—T)dr]. (3.36)

Equation (3.34) with Eq. (3.36) for C, is precisely
the formula obtained by Fosdick,'® who shows that if
U is sufficiently regular, the formula is correct to order
772 In the present application, where

T123= % Vi)

fe=j=]

with V(r) a (12-6) Lennard-Jones potential, the regu-
larity conditions are not satisfied due to the singularity
of V(r) at r=0. It has been found from calculations of
the two-particle density matrix elements that the use
of Eq. (3.35) forC, gives better results for small p
than are obtained using Eq. (3.36) because at the singu-
larities of U3, Eq. (3.35) is bounded in absolute value
while Eq. (3.36) is not. For this reason the exponential
form for C, will be used in the following calculations.

18 T, M. Gel’fand and A. M. Yaglom, J. Math. Phys. 1, 48 (1960).
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The Wigner-Kirkwood expansion can be carried out
in the above manner to obtain approximations which are
correct to order p~™ for any m under the appropriate
regularity conditions on U. However, the increasing
complexity of the C, obtained in this way causes an
increase in computing time which must be balanced
against the decrease obtained by using a smaller value
of p in Eq. (3.34). The special case p=1, which is
equivalent to expanding the logarithm of the diagonal
matrix element directly, is simplified by the fact that
the 7 integrals may be done immediately. The result
of the expansion to order 7% in this case is

iz fexp] 5 [ 1 Ua(@g”z[r(r)nta,z,su)

Xdr:l
2)2 A4

B
+vU(123) ]+
A LLCCR i poney

BA?
r(l)= 0]2—BU3(1,2,3)——V2U3(1,2,3)
247

VaUx(1,2,3). (3.37)

IV. EVALUATION OF g;(r12)
A. Multiple Integral Approximation for g;(r;2)

The complexity of the three-particle functions enter-
ing into the calculation of gi(r12) can be reduced some-
what by consideration of the symmetries of the problem.
Since there is no fixed external field, the density matrix
must depend only on the relative positions of the
particles, and hence the first simplification should be to
separate out the c.m. motion. Define the usual c.m. and
relative coordinates for a system of three particles
(Fig. 1) by

Teem, = %(1+2+3) )

1'12=2—1 N
Q=3-3@+1).

The Jacobian of this transformation is unity, and
furthermore

(4.1)

o3 h?
T VA= (Ten VTS ()
m = m

so that the coordinates ro.m., 112, and Q behave as inde-
pendent particles of masses 3m, 3m, and m, respectively.

Taking Uj to be the sum of pair interactions, as in
Eq. (2.10), and noting that r;3=3—1=Q+3r; and
rss=3—2=0Q—1r;,, it is seen that W3(1,2,3) can be
separated into the product of a c.m. factor which is
independent of Us; and a factor containing only the
relative coordinates, ri2 and Q:

W3(1’2:3) = <1a2ysl e—-ﬂllzl 1’273>
= (l'c.m. [ ¢PKom. l fe.m.xl’m,Q l ¢ PHrel l r1210> ’ (4'3)

where

Ko, =—#2V% 1n./2(3m) (44)
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1
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2

Fic. 1. Center-of-mass and relative coordinates for three particles.

X

is the kinetic energy of the c.m. motion and

h2V122 h2VQ2
Hia=— + Us(r12,Q)
2(m/2) 2(2m/3)

is the Hamiltonian operator for the relative coordinates.
Since we associate a different mass with each particle
coordinate, it is necessary to distinguish between the
thermal wavelengths associated with these coordinates;
we have

(4.5)

)\c.m.=)\/\/3, )\12=)\\/2—, >\Q=)\\/%. (46)

The normalization of the density matrix elements
yields
<rc.m. | e FKom. l l'c.m.>= 1

@)

so that, using Eq. (3.15), the diagonal density matrix
element can be expressed in terms of a Wiener integral
over paths in the six-dimensional relative coordinate
space of r;2 and Q:

Ws(1,2,3)=E[exp|:-ﬁ / Us(e () a(0); rm,Q)dr]
0

><r<1>=q<1>=o] . 48)
where

Us(r(7),q(7); 112,Q) = V((\/+/m)x(7)+110)
+VLO/24/7)(VBq(7)+1(r)+Q+3r15]
+VLO/2v/m)(39(7)— (7)) +Q—3r2]  (4.9)
and V(r) is given by Eq. (2.9).

The c.m. motion can also be eliminated from the
two-particle density matrix elements occurring in the
expression for gi(r12), Eq. (2.6). A typical two-particle
diagonal matrix element is

Wa(13)=E {exp[—ﬁ /0 l V(\%‘l(f)'i'o'i*%l‘n)dr]

Xq(1)=0} . (4.10)



134 H.

One can thus write

gi(ri2)=W(1,2)7

X f BQLE(Frus(x(r),(r)) [r(1) = (1) =0}

(4.11)
— E{F15(x(r))F13(q(7)) [r(1) =q(1) =0}

= E{F1u(x(r))Fas(q()) [r(1)=q(1)=0}
+E{F(r(7))|r(1)=0}],

where

F1a3(x(7),q(7))
= EXP[—B / U3(I(T),(1(T); l'12,Q)dT] y (4.12)

Fm(r(-r))=exp|:—ﬁ /o 1 V(\—;;r—r(r)+rm)dr: , (4.13)
F1(q(7))

=exp[—ﬁ /ﬂ1 V(\—;;q(f)-l'Q‘i—%nz)qu , (4.14)
and )
Fas(q(7))

=exp[—-B fo l V(\%q(r)+0—%ru)dr:|. @.15)

Since the expectation value is a linear operator, the
quantity gi(r12) can then be written in terms of a single
Wiener integral:

f10r) = Wa(1,2)-1 / PQE(Fraale(r),4(r))

— F1a(x(7))F15(q(7)) — F12(x(7)) F23(q(7))

+Fu((r) [r(1)=q(1)=0}. (4.16)

Now let

Glr12,Q) =Wa(1,2)~[W3(1,2,3)— Wa(1,2) Wa(L,3)
—W(L2W323)+W(12)] (4.17)

be the Q integrand of gi(r12). Noting that the interaction
potentials depend only upon the magnitude of the
separations, ri, ris, and rs; between the particles, it
can be seen that if rjs is taken to lie along the axis of
polar coordinates, (pg,00,04q), for Q, then G(r1,Q) is
independent of the direction of the polar axis and of
¢q. Thus one can write

gi(r2)=2m / sinfqdfo / pa*dpG(r1z,pq,00) . (4.18)
(1] 0

The integral over the position of the third particle
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which appears in g(712) can thus be reduced to a twofold
integral. :

Equations (4.9) and (4.12)-(4.15) show that Fyss
can be written as a product:

Fo5(x(7),q(7)) = F1a(x (7)) F1s(3V3q(r) +-31x(7))

X Fas(3V3q(7)—3x(7)). (4.19)
It should be noted that if r(7) and q(+) are conditional
Wiener paths with r(0)=q(0)=r(1)=q(1)=0 and
variance [7(1—7)]'/2, then the linear combinations

s4(r)=53q(r)=x31(r) (4.20)
are conditional Wiener paths with the same distribu-

tions as r(7) and q(7).
We now define the quantity

gc(fu):/dsQ Go(712,Q), (4.21)

where

Go(r12,Q) = W2(1,2) " E{ F195(x(7),q(7))
—F15(x(7))F15(84(7)) — F12(x(7)) F23(s (7))
+Fi(r(r)) (1) =q(1)=0}. (4.22)

Because of an oversight, the quantity g,(r:2) rather than
gi(r12) was originally calculated. The difference between
these two quantities arises because, although the dis-
tributions of the arguments of Fy5 and Fa3 in Eq. (4.22)
are the same as the distributions of the arguments of
these functions in Eq. (4.16), the use of a linear combi-
nation of q(7) and r(7) as the argument of Fy3 in Eq.
(4.22) introduces a spurious correlation between

Fi(s4(7))

and the functional F2(r(7)) multiplying it and similarly
for the product F12Fs3. The two factors in these products
should be uncorrelated since they arise from the product
of two independent Wiener integrals. The function
gi(r12) can be written as the sum of g.(r12) and a term
which corrects for the unwanted correlation

gi(r12) = go(r12)+ go(r12) (4.23)

where

ge(712)=/d80 Ge("m,Q)
and
Go(r12,Q) =W1(1,2) " E{F1o(x(7))[F1s(s+ (7)) — F15(q(7))
+Fa3(s(7))— Fas(q(r))]| x(1)=q(1)=0} . (4.24)

The numerical calculation will thus involve separate
evaluations of the terms g.(r12) and g.(r12).

Using Eq. (4.19), the quantity G.(r12,Q) can be
written in the form
Go(r12,Q) =W(1,2) 1 E{F12(x(7))[F1a(s4())—1]

X[Fa(s—(r)—1]|x(1)=q(1)=0}. (4.25)

The results of Sec. III C may now be used in order to
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express G,(r12,Q) and Ge(712,Q) in terms of multiple
Riemann integrals over a 6p-dimensional space. Let
r(r; p) be the broken straight-line path defined in

B » [A? 1 A
Dile(r; £))=Fule(r; $)) exp| — 3 [ V”(—~En—1+r(rs—r.-—l)J+rm)r(1—r)dr],

L =1 2mp?

Dyy(q(r; p))=F1s(q(7; p)) exp| —

L i=127p?
- » (A2
Das(q(7; p))=F25(q(7; p)) exp| — 22
| =127p?
where
V'(@)=V2V(r). (4.29)

The approximations for G, and G, are then

Go(r12,Q)=2W,(1,2)~1

—c0

—+00 0
.o Dy5(x(7; Dh; T; -1
X L, / (t(r; D) Drs(sa(r; p))—1]

X[D2a(s—(7; $))—11dprs8uer (4.30)
and

Go(r12,Q)2W5(1,2)~1

x]_: /_: Dua(x(7; p))

X[D1a(s+(7; $))—Dis(a(7; p))
+Das(s—(7; $))—Das(a(7; $))1durspter, (4.31)
where

Guny= (201X /p) o7

2 bbb 32
XeXp[-EIW]E i (4.32)

with b=r or gq.

From the discussion in Sec. IIT C of the order of
accuracy of Eq. (3.34) as an approximation for the
Wiener integral, it is seen that the above approxi-
mations for G, and G, cannot be expected to be correct
to more than order p~2. The order of accuracy may be
less due to the singularity of V(r). In view of this fact,
the integrals over 7 in Eq. (4.29) may be replaced by
their Simpson’s rule approximations without decreasing
the order of accuracy of these formulas. Let r® and
q® be the 3p-dimensional vectors (ry,rs,---,r,) and
(41,92, - -,q5), respectively, and let s, be an obvious
extension of Eq. (4.20). Recalling that ry=gqo=r,
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Sec. IIT A with breakpoints at r;, 2=0, 1, ---, $ and
similarly for q(r; p) and let s (r; p) be the obvious
extension of Eq. (4.20). Define the functions

(4.26)

™

f il /0 1 V”(LEQi~1+T(‘li_Qi—l>]+Q+%!'12)T(1—T)dr], 4.27)

T

/o l V"(:/)\;[(Ii—l-}-f(qa"m—l)]-f-(!—%ru)r(l—T)dr:l, (4.28)

=q,=0, then
Gc("lZ;Q) = W2(l:2)_~1

0 00

X/ e / D12(I'(p))[Dls(S+(”))—1]
X[Das(s-®)—1]durpduer (4.33)
and
Go(r12,Q)=W(1,2)7*
X/ N / Dn(r(p))[Dw(s{_(p))_D13(q(p))

+D23(S_ (p)) - D23(q (p))]dﬂrpdﬂqp ) (4-34)

where
D12(l‘ (p).)
—B » A
=exp [—6—-; EI I:V(:/—;l'i_.l"{-l'm)

A A
+4V<\/7r% (ri+ri—1)+rlz)+ V(:/;n—l-nz)

+-2%;V’ ’ (:;;%(Ii'l-n—l)'f‘m):” , (4.35)

D{ég}(q(m)

-8B » A
=exp { -67 El [V(Eq 1t Q:i:%l'm)
N :

\/r% (4:+9:-1)+0+ %!‘12)

o
A
+ V(\—/;qu-Q:i:%nz)

A2 A
+—_V"(—“‘%(qi+qi—1)+Qi%rn):“ » (4.36)
2mp T
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where the plus sign in the last equation corresponds to
D3 and the minus sign to Das.

B. Monte Carlo Evaluation of the Multiple Integrals

It has been indicated above that the 6(p—1)-fold
integrals appearing in Egs. (4.33) and (4.34) can be
evaluated by a Monte Carlo procedure. The quantities
dprpand dugp have the properties of probability densities
on 3(p—1)-dimensional spaces since the integral of
either of these quantities over any 3(p—1)-dimensional
Borel set is non-negative and the integral over the whole
space is unity. The simplest Monte Carlo scheme for
evaluating the multiple integrals is to choose a sequence
of independent 6p-dimensional vectors (r,®,q;®),
I =q,,=0, I=1, 2, - -+, M, with probability du,,du,y,
evaluate the integrands of G, and G, for each vector,
and average over the set of M vectors. If one lets
I.(x® q@®) and I(x®,q®) represent the integrands of
G.and G,, respectively, then by the law of large numbers

1 &
im — () q,(»)
Jim o, El-’c(n )

=/ / I(t®,q®)duypdpigp=Ge, (4.37)

with probability 1, and similarly for G..

Vectors r® with distribution du,, can be generated
from 3(p— 1)-independent, normally distributed random
variables by means of an interpolation formula.!® The
end-point conditions require that ro=r,=0, and the
other 3(p—1) coordinates can be generated by the
equation

_mall=i/p) _[u/p)(l-i/p)
T1-G-1)/p L1-G-1)/p

for 1=1, 2, ---, p—1, where &; is a three-dimensional
random variable, the coordinate variables of which are
normally distributed with mean 0 and variance 1.
The vectors q;” can be generated by the same pro-
cedure. This straightforward Monte Carlo scheme has
been used! to compute the two-particle density matrix
element, Wy(1,2).

The three-particle functions G. and G, are well
adapted to a more sophisticated Monte Carlo procedure
which should have a smaller variance than the straight-
forward scheme, thereby reducing the number of
samples necessary for a given accuracy. This procedure
is the importance sampling technique first introduced
by Metropolis e al.?® for evaluating averages over the
Boltzmann distribution. The following discussion is,
to some extent, an extension to a continuous sample

]m, (4.38)

8P, Levy, Memorial des Sciences Mathematiques (Gauthier
Villars, Paris, 1954), Fascicule 126.

20 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.
Teller, and E.yTeller, J. Chem. Phys. 21, 1087 (1953).
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space of the description of this technique given by

Hammersly and Handscomb.?*
Let G, and G, both be typified by

Gd(’l%Q):/ T / I(r(p)’q(p))dﬂrﬁdﬂqpy (4'39)

where

12 r(®
I(x®,q®)=— L (r@® q®), (4.40)
Wy(1,2)
and let
Dys(x®)
Pa®)=—o, (4.41)
W2(1y2)

This factor, which appears in the integrands of both
G. and G., in the basis for the importance sampling
procedure. It is seen from the definition, Eq. (4.35), of
Dyo(r®) that this quantity is non-negative. Further-
more, to the order of the approximation used in Egs.
(4.30) and (4.31), one can write

Wa(1,2)= / / Dy,  (4.42)

/ cve / P(t(p))dﬂrp= 1 .

Thus P(r®)du,, has the properties of a probability
density in the 3(p—1)-dimensional space of r®, If
vectors r® and q® are generated with probability
P(r®)du,pduq, and L(x® q®) is averaged over the
vectors so generated, the average will approach G
with probability one as the number of samples becomes
infinite. Qualitatively, the advantage of this scheme over
straightforward sampling is that some of the variation
in the integrand I(x®,q‘®) has been absorbed into the
probability density. The variance reduction is indicated
intuitively by the fact that vectors r® for which
Di5(x®) and hence I(r®,q®) are small will be gener-
ated with low probability by the importance sampling
procedure.

It remains to show how vectors r(® can be generated
with probability P(r®)du,,. This is accomplished by
producing a Markov chain, {r,®, t=1, 2, 3, ---},
with a stationary transition probability function
p(xi41P |1, ), satisfying

[ [t [ o [ [

X/ p(r’(p) lr(p))P(r(p))d”rpdﬂ(p—l)r’ , (444)

and hence
(4.43)

where
3Dy’ =d3r)/d3ty - - - Ay, (4.45)

2], M. Hammersly and D. C. Handscomb, Monte Carlo
Methods (John Wiley & Sons, Inc., New York, 1954).
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and where J is any set in the 3(p—1)-dimensional space
of ' ® which is measurable with respect to P(x'®)du .
The law of large numbers for Markov chains?? states
that if the Markov chain, {r,®}, is such that Eq. (4.44)
is satisfied and if there is only one ergodic set, then

1 M
1 —_— (») q(»)
};IgMEL(rzP,q”)

= / / L@, ,q®)Px®)dy,, (4.46)

for almost all realizations of the Markov chain. Thus if
L(x®,q@®) is averaged over r® produced by the
Markov chain and q® generated by thestraightforward
Monte Carlo scheme, the result will be an approxi-
mation for Gg.

We must now demonstrate a procedure which will
generate a Markov chain which satisfies the above
conditions. It will be convenient for the rest of this
section to deal with only the # components, x;, of each
three-dimensional vector r; All quantities defined
above in terms of the 3p-dimensional vector, r®
= (ry,Is,* * *,Ip), To=I,=0, are assumed to have analo-
gous definitions in terms of the p-dimensional vector
x= (%1,%2," * *,%5), ¥o=%,=0. The generalization to three
space components will be obvious, and the notation
will be much simplified if we assume all vectors to be
p-dimensional and drop the use of p as a superscript or
subscript to indicate dimensionality for the rest of this
section.

p(x'[0)=p*'[x)(P(x)/P(x)), if P(x)<P(x)
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Let w(x) be defined by

dp=w(x)d?x, d*x=dwdxs- - -dx,, (4.47)
so that
P p/2 »
w(x)= (2#)1’2(5—) exp[—3p 2 (wi—xi1)?]. (4.48)
T =1

A transition probability function p(x’|x) is then needed
to satisfy Eq. (4.44), which now becomes

coi [ POw(X)d X = | ---
/ f(x)w(::) [ [ [
X / o(X' | X) P(x)w(x)d7xd7x’. (4.49)

First define the function

p*(x'|x) _
b —1/2 —1
=(;) expl—p X (e =}t +oun))7]. (450)

This function satisfies the criteria for a transition
probability function, since

p*(x'[%)>0

The function p(x’|x) is now defined by

(4.51)

and

0

/ NI =1,  (4.52)

P(xll)

— o |8+ [ e, pwzre sy
(x| P <P(x)} P(x)

where {x”/| P(x"")<P(x)} is the set of all x”” such that P(x"") <P(x) and § is the Dirac & function. The function
p(x’|x) is a valid transition function, since it is non-negative and satisfies

[ e

=/ / l:p*(x’lx)+8(x’,x) -»-/p*(x”lx)(l—
{x'|P(x")>P(x)} {x'’| P(x'")<P(x)} P

2

PN s e

(4.54)

!

X
e
{x'|P(x)<P(x)} P(x)

=[ .o ./p*(x’lx)dp—lx'+ e /p*(x’lx)dp—lx"
(x| P(x") 2 P(x)} {x'"|P(x'")<P(x)}

=1.

22 J. L. Doob, Stochastic Processes (John Wiley & Sons, Inc., New York, 1953), Chap. 5.
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In order to show that p(x'|x) satisfies Eq. (4.49), it will be useful to define the “transpose” x7 of a
vector Xx= (%1,%2," * *,%), ¥o=%,=0, by 2,7=2%, ;, 2=0, 1, - -+, p. From Eqgs. (4.32), (4.41), and (4.48), it can be
seen that

w(x)=w(xT) (4.55)
and
P(x)=P(x7). (4.56)

Since P(x)w(x)d?x=P(xT)w(xT)d*~'x7, it follows that Eq. (4.49) is equivalent to

[ [Perrin- [ Jtper o gar

=/ f f f o(¥ [0)+o(xT|xD) IP(R)w(x)d—xd7x . (4.57)
J —0 —0

As a lemma for the proof of Eq. (4.57), it is shown in Appendix A that
p*(x' | X)w(x) = p*(xT| x'T)w(x'7). (4.58)
To prove that p(x’|x) satisfies Eq. (4.57), it is sufficient to show that
)= [ oo [ GO I0HaeTIP i
U (4.59)
=2P(x)w(x)),

where »(x’) is defined by the above equation. Using the definition [Eq. (4.53)] of p(x’| x) and keeping in mind that
P(x) and w(x) are invariant under transposition of the coordinates of x, it follows that

o(x)= " / [p*(x' | %) +p*(x7 [ x7) IP(xJw(x)d7~'x+

(x]P@)>P@x))

" / {[p*(x’lx)+p*(x’T [x7)]

(x| P(x)<P(x")}
+5(,%) f D»*(x"|x>+p*<x"f|xT)J[l—(P(x")/P(x»]dv—lx"]P(x)w(x)drlx, (460)
{x""|P(x’")SP(x)}

where the integral multiplying the & function can be extended over the set {x”|P(x")<P(x)} since the integrand
vanishes for P(x”")=P(x). Performing the integral over the § function »(x") becomes

o(x)=P(x’) ‘.- / [o*(x|x)+p*(x'T | xT) Jw(x)d?*x

{x] P(x)>P(x")}

+ / / [o* (| 9)+0* (%7 | x7) TP () (x)d>x
(x| PSP}

+/ .. -/[p*(x”lx’)-l-p*(x”"'!x’T)]P(x’)w(x’)d"‘lx"
x| PSP}

_/ .. /[p*(xll I xl)_'_p*(xllj' l xIT)]P(XII)w(xI)dp—IxII . (4.61)
(x| P(x’")< P(x")}

Applying Eq. (4.58) to the first and second terms in the last equation, one finds that the second and fourth terms
cancel and there remains

v(x)=P(x")w(x) / [o* (x| x'T)+p*(x|x) Jd7'x
(x| P(x)>P(x")}

+P(x)w(x’) o f Lo*(x”|x)+p*(x"7|x'T) Jd»~'x".  (4.62)

x| PSP}
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Since the sets over which the two integrations are
carried out are complements, the integrals may be
combined into an integral over the whole space. Bearing
in mind that the variable of integration, x, may just
as well be replaced by x7, one obtains the result

v(x’)=P(x')w(x’)[ /: . /: o*(x| X)dr1x

+ f oo / p*(x"lx”’)d"“x"] (4.63)
- -0
=2P(x)w(x’),
where the final step makes use of the normalization
condition on p*(x|x’) [Eq. (4.52)].

It can be seen from the definitions of p(x’'|x) and
p*(x'|x) that there can be only one ergodic class since
the probability of the one step transition from any
vector, x, to a vector in the volume d7~'x’ about x’ is
strictly greater than zero for all vectors, X', satisfying
P(x')>0. Equation (4.46) is thus satisfied for the p(x| x)
defined above, and a procedure which generates a
Markov chain with this transition function is a valid
importance sampling scheme for the present problem.
The transition from a vector x of the chain to the next
vector x’ can be made using p—1 normally distributed
random variables and one uniformly distributed
random variable. Let

x0,,= xpll= 0 ,

2=/ (1/29) kA3 @it "+ 4)
i=1,2, 4+, p—1 (4.64)

where &, i=1, 2, ---, p—1, are normally distributed
random variables with mean 0 and variance 1. If
P(x")<P(x), generate a random variable { which is
uniformly distributed on the interval (0,1) and set

x'=x", if {<PEx")/P(x
f. (x'")/P(x) (4.65)
=x, otherwise.
If P(x")> P(x), set
X=x". (4.66)

It can be seen that the probability of x” given x is
p*(x’|x) while the probability of x’ given x is p(x’|x).

C. Integration over the Position of the
Third Particle

Besides the 6(p—1)-fold integration arising from the
approximation to the Wiener integral, it is also necessary
to perform the twofold integration over the position of
the third particle. This is the integration over (pq,0¢)
in Eq. (4.18). Since a large number of Monte Carlo
samples are necessary for reasonable accuracy in the
Wiener integral approximation, it is impractical to
compute G(r12,Q) and G.(r12,Q) at each point of a
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two-dimensional grid in Q and apply a standard numeri-
cal integration technique. If we perform this last two-
fold integration by a Monte Carlo technique, however,
the sampling may be combined with that for the
6(p—1)-fold integrals. The procedure then is to generate
M samples [ (r;®,q,®,Q,), t=1,2, - - -, M ] and to form

1
galrie; M )=ﬂ Zl L(r:?,q,»,Q)T1Q)), (4.67)
te

where d stands for e or ¢, L is defined by Eq. (4.40),
r,® is generated from the Markov chain, ¢,® is pro-
duced by the straightforward sampling scheme for
Wiener paths, and Q.= (pg,0¢,0) is picked according to
a two-dimensional distribution

I'(Q)d*Q=T,(pe)Te(bo)dpedbq

T(Q)dQ=T4(Q.)T,(Q,)d0.40,,

(4.68)
or

(4.69)

in Cartesian coordinates. If Eq. (4.69) is used, a factor
of 3 must be included in L if the range of Q, is —
<Qy<. One will then have from the law of large
numbers that

lim gariz; M)=ga(rss) (4.70)

with probability 1, where gi(ri2) represents either
ge(r12) or ge(r12) depending on the form of the integrand
L(r(?)’q(P)’Q)‘

Including the integration over Q in the Monte Carlo
scheme will increase the number of samples necessary
for a given accuracy since L(r®,q®», Q) will have an
increased variation on being taken as a function of Q
as well as of r® and q®. The variation with respect
to Q turns out to be the dominant part of the variance
of the Monte Carlo scheme at moderate temperatures
with the distributions of r® and q® being fairly
sharply peaked about r®=q®=0. This variance in
Q can be reduced somewhat by making use of the
latitude that exists in the choice of the distribution
I'(Q). Qualitatively, the variance with respect to Q will
be reduced if the global behavior of I'(Q) is similar to
that of L(r®,q®,Q) as a function of Q. Since L is also
a function of r® and q‘», computing time restrictions
indicate that it would probably not be worthwhile to
develop an elaborate importance sampling scheme in
the variable Q. The choice of I'(Q) will therefore be
restricted to distributions which can be generated
easily from uniform or normally distributed pseudo
random numbers.

In order to get an idea of the form of L(xr,q®,Q)
as a function of Q, one must consider g.(r12) and g,(r1)
separately. For the function g.(r1s) the integrand is

Lc(r(P)’q(P),Q) = [Dla(s-l-(p))_ 1:'

X[Ds(s-»)—17, (4.71)
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F16. 2. f13(r12,Q) X fes(r12,Q) as a function of Q
for 712=1.1¢ and T'=20°K.

while for g.(r12) the integrand is

L(x®,q®,Q) = [Dis(s; @) — Dys(q?)
+ Dag(s_®)—Dys(q)]. (4.72)

Since the distributions of r» and q‘» are peaked near
r® =q®=0, the function

L,(0,0,Q)=[exp{—BV (Q+35112) :
— (BN 2mp) V"' (Q+5119) } — 1 ][exp{— BV (Q—3112)
— (BN 2mp)V" (Q—3110)}—1] (4.73)

gives some idea of the variation of L. with respect to
Q. Equation (4.73) is just the second-order Wigner-
Kirkwood approximation to the classical cluster function

frafas= (V) —1) (V2 —1) (4.74)

so that the behavior of this classical function with
respect to Q will give some idea of the global structure
of L, as a function of Q.

Figure 2 shows a rough contour map of fis3fss for
T=20°K and r12=1.10, where o is defined by Eq. (2.10).
The structure of this cluster function is too complex to
attempt to fit it in detail with a simple probability
distribution. It can be seen, however, that the structure
of ‘the function is centered about Q=0 and that the
function becomes negligible at a distance of two or
three times ¢ in the Q, direction and at a slightly larger
distance in the Q. direction. A reasonable sampling
distribution for such a function might be a two-dimen-
sional normal distribution with a standard deviation
on the order of ¢ in the Q, direction and a standard
deviation in the (Q, direction on the order of ¢+const
Xr12. The distribution used for the integration over
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Q in the numerical computations to follow was

I'.(Q)d2Q=((2r) 2y )~le—=*/27a?
X (2m) 1y, "t @t ndQ,4Q,,  (4.75)

where the standard deviations v, and v, were chosen
empirically to minimize the variance of g.(r12; M) for
a small value of M.

If one tries to take r®=q@®=0 in L., (x®,q®,Q),
the function vanishes. In fact this function vanishes
to order 72 in the Wigner-Kirkwood expansion, and it
is thus to be expected that the correction term g.(r1s)
will be negligible except at low temperatures and for
small 735. In order to find an efficient sampling scheme
for go(r12), advantage can be taken of several symmetries
of the integrand. The function g, can be written as the
sum of two integrals:

ge(r12) = g @ (r12)+ g (r12) (4.76)
where
1
WD(ryp)= 3
= / 0
X E{F15(x(7))[F15(8+())— F1s(a()) ]|
Xr(1)=q(1)=0}, (4.77)

o (r12) = s
8P =0

X E{F1o(x(7))[F25(s—(7))— Fas(q(7))]|
Xr()=q(1)=0}, (478)

and where Fy2, F13, and Fa; are defined by Egs. (4.13),
(4.14), and (4.15). Both g, and g,» are functions of
the magnitude 71 only so ris may be replaced by —ry,
wherever it appears in g.®(ry2). Furthermore, Wiener
measure on r(r) is invariant to the replacement of
of r(r) by —r(7). If one makes the two changes of
variables rjs— —112 and r(r) — —r(7) in g.®, then
F1o(x(7)) is unchanged due to the spherical symmetry
of V(r), while

4 Fas(s(7)) — F13(s4(7)) (4.79)
an
Fas(q(7) — F1a(q(7)).- (4.80)
Thus
gV (r12) =g (r12) (4.81)
and g.(r12) may be written as
2
el =01 / 0
X E{F12(x())[F13(s4(7))— F1s(a(7))]|
Xr()=q(1)=0}. (4.82)

In this last form a more natural origin for the inte-
gration over Q is Q=3%(—ry), so let the variable of
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integration be changed to

Q' =Q+3rs:. (4.83)
Then
gu(ri)= f FQG(rn0), (4.84)
where
Fia(x(7))
Glrin,Q) =2E{—W-('1—2~)[Fw(0',s+(r»
—Fla(o',qwn|r<1>,q<1>=o}, (4.85)
and where

Fls(Q’,q(r))=exp[—-B /; l V(%q(r)-l—Q’)dr]. (4.86)

The prime on Q" will be dropped for the remainder of
the discussion of g.(r12). In spherical coordinates the
cylindrical symmetry in ¢q is not altered by the change
in origin provided the polar axis remains in the Q.
direction.

The integrand of g(r12) is the difference of two terms
depending on Q. This difference will be small if both
terms are small or nearly equal, so we consider the
behavior of

F13(Q,0)=¢FV@ (4.87)

with respect to Q. This function is the limit of both of
the terms in the square brackets in Eq. (4.85) for
r(7)=q(7)=0. For pg<a, F15(Q,0) goes to zero rapidly.
The function has a maximum at pg=~1.12¢ and ap-
proaches one asymptotically as (140%/p¢®) for pg>>e.
The integrand in Eq. (4.84) should thus be zero for
po<Ka and approach zero again for pg>>o as both terms
in the difference approach unity. A simple probability
distribution with this same qualitative behavior is the
x? distribution with 7 degrees of freedom for n>4.
For the Q integration in g.(r12) then, a X2 distribution
with 12 degrees of freedom was used for pg and £g=cosfq
was chosen from a uniform distribution, —1<£,<1.
Thus we define

I‘e(Q)dQQ=

5

2e_PQ/7ﬂdde£Q .

’: ¢ (4.88)

6lv,

The number of degrees of freedom and the value of v,
were chosen empirically during preliminary computa-
tions to minimize the variance of g(r12; M) for small M.
In initial calculations of g.(r12; M) it was found that
go(r12) was indeed small compared to g.(r12) but that
the variance of go(r12; M) was quite large. It was thus
necessary to apply a further variance reducing tech-
nique to the Monte Carlo sampling in the calculation
of g.. The technique used was the method of anti-
thetic variates described by Hammersly and Hands-
comb,?! and although it applies to the Monte Carlo
sampling as a whole, it is best described in connection
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with the sampling in the Q integration. The principle
of the antithetic variates method is to generate several
correlated samples simultaneously, in such a way that
their sum has a considerably smaller variance than the
samples taken independently. In the present case it is
recognized that go(r12) is small so that one tries to corre-
late the samples in such a way that their sum is near
zero.

From Eq. (4.85) it can be seen that the cylindrical
symmetry of Go(r12,Q) about the Q. axis requires that

Ge(r12, —Q)=Gu(r12,00,00+3m,00).  (4.89)

Thus the range of 8¢ can be restricted to 0<6o<,
(0<£0<1) and the integrand taken as the sum of
Go(r12,Q) and Ge(r12, —Q). Another pairing of samples
can be made due to the fact that the probability of a
Wiener path q(7) is the same as the probability of
—q(7). Since successive path approximations q(® are
chosen independently, the samples for q‘» and —q‘®
may be combined.

From Eqs. (4.34), (4.35), (4.36), and (4.40) it is seen
that the integrand of the multiple integral approxi-
mation for G.(r12,Q) as given in Eq. (4.85) is

L(®,a,0)=2[Dia(Q;8: )~ Dus(Qa®)],

where

D:s(Q,q"’>)=expl—-;f | V<\%r-q.-x+0)

(4.90)

+4v($—w-a-(q.-+qe-l>+o)+ V(\%q&Q)

+ A2 V"( A
2mp T

Then if r,® is generated from the Markov chain,
q:® is generated by the straightforward scheme for
Wiener paths, and Q, is chosen from the distribution
T'(Q) defined by Eq. (4.88), but with £q restricted to
the range 0< £0<1, then with probability 1,

%(Qi'i-qo'—l)-i‘Q)]} . (4.91)

1
gr)= fim — 2 A(?,0:9,00T7(Q),  (4.92)

where the antithetic variates sample

A(x®,4,Q)
is defined by
A (t(p),q(p),Q) = %[Le(l‘(”),q("),Q)
+L8(r(P)’q(P)’ _Q)_I_Le(r(p), _q(P)’Q)
FL(r®, q'», —Q)]. (4.93)
This sum should be more nearly zero than its component
terms, since the portion of L, which is antisymmetric

in Q will cancel between terms 1 and 2 and between
terms 3 and 4 on the right side of Eq. (4.93), while
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s } of He* at 260°K amounts to only 0.7, of the total. It
! will be seen that an error of this magnitude is negligible
25l compared to the Monte Carlo sampling error.
As an estimate of the Monte Carlo sampling error,
{ the sample standard deviations of the sample means,
20 ge(r12; 20 000) and g.(r12; 20 000), were computed. The
numerical results for gi(r12; 20 000) and the associated
. error estimates are shown plotted against ri12/c for
T=35, 10, 20, 30, 40, 50, 75, 100, and 273.18°K in Figs.
10+ I . xaql
50
0.5 L
° L X ]: 25 131 I N2 4.0-:
05 1.0 15 20 i1 30 4
I I -
.05 I I 30
; f l
~10 20
I I i
e L o]
- — N2
20 ° o5 10 15 20 25, 38 13 c
Fic. 11. X%, and sampling error for 7'=100°K. . i
-1.0
z
for temperatures 7'=35, 10, 20, 30, 40, 50, 75, 100, and 1 i
273.18°K, and for values of 7;; in the range 0.6<rn/oc  _, 1 I
<4.0. The third virial coefficient C(7") was computed i
for all but the lowest temperature, 5°K, using Eq. ;
(2.8). A straightforward numerical integration was -3o} I
performed over 7y, with gi(r12) approximated by go(712; i
20 000)+g.(r12; 20 000) and with the values of W(r12) I il
-40

given in Ref. (1). The computations were performed
on the Illiac IT computer located at the University of
Illinois. The details of the computation are summarized
in Appendix B. A summary of the results for gi(rs;
20 000) = g.(r12; 20 000)+ go(712; 20 000) over the range
of temperature is shown in Fig. 3.

There are two sources of computational error which
cause gi(r12; 20 000) and C(7) to differ from the correct
theoretical values of gi(r12) and the third virial coefficient
for the interaction potential of Egs. (2.10) and (2.11).
These are the errors introduced by the p-fold integral
approximation to the Wiener integrals and the Monte
Carlo sampling error. The order p of the approximations
r®» and q® to the Wiener paths r(f) and q(f) was
chosen for each temperature T so that p7T>260°K.
Thus the accuracy of the multiple integral approxi-
mations at any temperature is at least equal to the
accuracy of the two-term Wigner-Kirkwood approxi-
mation [first two terms in Eq. (3.37)] at 260°K. As an
estimate of this accuracy, the third term in the Wigner-
Kirkwood approximation to the second virial coefficient

Fi1G. 12. X~%g; and sampling error for T'=273.18°K.

4-12, respectively. The length of the error bar associated
with X=3g(r12; 20 000) is equal to twice the sum of the
sample standard deviations of X~3g.(ri2; 20 000) and
N3gq(712; 20 000).

Although the Monte Carlo sampling connected with
the Wiener integration and with the Riemann inte-
gration of G(r12,Q) over the position Q of the third
particle is done as a single process, it is convenient to
consider the sampling error to be a sum of separate
contributions from these two sources. The sampling
error in the integration with respect to Q depends on
the variation of G(r12,Q)I"~1(Q) as a function of Q. Since
G(r12,Q) contains functions of the form e #V(QEr2/2)
which have an increasing variation in Q as 8 increases,
it is to be expected that the sampling error due to the
Q integration will increase with decreasing temperature.

A factor of 8 also multiplies the exponent of the func-
tional integrand of the Wiener integration so that the
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variance of the Monte Carlo procedure for computing
the multiple integral approximation to the Wiener
integral will also increase as 7" decreases as a result of
the increase in 8. The variance of the multiple integral
approximation is further influenced by the fact that
the Wiener random functions r(#) and q(¥) in Egs. (4.8)
and (4.9) are multiplied by the thermal wavelength A.
Since N increases with decreasing temperature, the
variance again increases as T" decreases. A final contri-
bution to the same behavior of increasing variance with
decreasing T results from the fact noted above that p
was increased with decreasing T in order to maintain
the accuracy of the multiple integral approximation to
the Wiener integrals. The multiplicity, 6(p—1), of the
integral thus increases with decreasing T resulting in
an increasing variance for the Monte Carlo procedure.

The standard deviation of the multiple integral
results also depends upon the choice of the initial vector
1o of the Markov chain {r,®}. Because of the one-

X"‘gl
154
WIGNER KIRKWOOD
2-TERM
10
CLASSICAL:
05
+
. .
o ¥ + e 12
0% 10 15 20 25 30 4
+ +
+ +,
+ "\ QUANTUM CALCULATIONS
-05¢

Fic. 13. Comparison of X3g; with classical and semi-
classical values for 7=5°K.

step memory inherent in the chain, the choice of an
initial vector ro®, which is improbable with respect to
the probability density P(x®)du,,, Eqs. (4.35) and
(4.41) can cause a large variation in the integrand as the
vectors 1,?) move from r,® toward the region of
maximum P(r®)dy,,. An attempt was made to reduce
the error caused by a bad choice of ro® for each pair of
values of 712 and 7. At high temperatures P(r®)du,,
assigns the highest probability to vectors in the
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neighborhood of r®=0, provided that P(x®) is
slowly varying over the range of r12+r(®. Thus for the
highest temperature and largest 712, the initial vector
was taken to be r®=0. At lower temperatures, the
initial vector for the largest value of 712 was taken to
be the last vector 1 generated by the Markov chain
for the same value of 7,; at the next higher temperature.
For successively smaller values of 712, the initial vector
was taken to be the last vector generated at the same
temperature and the next higher value of 71s.

The quantities g.(r12; M) were also computed with
M <20000 at several pairs of values for 712 and 7.
The standard deviations in these quantities were ob-
served to decrease as M~/ as would be expected of a
well-formulated Monte Carlo procedure.

B. Numerical Comparisons with Theory
and Experiment

It can be seen from Fig. 3 that the position of the
minimum in gi(r12) remains fairly constant at 7;;~1.8¢
over the entire temperature range. The position of the
minimum in gi(r12) can be interpreted in terms of a
crude argument about the spatial arrangement of
three particles. If one takes the most probable arrange-
ment of particles as a linear arrangement with each
particle falling at the minimum of the potentials due
to its two nearest neighbors, then for the Lennard- Jones
(12-6) potential there should be maximum probability
of finding a particle at distances of 1.12¢ and 2.24¢

X% N
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15¢

104

05+

.08 &t WIGNER KIRKWOOD
- - 2-TERM
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Fic. 14. Comparison of X% with classical and semi-
classical values for 7’=10°K.
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Fic. 17. The pair distribution function for
average density po=0.095 g/cc.

from a reference particle. Correspondingly, there
should be a minimum probability of finding a particle
midway between these two positions or at 1.69¢. If
Wa(ri2) is slowly varying near this minimum of the
pair distribution function, then the corresponding
minimum in g(r:2) should fall at approximately the
same value of 712. The calculated position of the mini-
mum, 1.80, agrees well enough with this result to
indicate that the minimum can be interpreted physically
as the gap between the first and second shells of atoms
about the reference atom.

Classical and two-term Wigner-Kirkwood approxi-
mations for gi(r12) have also been calculated using
respectively the first and first two terms of Eq. (3.37)
for (1,2,3|¢~##3]1,2,3). The integration over the position
of the third particle was carried out by a straight-
forward iterated Simpson’s rule approximation. Com-
parisons between the Classical, Wigner-Kirkwood, and
quantum calculations are shown in Figs. 13-16. The
classical values of gi(r12) have previously been calcu-
lated by Henderson,? and the results presented agree
with his calculations wherever there is overlap. In
observing these comparisons, it should be noted that
when gi(12) is used to calculate a physically measurable
quantity, it is multiplied by Wa(r12) which goes to
zero rapidly with decreasing 71y for r15/0<1. Thus,
values of gi(r12) for 71250.80 are not significant.

The two-term Wigner-Kirkwood approximation is
fairly accurate down to about I'=10°K. The position
of the minimum in g(r12) corresponding to the inter-
shell gap remains approximately constant for the
Wigner-Kirkwood data while a significant shift toward
smaller values of 712 with decreasing temperature occurs
in the classical position of this minimum. At 5°K the
Wiener integral method gives results which differ
markedly from the two-term Wigner-Kirkwood approxi-
mation. Results were obtained for only a few values of

28 D, Henderson, Mol. Phys. 10, 73 (1965).
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r12 at T="5°K, due to the amount of computation time
involved in the Monte Carlo procedure for large values
of the order p of the Wiener integral approximation
(p=52 at T=5°K). Considering the a posteriors
information on the accuracy of the two-term Wigner-
Kirkwood approximation, it would seem that reasonably
accurate results could be obtained with p7230°K
rather than p72260°K so that it would be possible to
repeat the S°K computation in one tenth the time.
There seems to be no experimental data on the pair
distribution function in He* gas at low temperatures.
The pair distribution function for liquid helium,
however, has been measured by neutron diffraction for
several values of the density.?* Figures 17 and 18 show

ny(r12)  p(r1z)

Wa(r12)[14-ngi(r12) 1=

Po

for T=>5°K and number densities # corresponding to
mass densities pp=0.095 gm/cc and py=0.184 gm/cc,
respectively, compared with Henshaw’s data for these
same densities. Since only three particle effects have
been taken into account in the computation, agreement
cannot be expected beyond the second peak in the dis-
tribution function. To indicate the variation of p(r12)/po
with temperature smooth curves have been fitted to
the numerical results for

W a(r12)[14-ngi(r12) 1=2p(r12)/po

for temperatures 10, 20, and 40°K for the density
p0=0.184 gm/cc. The resulting curves are shown in
Fig. 19.

Two factors influence the comparison between
Henshaw’s neutron diffraction data for liquid He* and
the numerical results of this work. The first is the choice

I THIS WORK , T=5°K, py=.184 gm/cc

—— HENSHAW, T=5°K, p, =.184 gm/cc
p(N2)

20
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Fi16. 18. The pair distribution function for
average density po=0.184 g/cc.

D. G. Henshaw, Phys. Rev. 119, 14 (1960).
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Fic. 19. The pair distribution function as a func-
tion of temperature for po=0.184 g/cc.

of the Lennard-Jones (12-6) potential [Eq. (2.10)] as
the correct intermolecular potential for helium. The
second is the validity of the cluster expansion for
temperatures and densities at which helium is a liquid.
The influence due to each of these factors cannot be
separated without recomputing Wa(r12) and gi(r12) for
a different intermolecular potential. However, barring

Clrae)
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~—— EXPERIMENTAL DATA , KEESOM
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~~~~~ CLASSICAL RESULTS , HIRSCHFELDER
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Fie. 20. Comparison of calculated third virial coefficient
with classical and experimental values.
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compensating errors in these two approximations, Figs.
17 and 18 indicate that both approximations are fairly
good for the pair distribution of liquid He* at 5°K.

Using Eq. (2.8), the third virial coefficient C(T") was
evaluated for all temperatures at which g(r12) was
calculated except for 5°K. C(5°K) was not calculated
partly due to the large sampling errors in gi(r12) at
5°K, but primarily due to the fact that values of g1(712)
for r12>2.80 give a large contribution to the integral
for C(5°K) and no numerical results were obtained for
this range of 715. Figure 20 shows the numerical results
for C(T) compared to the values adopted by Keesom?
for the experimental third virial coefficient and the
values calculated classically from the Lennard-Jones
(12-6) potential.’

Over almost all of the temperature range the com-
puted values fall consistently below the experimental
results. Since Eq. (2.8) does not depend on the neglect
of higher-order terms in the cluster expansion, the cause
of this difference is evidently the choice of the pairwise
additive Lennard-Jones (12-6) potential as the correct
three particle potential for helium. Some recent calcu-
lations by Sherwood, De Rocco, and Mason?® indicate
that nonadditive three-body forces may have a sizeable
effect on the third virial coefficient of He*. The ways
in which gi(r12) and C(T) differ from the experimental
values can be reconciled qualitatively. Figures 17 and 18
indicate that the calculated g(r12) is fairly consistently
larger than the experimental g;(r12). On performing the
integration over d2 in Eq. (2.8), this would lead to a
C(T) which would be smaller than its experimental
value, as is verified in Fig. 20.

C. Conclusion

The comparisons of Sec. V B point to two conclusions
regarding the physics of the He* system. The first is that
quantum mechanical calculations based on the cluster
expansion and assuming a pairwise additive Lennard-
Jones (12-6) potential can produce a reasonable quali-
tative fit to the pair distribution function in liquid He?*,
Secondly, the consistent deviation of the calculated
third virial coefficient from the experimental values over
the full temperature range indicates that the choice of
the latter potential for the three-body interaction in
He* is not good enough to yield quantitative agreement
with experiment.

From the mathematical viewpoint, it has been shown
that the Wiener integral may be a useful computational
tool. The upper bounds of Sec. III B indicate that the
expression of a quantity in terms of Wiener integrals
can yield qualitative and semiquantitative information
on the size and behavior of that quantity. Finally, the
numerical evaluation of a Wiener integral expression

%W, H. Keesom, Helium (Elsevier Publishing Co., Inc.,
New York, 1942), Chap. 2.

2 A E, Sherwood, A. G. De Rocco, and E. A. Mason, J. Chem.
Phys. 44, 2984 (1966).
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has been shown to be computationally feasible in a
situation where the amount of computation involved
in integrating the original partial differential equa-

tion giving rise to the Wiener integral would be
prohibitive.

APPENDIX A: LEMMA FOR THE
PROOF OF EQ. (4.58)

Lemma:

P [X)w(x)=p*(x7| X w(x'T).  (4.58)

Proof: From Egs. (4.48) and (4.50) it follows that

P*(XT | X' T)w(x'T) = (f) <1f—1)/z(27r)1/2(£)p/2

T 2w
Cop—1
Xexp[—p 2 (xT—3(xia"+x:ia'7))?
=1

1Y @ T—wd™)]. (A1)

=1

By the definition of x7, xT=%,, =0, 1, :++, p, so
Eq. (A1) becomes

p*(T |/ T (' T) = (3) (r—l)l2(2w e ( _Ii )p/z

T 27r‘

-1
Xexp[—p T (@p-i—3(@p-sr1txp-i1))?

=1

—3p i (Xp—i —xp-ir1)?]. (A2)

=1

Setting /= p—1, one finds that

P*(xT| X' T)w(x'T) = (g) <z'—l>lz(27r)”2 ( E{ )plz

. T,
-1 ~1 -1
Xexp[—p T xdp 2 ampatp IZ 2%
=1 =1 =2
-1 P
—p 2 %(xm-l-xz_;’)z—-a IZ (xr)?
l==1 =0

? P
5 Y = Y, (x/)z], (A3)
=1 2 =1

and making use of the fact that xe=x,=x'=x,'=0,
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this becomes

p*(aT | ¥ T)w(x'T) = (2)@—1)/2(2”)”2 ( ? )pl2

T 2
p—1 p—1 »—1
Xexp[—p 22 (@)*+p 2 «f%ia+p Zl x5 %1
P =1 =
-1

-1 P
—p lE t@ataa)?—p 121 a+ Zl xjxi1], (A4)
=] == =

where j=I41. Equating the dummy subscripts and
combining the sums, one obtains

P*(XT| X' T)w(x'T) = (f) ‘z>—1)/2(27r)1/2 ( ? )p/z

T 2

p—1
Xexp[—p lZ @/ =3 (@ratxa))?
=1

b4
3 X () T=p K [0ue), (A9)
which completes the proof.

APPENDIX B: DETAILED COMPUTATIONAL
PROCEDURE FOR g,(r12; M), g.(r12; M),
AND C(T)

The step-by-step procedure for computing the ap-
proximation g.(r12; M) to g.(r12) is as follows:

(1) Generate M independent Wiener path approxi-
mations consisting of 3p-dimensional vectors q.®, t=1,
2, +++, M drawn from a probability distribution du,,
by Eq. (4.38), qo=4,=0,

. 9-1(1—4/p) E[(l/iJ)(l—i/?)]”2
= RS
1~G6-1/p Li-G-1/pd "’
1=1,2, -+, p—1 (BI)

where the §; are three-dimensional random variables,
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the coordinate variables of which are independent and
normally distributed with mean 0 and variance 1.

(2) Generate an M-step Markov chain {r,®|i=1,
2, -++, M} with stationary probability

Du(r(p))
W2(1:2)

dﬂrp

by first generating r,®), using the procedure described
by Eq. (4.64), and setting r,®=¥,® if Di,(x,»)
ZDn(l‘g_1(p)), while if D12(f¢(p))<D12(rp_](p)) set

Dn(f‘(p))
r."» =¥,» with probability (B2)
Dys(re1®)
and
Di1a(F,®)
r”=r, ;® with probability 1— . (B3)
12(re—1)

(3) Generate M independent random vectors Q.
= (Q42,04,0), £=1, 2, - - -] M according to the probability
r.(Q)22Q.

(4) Form the average
1 »
gelria; M )=Jl—l 2 Lo(re®,q:®,Q0T(Qs).  (B4)
t=1

Equations (4.71), (4.35), (4.36), (2.9), and (4.75) are
pertinent to the above procedure.

The procedure for computing the approximation
2o(r12; M) to ge(r12) is the same as that for go(riz; M)
except that steps (3) and (4) are modified.

(3") Generate M independent random vectors Q,
=(pg,00,0), =1, 2, + -+, M according to a probability
r.(Q)a:Q.

(4') Form the average
1 &
gelr12; M)=5/_f- 2 A@r?,q,»,Q)T.(Qr). (BS)
t=1

Equations (4.93), (4.90), (4.91), and (4.88) are ad-
ditionally needed for the computation.



