
1216 HARTMUTH ARENH()VEL 17I

with

IlnP;(jLf''L, MrL) ReJ';(M1 E2) = (k—s/2VS)g( )r;+r.

ksL L+1~ ( )r~l Q( ) IC+ro

2L(2L—1)i!3' L n

1 2 J"'

x (I;llew(1) llI„)(l,ljE(2) ill„)1„
I; I, I„

x l EE-(1+(—)')+z(E-'+E'+-'I'. ')0—(—)tn

XL(E-s—E'+sII'. ')'+(1'.E)sj-' (»)

xl:EE.(1+(-»&+-,(E. +E+V.)«-(-)» I vrould like to thank M. Danos and E. G. Fuller for
reading the manuscript and oGering many valuable

XL(E —Es+-II' ) +(F„E)j ' (36) comments.

PHYSICAL REVIEW VOLUME 272, NUM B ER 4 20 JUL Y 2968

Concept of Ideal Collective Coordinate as the Foundation for a
Phenomenological Theory of Nuclear Collective Motion:

Basic Ideas and Relation to Other
Phenomenological Methods*

ABRAHAII KLEIN, M. DREIZLER, AND ROBERT E. JOHNSONt

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 9 February 1968)

The concept of an ideal collective coordinate is introduced by means of the following example: Consider
a one-dimensional vibration of a many-body system in the sense that a large subset of states (n) of the
system exhibits an energy spectrum and relative transition probabilities following the laws of the (in general
anharmonic) oscillator described by X (p,a) (a(n) cu„(o~n)=We sup.pose the set of many-body states
~n) to extend indeanitely, and we take the transform [n) =P [n) (n~a) to define a many-body generat-
ing state of the band which is precisely localized in e space. The basic assumption of collectivity, that
changing the state of at most a few particles cannot much alter the value of a, is shown to be sufhcient to
derive a phenomenological theory from the many-body starting point. The phenomenological aspects of a
recent theory of rotations due to Villars is seen to be contained in the above formulation as a special case.
A brief review is given of the generator coordinate and similar projection methods in order to exhibit their
relationship with the present method.

I. INTRODUCTIOÃ
" 'N the traditional phenomenological approach to the
~ - nuclear collective Hamiltonian, "one assumes that
somehow the fundamental microscopic Hamiltonian can
be written approximately as the sum of a collective and
an intrinsic part, the wave function having, in Qrst
approximation, essentially a product form. I'er contra,
it is remarkable that none of the existing versions of fully
quantum-mechanical microscopic theories of collective
motion' '7 is able to exploit this suggestion. The reason
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operator:collective coordinates, clearly separable from
the particle degrees of freedom, such that the coupling
between these and the "intrinsic" degrees of freedom is
small. Since the microscopic theory has thus been unable
to take any useful lead from the older phenomenology,
it appears to us appropriate to attempt to invert the
relationship and to construct the phenomenology to
accord with the available microscopic formulations.

The plural character of the latter raises some problems
of its own, however. There are, at present, two clearly
distinguishable classes of microscopic theories capable
of dealing from a united viewpoint with both rotations
and vibrations. The erst of these is the method of
generator coordinates'-'" "'~ based on the idea of an
intrinsic or generating state depending on both particle
and collective coordinates. The actual physical states
(members of a band) are obtained by projection, involv-
ing an average over the collective coordinates; the true
wave functions thus contain no redundant variables. If
the form of the generating state is assumed, the vari-
ational principle for the energy can be util, ized to obtain
the form of the projection operators on to the physical
states. ' 7 Where the latter are known from invariance
considerations (as for translations and rotations), the
method can be used to determine the best generating
state from an assumed trial class. ' ' "The generating

- state thus found generally varies mith the band member to

be projected.
We are aware of only one effort, which is quite suc-

cessful as far as it goes, to derive something akin to
the usual phenomenological theory from the method of
generator coordinates, namely, that due to Verhaar. ""
This work assumes a prescribed generating state6 ~ as
well as known projection operators and does not,
therefore, formally include the. more recent microscopic
versions. '" It cannot, as it stands, be applied at all to
vibrations where the projection operators are not known
a priori. For rotations, however, it is, from a purely
phenomenological standpoint, as general as the custom-
ary phenomenological theory and quite close to the
method to be developed in the present paper. (Quite
recently a new and unconventional phenomenological
analysis, which appears quite powerful, has been ex-
tracted from the generator coordinate method. "So far
only the case of rotations has been tres, ted.)

Our over-all view of the method of generator co-
ordinates is that, despite its venerable service, it is still
young in development. Though it has proved a powerful
tool for study of the s-d shell, for instance, '~ ~' '~ and
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may yet prove to be a useful tool for heavy nuclei, '" '8 "
no one has yet recorded by means of this method a syste-
matic theory of rotations, vibrations, and their coupling,
either microscopically, or phenomenologically. A partial
exception to this statement must be allowed, however,
for the work of Levinson et al. ''I

A second microscopic method has been developed
in recent years, one originally christened the general-
ized Hartree-Fock approximation9-" """but since
renamed the self-consistent core-particle coupling
method. "Though the publication of the consequences of
this method is far from complete, it has at least been
indicated that a uniform method is available for the
treatment of rotations and vibrations" and that the
method contains as a limiting case' the full machinery
of the time-dependent self-consistent 6eld method. "
It is, of course, intended to develop these ideas more
fully in future publications. ln the course of these
studies, however, it has become clear that one could,
and perhaps should, abstract for quite separate con-
sideration the phenomenological concepts of collective
motion inherent in this approach. In so doing, one is
enabled to give what appears to be a soundly based
theory of vibrations, rotations, and their coupling.

For the present we restrict ourselves to a single
idealized collective degree of freedom (Sec. II) appli-
cable to monopole vibrations, translations, and rotations
in a plane. The detailed application of this method to
rotations and vibrations in the real world will be given
in a separate paper which is now in preparation. The
idealization consists in the assumption that the collec-
tive branch of the spectrum, though at best only
partially observed experimentally, can be continued
inde6nitely to states of higher energy and that the
resulting states can be put into perfect correspondence
with some simple quantum-mechanical system; the
coordinates of the latter are the collective degrees of
freedom. The assumption of collective motion is realized.
in the statement that the values of these coordinates
cannot change much io. consequence of the change of
state of at most a few particles. The natural exploitation
of this statement leads straightforwardly to the phe-
nomenological theory. It is argued that the description
may still be useful in the real case that the collective
spectrum is de6nitely bounded in extent, and that in
this case the description still divers from that given
by the method of generator coordinates.

Villars has recently given a new theory of rota-
tions. ""In Sec. III it is shown that its macroscopic
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Chi-Shiang Wu (to be published)."S.T. Belyaev, Nucl. Phys. 64, 17 (1965).
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aspects can be deduced from the results of Sec. II.
Insofar as it has been developed, microscopically, it
yields anew the self-consistent cranking theory. The
way in which this comes about'4 is reviewed briefly.

In the attempt to understand the accomplishments to
date of the generator-coordinate method, we have, of
course, studied only the published literature in this
area. In Sec. IV we have reviewed only a few basic
elements relevant to the present discussion. A summary
discussion in Sec. V contrasts the two methods.

II. IDEALIZED THEORY OF A COLLECTIVE
DEGREE OF FREEDOM

K(n,p )= (p„'/28)+-,'Csn', (2.2)

where the inertial parameter 8 and the force constant
C2 must somehow be related to many-body dynamics.
We shall envisage a "breathing mode" with 0. some
measure of the fractional change in radius of the nuclear
system.

t We are begging several questions, but only tempor-
arily. Thus Eqs. (2.1) and (2.2) can never be given
empirically because they imply an in6nite number of
states. We shall be required 6nally to provide answers
to the following queries: Even supposing an in6nite
number of states, can any realistic many-body system
have a collective Hamiltonian as simple as (2.2)P What
modi6cations are necessary if at best a 6nite number of
states can be associated with the particular notions
under discussions)

In Eq. (2.1) it is fundamental to emphasize the dual
significance of the "wave functions" (n~n). They are
trivially the wave functions of a one-dimensional
harmonic oscillator, but the basic physics of our ap-
proach is that they are simultaneously and more
vitally the overlap between the many-body state (n)
and an idealized many-body generating state

~
n). This

is expressed by the equation

We illustrate our basic point of view by an instructive
though academic example. We suppose that obser-
vation on our system has brought to light a sequence
of levels of zero angular momentum with the uniform
spacing of a simple harmonic oscillator with energy
diBerences coo. Assuming that certain conditions on
transition probabilities (a matter to which we shall
return) are met, it is then natural to suppose that we
can associate with this subset of states a collective
oscillator coordinate 0. and its conjugate momentum

p in the sense that the simple Schrodinger equation

K(n,p )(njn) = (n+-', )o&&)(nin) (2.1)

is satis6ed and

where, with our suppositions, the ~n) form a complete
set of localized states

(n [n') =b(n-n') . (2 4)

Equations (2.1) to (2.4) may be understood as the ex-
pression of the assumption that our many-body system
possesses a collective degree of freedom.

Though the basic distinction between Eqs. (23) and
(2.4) and superficially similar equations of the generator-
coordinate method' ~ will hopefully be fully clari6ed
in consequence of the further content of this paper, it
is perhaps necessary to warn the reader explicitly at
this point to avoid the possible confusion of the two
methods. In the traditional approach one builds on an
explicit many-body generating state

~
n), which is

necessarily approximate (Slater determinant or BCS
wave function) depending on the parameters n. Only
through utilization of such an explicit form does one
ultimately obtain information about (n

~
n) and

~
n).

The number of states jn) is then always Pnite and the
overlap (2.4), though peaked, is not a 8 function.

In the present approach ~n) and
~
n) are idealizations

whose explicit form is never needed (in fact cannot be
given). The property (2.4) requires only the correspon-
dence between an in6nite subset of many-body states

~
n) and the harmonic oscillator (in this case). We now

describe the assumed properties of this correspondence
which allows us to do physics, even though we never
assume explicit wave functions for the nucleus.

Consider a general observable Q~, which we can think
of in all practical cases as a one- or two-body operator.
For the computation of 0' in the basis of states

~
n), we

write

(n(O~~n)= Q O~&s&(n)(8s/Bns)&)(n —n'), (2.6)

where

We then consider the matrix element (n~ O~~n'). Since n
must depend in some symmetrical way on the coordi-
nates of all the particles, whereas O~ is an operator that
changes, at most, the state of a few particles, it is
di6icult to imagine other than that (n~ 0~~n') is a dis-
tribution peaked in the neighborhood of e=n'. In the
literature, such a behavior has often been veri6ed for
speci6c examples, ~"""where it is found that the
width of the distribution narrows as the number of par-
ticles increases. This distribution therefore admits an
expansion in moments

lw)-f « Ia)&aln), (2.3)
(2.7)

"T. Kammuri, Progr. Theoret. Phys. (Kyoto) 37, 1131
(1967}.

The remainder of our discussion in this section involves
the straightforward exploitation of (2.5)—(2.7).
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We shall first see how these equations may be used to
obtain formulas for B and Co of Eq. (2.2), or more
generally, to obtain the collective Hamiltonian K(a,p ).
In this procedure we suppose the state ~n) to exist ac-
cording to (2.3) and (2.4), but we assume a momentary
skepticism about (aj N) possessing properties as simple
as those expressed by (2.1) and (2.2); i.e., we allow for
a more general K(n,P ).By a straightforward symmetri-
zation we can write for matrix elements of the many-
body Hamiltonian H, as an application of (2.6) and

(2 7)

circumstances are best considered within the framework
of a microscopic theory. If, on the other hand, one
wishes to describe a nearly harmonic spectrum, this
implies that one may introduce the further expansion

(2.18)

Supposing the linear term to be absent (as can always
be arranged), one then has upon comparison of (2.17)
and (2.18) with (2.2)

()o (
H [

rs') = dn(n in)LH&')'(n)+xo {H&')'(n),(8/Ba) }

+-'{{H"'(),(~/~ )),(~/~n)&+ "j(al~') (28)

W.=a«0),

(2B) '= —H('o

C —gg (02)
~

(2.19)

(2.20)

(2.21)

II&"'(a)=H"'(n)+ (2.11)

It is supposed that, in every case, there are rapidly
converging series; for illustrative purposes, we shall

therefore retain only the erst term of each and drop the
primes. (The nature of the convergence is discussed

among other questions in an accompanying paper. ')
Furthermore, if it is not already zero, the term in B('&

can be eliminated in the usual way by a canonical
transformation

with
(8/Bn) -+ ( i/8&)+aX(n),

X= —L(HO)/H&o) j
(2.12)

(2.13)

It is evident from (2.5) and the special case (2.8) why
(2.1) and (2.2) are too naive and must be generalized.
From (2.5) alone we should write

where, e.g.,

H &')'(n) =II&'& (n) —o (&&/&&n) H &'&(n)

+4(~'/~a')H"'(a)+ ", (2 9)

H &'&'(n) =H &'& (n) —(8/Bn)H &'& (n)+ (2.10)

o)o= (C/B) '". (2.22)

Next, let 0~ be an operator (monopole moment, for
example) connecting successive states of our "system. "
We compute

In this procedure we are, moreover, hardly constrained
to remain within the harmonic approximation; the
extension to higher-order terms is straightforward and
will be considered for physically more interesting cases
in the paper under preparation. It is also illustrated for
a microscopic model in the paper immediately following
this one."

It is to be remarked further that the analysis given
here applies not only to one-dimensional vibrations but
also to translations and to rotations in a plane if, in
these cases, we set C2=0, and reinterpret the collective
coordinates. Most of the comparison with other work
will be done for these latter cases since this is where the
most effort has been concentrated by previous authors.

Next we consider brieQy the "experimental test" of
the vibrational model within the harmonic approxi-
mation. We have, 6rst of all, the occurrence of a funda-
mental energy difference

with

K(a,n')(n'~ n)dn'=o) (n( e),

K(nn') = (n
~
H

~

n') —~oi)(n —n') (2.15)

&~lolm+~)=f'& )
)&o"'&~)+-*'&o"'&~) &&i&~))

+ g(a in+1)

and S'0 the ground-state energy. If we now admit
(2.8), we have, more particularly,

K(a,p )(nte)=o) (ain), (2.16)
where

do, e a &("&0,

+8'"'(8/o&n)+ j(n ~
1+1). (2.23)

Introducing the creation and annihilation operators b, b,

K(n,P )+WO=H (a)
+x{{H"'() (~/~ )}(~/~a))+

There are certainly circumstances where one of the

&'= L(lC)l —(2B)-'"(&/& )3,
of'= L( C) +( ) '(~/&) )j, (2.24)

more general forms just given must be utihzed. Such

I (~ I
o

I +» I'= (~+1) I
Ee""(2B)-'"

3~ A. Klein and R. E. Johnson, following paper, Phys. Rev.
171, 1224 (1968). +0""-', C)'" '+ ~ (2 25)
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K(n,P.)(min) =co (nin) (2.26)

but that this equation holds only for n(n, . If we

define the generating state ~n) by the equation

Of course the factor (n+1) is the oscillator signature,
the possible presence of higher-order terms signifying
the breakdown of the simple picture. If, however, one
can fit the energies with an anharmonic oscillator
Hamiltonian where the anharmonic terms are small,
and, at the same time one finds that higher-order
corrections to formulas like (2.25) are small, one can
consider the model to be a viable one. One would,
obviously, require that the data overdetermine the
parameters, in order to have a reasonable consistency
check.

One can see that the value of (2.25) cannot depend on
the absolute values or dimensions of 8 and C& separately,
but rather (2.25) remains unaffected by any change
«-+ Xn which leaves coo invariant (and thus Cg -+ X 'C~,
8~ X '8). From the purely phenornenological point of
view, the transition probability (2.25) brings in new
parameters not necessarily related simply to those which
define the collective Hamiltonian. Only in the case of
translations and rotations are there additional consis-
tency conditions arising from the associated sym-
metries as, for example, the requirement that the total
momentum and the translational energy define the
same mass parameter.

We have thus presented, in outline for a prototype,
a complete phenom enological quantum-mechanical
theory of an idealized collective degree of freedom. The
idealization consists in the assumption of an infinite
number of states representing various modes of exci-
tation of the given degree of freedom and consequently
of the existence of a complete set of localized generating
states satisfying (2.4).

In the next section, we shall show that a rather dif-
ferent looking formulation of Villars (restricted to
rotations and translations) can be derived directly, „:, by
rewriting the results of this section.

In practice, we must candidly admit the imperfec-
tion of our collective degree of freedom, in that the band
must break off for suSciently high e. By a simple and
undoubtedly naive modification of our basic equations,
we can argue that the phenomenology developed above
should still be valid for small e. Let us suppose, for
example, that as empirical fact a finite set of states n
can be put into correspondence with the simple quan-
tum-mechanical system described by

element such as (2.5). This is sufficient to preserve the
structure of the phenomenology. The only new point
is that at least one additional parameter e has been
introduced into the microscopic theory, i.e., the form
(2.27) must be used to evaluate formulas (2.19)-(2.21).
The value of e,„should be determined by shell-model
considerations. A first step in the direction of this kind
of theory has in fact been made. "

The generating state ~n) defined by (2.27), though
sharing some formal properties with the corresponding
state in the method of generator coordinates, must in
reality be distinguished from the latter for the following
reason: As we shall indicate in Sec. IV, the method of
generator coordinates cannot yield an equation equiva-
lent to (2.26) beyond the harmonic approximation. It
remains for the microscopic theory to establish the self-
consistency of (2.26).

dy(OI CH, yj&» Iy), (3.1)

where P is the angle operator whose eigenvalues label
the "needle" states ~P), and

III. RELATION TO VILLARS'8 METHOD

A. Phenomenological Theory

This development has both a kinematical and a
dynami. c aspect. In accordance with our program, we
shall emphasize the former. Work which is in part
equivalent to that of Villars has been carried out by
Kammuri. '4

We shall show how the results of Sec. II can be
reformulated and reinterpreted, specifically for the
case of rotations, to give precisely the formulation of
Villars. (The method of this section, as it stands, is not
applicable to vibrations, the relation of the collective
momentum operator to a constant of the motion proving
essential. In that sense the previous phenomenology is
more general than that which follows. )

Let us study the series (2.8) for the case of two-
dimensional rotations. It then simplifies because H(~& is
independent of 0& (which we relabel p) as a consequence
of the assumed rotational invariance of the Hamiltonian.
We have, as a special case of (2.7),

+maz

Q = S S Q
n

(2.27)

then we may still expect Eqs. (2.5)-(2.7) to be reason-
ably correct, since (n~n'), though no longer a singular
function, is still strongly peaked as a function of
(n—n'), and the same should be true for any matrix

where k commutators are taken all together. For practi-
cal purposes the operator P is canonically conjugate to
the angular-momentum operator I. The series (2.8) is,
for this case, trivially evaluated:

(It8
~

I')= brz [8"&+8&'&iI'+8&"(iI')'+ ] (3 3)

This series can be given the following interpretation:
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Within the space of states ~I), we may consider the
quantities H(~) to be the matrix elements of operators
both diagonal in I and independent thereof —in short,
multiples of the unit operator. We write

H =H &'&+H &'&iI+ +H &s& (zI)~+ ~ (3.4)

and the assertions made above can be correct if and
only if the H&"' are independent of both P and I. In
this sense the H(~' are truly intrinsic operators. Within
the context of Sec. II their matrix elements were
recognized as the parameters de6ning the collective
Hamiltonian.

By a further evaluation of (3.1), we have, since

since
H'" =—

sz[l&l, d]+". (3.12)

H= H &s&+H &'&(iI)'

=—H &'&+Is/28

or, comparing with (3.12),

(3.13)

(3.14)

This equation together with the implied simplification
of (3.11),

For illustrative purposes, we shall restrict ourselves to
the approximation H&s&=0, k)4, k even (the rigid
rotator). Then, according to (3.4), we have

14» =exp(-zlzz)14 =0),
H&s&=2zrQ =0~ $8,&&l]&s&!&is(&=0)

=2 (I I LH, 1l]"'3r.s II')

(3 5) j=—
zL&t,H] =I/s, (3.15)

B. Microscopic Theory

are in this formulation the fundamental equations of the
rigid rotator.

= (I=0~ LH, 1&]&'&)I=0). (3 6)

H&»= pH, l&l]&» —Q H&'&(zI)'-'. (3.7)
&=s+t k!($—k)!

Equations (3.4)—(3.7) and. attendant discussion con-
stitute the core of Villars's phenomenological formula-
tion of the rotational problem. How can we, using these
ideas, determine the intrinsic operators in practice?

In describing the procedure for doing calculations
we shall tie together the viewpoints of Villars"" and
Kammuri34 by utilizing a result of Sec. II as expressed
by Eq. (3.1). Our normal prejudices require the odd
terms in I of Eqs. (3.3) or (3.4) to vanish, i.e., we must
expect the H&s& to vanish for k odd. This indeed follows
from the assumption that if I'~ is the reQection, with
respect to the 1 or x axis, then any rational definition of
the operator P yields

or
File»= I

—4»

Et/Pi '= —p,

(3.8)

(3.9)

to an irrelevant phase, whereas

F,HF;&=H. (3.10)

More generally we may obtain the same result from
time-reversal invariance.

With the help of (3.7) we now obtain a series of
invaluable conditions, of which the 6rst is

H'&" =0= —iP—2H&s&(iI) —3H"&(iI)'—
=-i+ Ei,c]I+", (3.»)

In reaching the last form, we have utilized a fact which
can be inferred from (3.4), namely, that IH, P]&"& is
rotationally invariant. Equation (3.6) permits us to
recognize the existence of potentially useful recursive
formulas for the operators H&». From (3.4) and (3.6)
we have, in fact,

Thus far the theory —within the bounds of the ap-
proximations imposed —is unobjectionable. The mean-
ing of Eqs. (3.14) and (3.15) is that they are equations
for intrinsic quantities. The~r conseqlences should then
be independent of the state of rotation in which the system
finds itself. In fact these remarks are quite academic
since they merely pose the microscopic problem: Ke
must (i) find a realization of the operator P within (iia) a
space of states representing the rotational band such
that (3.14) and (3.15) are satisfied. We may take advan-
tage of the intrinsic property of these equations to
replace (iia) by the weaker requirement (iib) that (3.14)
and (3.15) be satisfied by a single linear combination
of the states of the band. We add as a requirement
(iii) that any scheme of solution when transcribed
literally for the case of uniform translational motion
must yield the total mass M as the inertial parameter.

At this point the problem takes a familiar turn, which
we note only briefly. A solution is found by representing
&&l as a one-particle operator and by supposing that the
setf consistentty deter-mined (deformed) Hartree Fock state-
is the required linear combination of the members of
the band. This leads us right back to the self-consistent
cranking model. '6 '~

IV. PROJECTION METHODS POR NONIDE~
COLLECTIVE MOTION

As emphasized at the conclusion of Sec. II, Eqs. (2.3)
and (2.4) represent an idealization of the actual
physical situation. We there proposed Eq. (2.27) as a
step toward reality, which nevertheless retained our
basic approach to the definition of collective motion.
Here we provide for contrast a short summary of the
projection methods, which constitute an alternative
and. apparently distinct attack on this problem.

's D. J. Thouless, Nucl. Phys. 21, 225 (19Q&)."D. J.Thouless aud T. G. Valatiu, Nucl. Phys. 31, 211 (1962).
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Following Wheeler-GriKn4 and Peierls-Yoccoze we
may modify the notion of a generating state by keeping
(2.3), but suppose thereby that only a finite number of
states can be projected out of ~n). In practice, now, the
generating state ~n& is a definite many-body wave
function, e.g., a Hartree-Fock state or a BCS state
corresponding to some assumed orientation or defor-
mation n, the speci6c dependence on n being required in
any actual microscopic calculation. This in turn means
that the overlap

(nin') =E(nn'), (4 1)

though a localized function in the sense of (2.6) and
(2.7), is no longer infinitely localized. For the states
~22) in question, we have

dndn'(I in&J» (nn')(n'i 22'). (4 2)

This suggests that we replace (2.1) or even (2.14) by
the equation

tion we write

(22&= dnin; 22&(ni 22&0, (4 i)

where (n~22&0 is a prescribed transformation function
(eigenfunctions of momentum or angular momentum),
and we allow the generator state ~n; 22& to depend
(hopefully in a weak or essentially determinable way)
on the quantum numbers of

~
22). The variational

principle is then applied to the determination of ~n; I).
Examples of this approach include the work of Peierls
and Thouless' and Rouhaninejad and Yoccoz." It is
by no means evident in what sense these methods,
conceived as microscopic approaches, can be reduced to
simple and general phenomenological terms. Only for
the first of the methods are general remarks, indepen-
dent of the detailed nature of the generating state,
possible. For example, we seek to reduce this approach
to equivalent oscillator form by the consistent use of
(2.6) and (2.7). Because in so doing it is necessary
finally to return to the standard norm

44&aa')da'&a la') =a fdd&aa )da'&a'I a) '(4 4) (4.8)

Comparing (4.2) and (4.3) with the equation

(22(H~n'&=(Wo+(0 )8

the reduction should be carried out on the norm-inde-
pendent structure

)& lddl && la) &44) '=f & I &{& I I
'& —

o ( ')&& 'I

we may conclude that

K(nn') = (niHin') —W0N(nn'). (4.3)

X (22 in)1V(nn')(n'i 22&

——1/2

The formulation just given may be rendered more
cogent if we remark that (4.3) is essentially the expres-
sion of the conventional variational principle

dndn'e n n B n'

—W„cV(nn') j(n' In) =0. (4.6)

The quantity to be varied and determined in this
principle is the transformation function (n~ 22&.

Traditionally, this method has been used in the follow-

ing sense: For a given trial
~ n), we can compute X and

X. The solution of (4.3) then yields the (n~22), after
which the approximate physical eigenstates (22) can
be constructed from (2.3). This is not, however, the
only possibility.

Recently a different formulation of the variational
principle applied to a projected wave function has been
utilized, one which is especially appropriate to the
problems of translation and rotation. In this formula-

--Z/2

X (e'~n)A (nn')(n'[~') . (4.9)

Applying the expansion (2.6) to (n~ H ~n'& and to (n~ n')
we now find to quadratic terms that X( p n) is of
oscillator form, with

—(H (00)/Q (00)) (4.10)

(28)-'= {LE(")H(")/(X("')')—LH &")/37(")j) (4.11)

{LH(02)/+(00)j P7(02)H(00)/Q7(00))2$) (4 12)

These formulas are well known. "They may be seen
to reduce, in the limit of an idealized degree of freedom,
to the results of Sec. II, Kqs. (2.19)-(2.21).

The considerations of the previous paragraph require
further discussion, however, in order to delimit their
range of application. Thus Eq. (4.8) is generally com-
patible (involving only a renormalization) with (4.2)
only in the case of translations and rotations. For the
case of vibrations- they are compatible only in the
harmonic-oscillator approximation. Further examin-
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ation of the expansion shows that there is no anharmonic
equivalent to (4.2) and (4.3) because the effective
Hamiltonian depends on the state n, and this would have
to be compensated for by a dependence of

~
n). Thus the

demand that a model based on (4.2) and (4.3) be
equivalent to an anharmonic oscillator requires of the
generating state ~u) properties not possessed by the
usual simple choices (Slater determinants, etc.) made
for these. It thus appears that the simple phenomeno-
logical vibrational picture and the simple projection
scheme are complementary rather than coincidental;
where the phenomenological picture applies, the pro-
jection scheme cannot be too simple, and where the
projection scheme applies in its most naive form, the
phenomenological picture will probably fail. In practice,
the projection scheme has been most useful for light
nuclei. " '~

V. SUMMARY AND DISCUSSION

We have assumed that the relationship among a
certain finit set of nuclear states of a given nucleus can
be understood by supposing these to behave with re-
spect to each other as the states of an oscillator or a
rotator, albeit in each case an imperfect one. We have
pointed out essentially two different phenomenological
viewpoints toward this state of affairs, each of which
has its microscopic counterpart.

In the first method we assume that the set of states
can be described in the sense of a correspondence by a
collective Hamiltonian. This leads to the limiting con-
cept of an ideal collective variable and to a self-con-
tained, although oversimplified, phenomenological
theory. In this theory it is straightforward to introduce
coupling between modes, although we have not dis-
cussed this question in the present paper. The corre-
sponding microscopic theory has been partially de-
veloped" and appears, together with the phenomeno-
logical concept, to be the most natural basis for the
study of collective effects in heavy nuclei, especially
deformed ones. " Within the microscopic version two
extensions have been studied. In the first, one considers
states of high quantum numbers, where the collective
effects are still apparent but the expansion of the col-
lective Hamiltonian and other operators in a straight
power series in the collective variables begins to fail.
Here an altered phenomenology based on the cranking

model has been introduced with remarkable success"
and subsequently justi6ed from the microscopic
version' within the framework of the ideas of the ideal
collective coordinate. Ultimately one must also con-
sider the way in which the collective states cut off. The
work done here" is only a beginning.

In the second method, we consider the technique of
generator coordinates as originally introduced' ~ and
as subsequently modi6ed. '"""In contrast to the
previous method where one starts from the energy
levels or, equivalently, from the collective Hamiltonian
and the explicit form of the generator state eever enters,
here, in most attempts, one starts from the assumption
that the generator state is simple and can therefore
either be given a priori or calculated from the vari-
ational principle. There is no guarantee that any given
generator state is equivalent to a simple phenomeno-
logical description; in general, this is not the case, even
formally, except for the problems of rotations and
translations where the invariance properties intervene.
For the problem of rotations, Vehaar" ' has shown that
the method of generator coordinates can be used to
derive a completely general-looking phenomenological
theory of rotations, not essentially different from some
of the results of the method of ideal collective coordin-
ates, as we shall show in a subsequent paper. The main
objection to this approach is that the microscopic
version of this theory, corresponding to the work of
Peierls and Yoccoz,"is not in accord with experiment
for heavy nuclei where the derivations might apply,
and the wave function of Peierls and Thouless, ' which
can be said to correspond to experiment at least for a
ground-state rotational band, does not fall within the
framework of the phenomenological model. Neverthe-
less, as has been mentioned, the method of projected
wave functions has so far proved to be the most
valuable simple way of studying collective motion in
light nuclei.

Since our present interest is in heavy nuclei, we shall
concentrate our future efforts on applying the method
of ideal collective coordinates as far as it can be
stretched. In an accompanying article" we show by
means of a simpIe model how the concepts of the present
paper can be applied in the most direct fashion possible
to a microscopic case.

"S. M. Harris, Phys. Rev. 158, B509 (1965).


