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The cross section for the absorption of polarized photons by oriented nuclei is given in terms of the nuclear
orientation parameters and the photon polarization parameters for linear and circular polarization. All
quantities are given in terms of the nuclear polarizabilities, which contain the electric and magnetic transi-
tion matrix elements. The polarizabilities of higher than zero rank contribute to the absorption cross section
only if the nucleus is oriented. Without photon polarization, only the even-rank polarizabilities affect the
absorption cross section. Photon polarization effects show up only with oriented nuclei. In that case the
polarizabilities of odd rank are connected with circular photon polarization, while those of even rank are
connected with linear photon polarization. The latter is not true if time-reversal invariance is violated.
Finally, the contributions of the various multipole transitions to the polarizability of given rank cannot be
separated experimentally.

ECENTLV, photonuclear experiments with ori-
ented nuclei have become feasible, ' and compared

with experiments with unoriented nuclei they yield
more detailed information about nuclear polarizabilities
of higher than zero rank. This can be used as a sensitive
test for nuclear models. Furthermore, it seems that
monochromatic polarized photon beams will become
available in the near future. Therefore it might be
worthwhile to give the general expression of the cross
section for the absorption of polarized photons by
oriented nuclei in terms of the nuclear orientation
parameters and the parameters describing linear and.
circular photon polarization. This way it will become
apparent what kind of information one can obtain with
such experiments.

We start from the optical theorem, which gives the
total absorption cross section in terms of the imaginary
part of the elastic forward scattering amplitude:

a.= (4~/k) tm(Trpb)
= (4sr/&) &m( Z pox ss,se &se ss;"'") ~ (1)
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E is the scattering amplitude for elastic forward scat-

tering and p is the density matrix of the initial photon
and nuclear states. The general scattering amplitude in
terms of the nuclear polarizabilities E';~~'""' is' '
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X and X' denote the circular polarization (=+1) of the
incoming and outgoing photons, respectively. The
nucleus changes its state from

I I,M;) to
I IfMf) during

the scattering event, where I;,N; and If, off are spin
and its projection of the initial and the 6nal nuclear
states, respectively. E and R' denote the rotations that
transform the nuclear quantization axis into the direc-
tion of the incoming and outgoing photons. The rotation
matrices are in the convention of Rose.4 In terms of the
nuclear electric and magnetic multipole matrix elements
the polarizabilities are given by'

with
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*On leave of absence from Universitat Frankfurt am Main, Germany.'E. Ambler, E. G. Fuller, and H. Marshak, Phys. Rev. 138, B117 (1965); M. A. Kelly, R. L. Bramblett, B. L. Berman, and
S. C. Fultz, Bull. Am. Phys. Soc. 13, 35 (1968).
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E, k and E', k' denote the energies and the wave num-

bers of the incoming and the outgoing photons, respec-
tively. The summation Is in (4) goes over all nuclear
states of energy E and width F„.The ground state is
normalized to zero energy. In (3) and (4) we have used
the notation M'L=—EI. to describe electric transitions
of order L, i.e., parity change (—)L, with the multipole
operator M (L,rIs) =E(L,m) and M'L= ML—to describe
magnetic transitions of order I., i.e., parity change

(—) +', with the multipole operator M'(L, m) —=M(L,tn).
The electric and magnetic multipole operators include
charge and spin contributions and they are de6ned in
the convention of Brink and Satchler. ' The reduced
matrix elements that occur in (4) are de6ned in the
following way:

&IrMgl rL~!I,M,&

which one easily proves from (3) and (8) taking into
account P;(M"L,M"'L') =0 if (—)~L'+~"'= —1.

With the aid of (6) and applying time-reversal
invariance, the polarizabilities of (4) for elastic scat-
tering become

Z'L+L'k L+L

P (M"I, M"'L') =—
2(2L—1)!!(2L'—1)!!

XL(L+1)(L'+1)/(LL') 3'Is 2(—)'"+"
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HALI oL I—o; a[3(2I,+1)jr IsZse'/AMcs. (10)

P, (M.L Mv'L ) P, (M"L MvL)
where TL~ is an irreducible tensor of rank L. In the
convention of Ref. 5 for the multipole operators and
with (5) we have

Then we get from ~3

f' Iq L I; ~
From this expression one obtains immediatelyi—BED 3f 3E;I

&I'IIM" (L)III-&'= (—)'" "+~'(I-IIM"(L)III'& (6)
I .LLM, ( )(L+L)()—Z)12@.L LW,J j (12)

If we assume time-reversal invariance all transition
matrix elements can be made real or pure imaginary
depending on whether L+v is even or odd. s For a given
initial and 6nal nuclear state the polarizability
P (M"L,M"'L') contributes only if (—) +L'+~"'= s"mr is
fulfilled, where x; and xy are the parities of the initial
and the 6nal nuclear states.

For elastic forward scattering (E=E', I&'.=R'), the
scattering amplitude becomes

g, vx — Q ( )x+Ii Mr'+L+L'(2j+—1)
L,L',j

(
I; j I; )L I-' jx —)' )'—)i

and P,"'" of (8) becomes
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!

P. '»' (13)—),' )'—)i
In more detail,

2 )L L' j~p"=—Q
L&L'1+bLL «1 —1 Oi

Xf&P; (EL,EL') —P; (ML,ML')

+ip;(ML, EL')+ip, (EL,ML')j, (14)'

Here we have made use of the Clebsch Gordan series of
the rotation matrices and the orthogonality property of
the 3j symbols. As a shorthand we introduce the
notation

X[P;(EL,EL')+P; (ML,ML')

+iP; (ML,EL') iP; (EL,ML') j.—(15)
L, L'

P,x'x P ( )L+L'+x! P I' x' (8).
L,L'

Using the shorthand of (8) we get now

g, VX — Q( )Ir Sr)'(2~+1)—
Later we will need the relation

XP,LL» D „„,g(E) (7) 1 L L' j~» "=—(1+(—)') E
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~ D. M. Brink and G. R. Satchler, Angular Momentum
(Clarendon Press, Oxford, England, 1962).

'L. C. Biedenharn and M. E. Rose, Rev. Mod. Phys. 25, 729
(1953).
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The density matrix p is a direct product of the density
matrices 0. of the photon states and v of the nuclear
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DIRECTION 0
MAXIMUM L
POLARIZAT

EAR states is7

o=~(1+8 8)
1 is the 2X2 unit matrix, Q is the Pauli spin vector,
and P is the Poincarh vector. The components are

P HOTON
-BEAM

DI RECT I ON

P8 oi—i+o—11 )

Pg —$(oi—i 0 ii) ~

Pz &11 0—1—1 ~

(22)

Furthermore, we give the matrix elements in terms of
these components:

o+i+i =k(1~Pa),
g (Pr;%1Pg) .

(23)

FrG. j.. The geometrical meanin of the angles 8 and q
occurring in Eqs. 29)—(35).

states:
PXX M.M

It is convenient to choose the nuclear quantization
axis such that r becomes diagonal. This is the dednition
of the orientation axis. Then the density matrix 7 is
specified by the 2I;+1 diagonal elements rM,.M, How-
ever, it is more useful to deal with the orientation
pa, rameters f,' which are defined by

I;
f-=g(I',n) '2(—)'* ' rM;M;, (18)

Ms M; —M; 0
with

(2n)
g(I;,n)=I;

~
~P(2I;—n)!/(2I;+n+1)!g'~ . (19)

kni

The inverse relation is

rM;M, = (—)" ' E(2n+1)

(I; I; n
g(I', )f-, (20)

kV, —X;0

The degree of polarization s is given by the length of
the Poincare vector:

(24)

If s=i we have full polarization and if s(1 we have
only partial polarization. P,=P; is the degree of circular
polarization (right handed if P,)0 and left handed if
P,(0). In other words P,= (Ig—Il)/(I~+II), where
I& and II, are the intensities measured by a detector
that is sensitive to right- or left-handed circular
polarization, respectively. The degree of linear polariza-
tion is Pi (P&'+P ')'——".P~ is t-he di8erence of the
probabilities for finding a photon linear polarized in
the y or x axis, if the z axis coincides with photon beam
direction, which is assumed throughout this paper.
That means Ps (I„—I,)/(I——,+I„), where I, and I„
are the intensities measured by a detector that is
sensitive to photons linear polarized in the x or y axis,
respectively.

By a special rotation around the z axis we can make
P„- vanish. Then we have maximum linear polarization
in the x or y axis depending on Pg(0 or Pg&0 and
Pi ~P&I. Therefore, without loss of generality we can
choose the case P„-=0 and P~&0. Then we have maxi-
mum linear polarization in the x direction.

Since 0 and r are Hermitian we obtain

and as is seen from (18) the f are the irreducible com-
ponents of the nuclear density matrix. If the nuclei are
aligned then f vanishes for odd n. For unoriented
nuclei we have f =8 o.

The density matrix 0. of the photon polarization

oxx'rM~M~'~M('Mg ) ~ rrxv
X'X~

X,X~,M;,M;~

X rM,.M,'(1/2i) (ECM, M,
"'" EM,M,."""). . . (2—5).

Further, from (16),

&M;MP'" &M;M,'"""= E(2—j+1) (—) '— I, j I, q

IV m m;)—
I; j I; )—(—)r'™'~ ~P,

&'& D
&—X; —m Zj

p(2j+1)( )r;—M
~

' '
p „„,~(p,ix ( p—zpiiv)

&—~,'m ~;)
7 H. A. Tolhoek and J. A. M. Cox, Physica 19, 101 (1953).

(26)
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With the aid of (18) and the orthogonality property of the 3j symbols we get

&jrpr; (&sr; sr;"'" &—~ps;""")= Z—(2j+1)g(lr,j)fD0,1 1'-(&~'" (——)" "'&'""")
~

Ms, Ms'

The use of (23) with P,=Ps, Pt —— Ps—, and Ps=0 leads to

Im( P ~1,1,.re;sr, .Esr, .sr,.1'")
X,X' ~Ms tMs'

(27)

= ——.&{2j+1)g(1',j)f1(»(cos8)[«1(&1"—&s'")+~-t-t(&1 ' '—&1-' ")7
2i

+«—1(~. 11 p.l—1 )D0,21+n —11(+.1—1 p. 11 )Do sP}

= —s Z(2 j+1)g(1',j)f;([(1+(—)')+(1—(—)')P.]P;(cos8) ImP "
+Ptds, s'(8)[—(1+(—)') cos2to ImP; "+(1—(—)&) sin2p ReP; "]}.(28)

We have further used (9) to obtain the last line.
Since P, " is proportional to (1+(—)') the last term
in (28) vanishes. ' P;(cos8) are the Legendre polynomials
and do 0'(8) =P'[(j—2)!/(j+2)!]', Pp being the
associate Legendre polynomial. 8 is the angle between
the nuclear orientation axis and the photon beam
direction, and q is the angle between the plane de6ned
by the orientation axis and the beam direction and the
direction of maximum linear polarization (see Fig. 1).
Now we can express the absorption cross section in
terms of the nuclear orientation parameters and the
photon linear and circular polarization degrees:

0'o(EF)r
~ 8~ &)

polarization the even-rank polarizabilities aQect the
absorption cross section depending on the direction of
maximum linear polarization. Equation (33) shows that
0 is symmetrical to the plane that is determined by
the orientation axis and the beam direction, i.e.,
a (E,8, tp)=o (E,8, q—).o Furthermore, o changes sign
if one changes the direction of maximum linear polariza-
tion by an angle of 90 . For y=45, 0 vanishes.

(iv) In general the contributions of the various
multipole transitions to the polarizability of given rank

j, e.g. , P;(E1,E1), P; (M1,M1), P;(M1,E2), , cannot
be separated experimentally since they have all the
same angular distribution. This can be done in a photon
scattering experiment. ' '

= Q f,(o (E,8)+Pto (E,8, to)+P,e,'(E,8)), (29)

where

'= (1+(—)')

a c=(1—(—)')0

r, = —(2or/k)(2j+1)g(I, j)
XP,(cos8) ImP;", j =0, 1, 2, (32)

0.'= (2or/k) (2j+1)g(I;,j)(1+(—)&) cos20o

Xdo, s'(8) ImP; ", j=2, 3, 4, . (33)

From these expressions one can draw the following
general conclusions: j=0, 1, 2, 3, 4; (34)

&r = (4tr/k)(2 j+1)g(I;,j)do,s'(8) cos2 p

-ti 1 j
X

~
Im(P;(E1,E1)+P;(M1,M1))

1 1 —2

(i) For unoriented nuclei only the scalar polariza-
bilities contribute to the absorption cross section. In
order to observe polarizabilities of higher rank than
zero one needs nuclear orientation.

(ii) If the photon beam is not polarized only the
even-rank polarizabilities contribute. In that case
nuclear alignment is suKcient.

(iii) The absorption cross section depends on the
photon polarization only if the nuclei are oriented. The
odd-rank polarizabilities are connected with the
circular-polarization parameter P„while for linear

pi 2 j
+2I ReP;(M1,E2)

~2 2 j~+
~ ~

ImP;(E2,E2), j=2, 4, (35)
(1 1 —2)

9 If time-reversal invariance is not fulfilled this would show up
in an asymmetry !O. C. Kistner, Phys. Rev. Letters 19, 872
(1967}g.' This is not true if time-reversal invariance does not apply.

Finally, we give explicit expressions for electric
dipole (E1), electric quadrupole (E2), and magnetic
dipole (M1) absorption:

(30) o;= (2or/k) (2j+1)g(I;,j)P;(cos8)
&1 -1 oi

X [Im(P;(E1,E1)—P, (M1,M1))]

t'ai

2 j~
+2~

~
ReP;(M1,E2)

Ei —1 Oj

2 2 j+ I I
ImP;(E2, E2)

&1 —1 Oi
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with

IlnP;(jLf''L, MrL) ReJ';(M1 E2) = (k—s/2VS)g( )r;+r.

ksL L+1~ ( )r~l Q( ) IC+ro

2L(2L—1)i!3' L n

1 2 J"'

x (I;llew(1) llI„)(l,ljE(2) ill„)1„
I; I, I„

x l EE-(1+(—)')+z(E-'+E'+-'I'. ')0—(—)tn

XL(E-s—E'+sII'. ')'+(1'.E)sj-' (»)

xl:EE.(1+(-»&+-,(E. +E+V.)«-(-)» I vrould like to thank M. Danos and E. G. Fuller for
reading the manuscript and oGering many valuable

XL(E —Es+-II' ) +(F„E)j ' (36) comments.
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Concept of Ideal Collective Coordinate as the Foundation for a
Phenomenological Theory of Nuclear Collective Motion:

Basic Ideas and Relation to Other
Phenomenological Methods*

ABRAHAII KLEIN, M. DREIZLER, AND ROBERT E. JOHNSONt

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
(Received 9 February 1968)

The concept of an ideal collective coordinate is introduced by means of the following example: Consider
a one-dimensional vibration of a many-body system in the sense that a large subset of states (n) of the
system exhibits an energy spectrum and relative transition probabilities following the laws of the (in general
anharmonic) oscillator described by X (p,a) (a(n) cu„(o~n)=We sup.pose the set of many-body states
~n) to extend indeanitely, and we take the transform [n) =P [n) (n~a) to define a many-body generat-
ing state of the band which is precisely localized in e space. The basic assumption of collectivity, that
changing the state of at most a few particles cannot much alter the value of a, is shown to be sufhcient to
derive a phenomenological theory from the many-body starting point. The phenomenological aspects of a
recent theory of rotations due to Villars is seen to be contained in the above formulation as a special case.
A brief review is given of the generator coordinate and similar projection methods in order to exhibit their
relationship with the present method.

I. INTRODUCTIOÃ
" 'N the traditional phenomenological approach to the
~ - nuclear collective Hamiltonian, "one assumes that
somehow the fundamental microscopic Hamiltonian can
be written approximately as the sum of a collective and
an intrinsic part, the wave function having, in Qrst
approximation, essentially a product form. I'er contra,
it is remarkable that none of the existing versions of fully
quantum-mechanical microscopic theories of collective
motion' '7 is able to exploit this suggestion. The reason

* Supported in part by the U. S. Atomic Energy Commission.
t Present address: McMaster University, Hamilton, Ont. ,

Canada.
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ing Co. , Amsterdam, 1965).' A. Bohr and 3. R. Mottelson (unpublished lectures}.' D. L. Hill and J. A. %'heeler, Phys. Rev. 89, 1102 (1953).

4 J. J. GriKn and J. A. Wheeler, Phys. Rev. 108, 311 (1957).

for this "failure" is physically clear: In contradistinction
to the case of molecules, there are no generally valid

' J. J. Grifiin, Phys. Rev. 108, 328 (1957).
'R. E. Peierls and J. Yoccoz, Proc. Phys. Soc. (London)

A70, 381 (1957).
I J. Yoccoz, Proc. Phys. Soc. (London) A70, 388 (1957).
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