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A method is presented for calculating the oG-energy-shell two-body reaction matrix elements for a local
potential that contains a hard core. An analytic expression is presented for the matrix elements, t (h', h; s),
for the special case of a hard-core potential with no other interaction. Graphs are presented showing the
sects of the hard core for negative values of the energy parameter s and l= 0 relative-angular-momentum
states, using a potential of exponential shape and parameters chosen to approximate the nucleon-nucleon
interaction.

I. INTRODUCTION large or fast enough. For this reason, attention has been
focused on the rather unusual separable' interactions.

Although the on-shell behavior of a separable poten-
tial may duplicate that of a local potential, the off-shell
behavior may be substantially different. It is therefore
important, when using a separable potential, to deter-
mine whether the off-shell behavior is reasonable. At
present there is almost no information at all on the
behavior of off-shell elements. The technique most often
used to go off-shell is through calculations that use a
local potential that has been 6tted to the on-shell data.
Whethej. this technique is correct or not can only be
determined by comparing the results obtained with
observation.

The use of a separable potential to determine off-shell
matrix elements is an even more hazardous technique
because of the lack of physica1 justification for the
separable form. However, the simplicity of this tech-
nique has gained for it very widespread use. Not only
should the separable potential be fitted to the on-shell

elements but its oG-shell behavior should approximate
that of a local potential (or at least there should be an
awareness of the differences). The first step in this
direction was taken by Mitra, ' who determined the
form a separable potential must have if its S matrix is
to have the same analytic properties on-shell as a super-
position of Yukawa potentials. Noyes' and Kowalski'
attempted to improve this work through consideration
of the off-shell behavior. Mongan" obtained a potential
with the correct on-shell analyticity properties but with
a discontinuity in the off-shell elements between the
bound-state and scattering regions. In addition Mongan
presented numerical results for the positive energy
on-shell elements. Wong and Zambotti" were the first
to present numerical results for off-shell elements

NO%LEDGE of the nuclear interaction has in-
creased impressive1y in the past few years. ' The

elastic on-shell S matrix for the two-nucleon system
now appears to be well known2 and there exist several
potential models' that are quantitatively accurate over
the elastic energy range.

For many problems of interest, however, knowledge
of the on-shell 5 matrix, however complete, does not
suffice. Thus in nearly every nuclear problem (excepting
only free two-nucleon scattering) off-energy-shell matrix
elements play an important role, e.g. , p-p brems-
strahlung, nuclear matter, deuteron stripping, etc.
Appreciation of the importance of realistic off-shell be-
havior has become well known only quite recently, after
the invention of the Faddeev4 equations and the con-
sequent renewed interest in the three-body problem. '

While the Faddeev equations give a mathematically
correct and technically solvable system of equations, it
is.not possible in practice to obtain a solution with a
realistic local potential such as is used to fit the on-shell

5 matrix. Presently available computers are not yet
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although they confined their attention to negative
energies and used a monotonic local potential.

In this work we extend the previous calculations to
include the more realistic case of a potential that con-
tains a hard core.

In Sec. II we review the t matrix and define our
notation. In Sec. III the t matrix is obtained for a local
potential containing a hard core. In Sec. IV we present
results that compare the t-matrix elements for "similar"
potentials with and without hard cores. Only negative
energies (for which the t matrix is real) and S waves are
considered. Section V gives our conclusions.

IL TWO-BODY t MATRIX

We define the two-body t operator, a function of the
(complex) "energy" parameter s, by

t(s) =s+pLI/(s —Hp)gt(s),

where p is the (Hermitian) potential operator and Hp

the kinetic energy operator. p„ is the relative-momen-
tum operator whose complete set of eigenfunctions are
the normalized plane waves. The units are such that
A=1=2m:

p., I k&=kI k&,

III. POTENTIALS CONTAINING HARD CORES

We consider here the solution of Eq. (3) for (local)
central potentials having a hard core, i.e.,

(riel r'&= V(r)3(r—r'), (7)

V(r) =+~, r(c
=p(r), r) c

It is clear that Eq. (3) cannot be attacked directly"
using the potential of (7) since the potential matrix
elements are infinite. For this reason we seek to trans-
form (3) into a differential equation. Thus we define the
operator Q(s) by

t(s) =pQ(s) .

From (1), one sees that

For a very general class of potentials" (not including
those having hard cores) Eq. (6) can readily be solved

by matrix inversion techniques" to obtain the t matrix.
Note that with the above definition the positive energy
on-shell elements can be related to the phase shifts,

ti(kp, kp, kp') = s—in' (kp) e"&'»/(2wskp),

and for s negative ti(k', k; s) is real if pi(k', k) is real.

dskll &&I I
=1.„ (2) Q(s) = 1+I 1/(s —Hp)gpQ(s) .

and Multiplying by s—H0 and rearranging we find

(rl k&= e'"'/(2w)s". (Hp+p —s)Q(s) = (H, s) . —

The matrix representing t(s) in the momentum space If one defines the ket
I Vp(s) & by

defined by Eq. (2) is then I«.()&—=I)()lk&,

(10)

, (k'I e
I «&(«I t(s) lk&

(k'It(s) Ik&= (k'I p lk&+
S g

(3)
then it is clear that

(k'It(s)lk&=(k'Inly (s)&. (12)

t (kps) —= lim t(kps+ ie) .
6~0

(4)

If the potential is central, one can eEect a partial-
wave decomposition as follows:

(k'
I t(s) I k) = Q (2l+1)ti(k', k; s)Pi(k' k) (5)

with a similar expression for the potential. Inserting (5)
into (3), one obtains

ti(k'k s)=e (k'k)

+ d'q (k', q)t (q,k; s)/( —q'&.

The integral in (3) is well defined except at real positive
values of s. There we choose the usual definition that
corresponds to outgoing scattered waves:

Operating with (10) onto
I k) gives

(Ho+p s) I@a(s)&= (Ho —s)—Ik). (13)

Upon projecting into configuration space and defining
the representative of I+q(s) ) to be 4'q(r; s), one has

I
—V'+ V(r) —s)%'a(r; s) = (k'—s)e'~'/(2')'" (14)

and, finally, a partial-wave decomposition yields

(ds/drs+fs V(r) —t—(l+1)/rsvp}gi, i,(r; s)
= (s—k')r j&(kr), (15)

where
00

@„(r;s) = Q (2I+1)i'Pi(k, r)Nip(r; s)/r. , (16)
(2w)3/s i~

» Steven Weinberg, Phys. Rev. 133, ll232 (1964).
» This is not to say that the integral equation cannot be used to

obtain these results. K. L. Kowalski and D. Feldman D. Math
Phys. 2, 499 (1961);4, 507 (1963)g have shown how the Lippman-
Schwinger equation may. be modified for use with hard-core
potentials.
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The limits for large k, k' and s are of interest. One sees

lim to(k', k; s)=0

lim tp(k', k; s)

Equation (15) is an inhomogeneous, ordinary second-
order differential equation that can be solved for
u&, &(r; s) Labbreviated to u&(r) in the followingj subject
to the appropriate boundary conditions, which must be
determined so that the resulting t(s)-matrix elements as 1/k' and, by the symmetry,
satisfy Eq. (3). Let us first consider the case of a hard
core only, i.e., w(r) =0.

A. Hard Core Only

For simplicity we shall consider only S waves here,
but the results are easily extended to higher partial
waves. Then (15) becomes (for the hard core alone)

u"+su(r) = V(r)u(r)+ (s—k') (sinkr)/k, r(c
(17)= (s—k') (sinkr)/k, r&c.

The solution that satisfies the boundary conditions
required by (3) is

also vanishes as 1/k. On the other hand, the t-matrix
element does not vanish as

~
s

~
grows:

as s. These limits have treated the three variables
independently. Other limits may also be of interest, such
as the diagonal element to(k, k; s), for which

lim tp(k, k; s) =c/43'

u(r)=0,

siiikr sinkc
&'(&~) (~~)

r&c and does not vanish. Thus some special import of the
diagonal elements for all values of s must be inferred.

B. Hard Core Plus Interaction

The results of Sec. III A are readily extended to
include the potential of (7) in Eq. (15).Using Eq. (19)
for the eRect of the hard core, we have

where one chooses that branch of gs that has a positive
imaginary part. Although I vanishes inside the core
region, the product of V by I does not vanish, but is
given by u"+su= u'(c+) 8(r c), — r&c

= v (r)u+ (s—k') (sinkr)/k, r &c (21).V (r)u(r) =u'(c+) 8(r c)+ (k2—s) (sin—kr)/k, r&c
(19)=0, roc If the form of v(r) is given, these equations can be

easily solved, using a computer, subject to the appro-
priate boundary conditions:

where u'(c+) designates the right-hand limit of the
derivative of N. The derivative is easily evaluated from
(18). Using (12) one can now evaluate the S-wave
contribution to the t matrix. "One 6nds

u(r) =0, r(c
u(r) -. (sinkr)/k+2. e*& " (22)

sink c gs.
(2m') to(k', k; s) =— coskc—i sinkc

~)

sink'c k' —s
2s to(k', k; s) =- u'(c+)+

k' 2kk'Certain special cases may be noted: the half-oG-shell
element to(k', k k')=sink'c e '~'/(2~'k') and the on-
shell element to(k, k k')=sinkc e '"'/(2s'k). Also one
should note that to(k', k; s) is symmetric with respect to
the interchange of k and k' although this is not obvious
as Eq. (20) is written.

Note that the second term in (20) is the contribution
from within the core region while the coeflicient of
(sink'c)/k' in the erst term is just u'(c+). These features
persist even when other interactions outside the core are
allowed.

t'sin(k —k') c sin(k+ k') c)
xi

k k' k+k'—

dr v(r)u(r). (23)

IV. NUMERICAL CALCULATIONS

where 2 is a constant that, along with u'(c+), is deter

(
mined by (21) and (22). Once u(r) is known, the~ ~

~
t-matrix element is readily constructed:

kk

' These results have been previously obtained by Brander using
the integral-equation approach of Kowalski and Feldman (Ref.
13). O. Brander, Arkiv Fysik 24, 439 (1963).

In this section we investigate the eGects of the hard
core on the 5-wave off-shell t matrix for negative (real)
values of the energy parameter s, only. To this end we
define two potentials to be "equivalent" if they have the
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same effective range and scattering length (i.e., the
same low-energy on-shell properties) and the same shape
di6ering only in that one has a hard core while the other
does not. In order to be able to choose the potential
parameters easily we have used an exponential radial
dependence. "So that our results will have meaning for
nucleon-nucleon interactions, we choose the scattering
length to be infinite and the e6ective range to be 2.5 F.
Such a potential is a reasonable approximation" for an
average singlet-triplet interaction and, if a hard-core
radius of 0.4 F is used, the resulting potential also gives
satisfactory results for nuclear matter. " More speci-
fically

t.o
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where p=3.5412/(b —2c) F ' and es ——1.4458@'. Also
b=2.5 F and we consider both c=0 and c=0.4 F.
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FIG. 2. S-wave part of the 06-energy-shell t-matrix elements,

2s'to(k', k; s), for two "equivalent" potentials of exponential
shape, in the high-energy region. One has a hard core of radius
c=0.4 F. The "energy" parameter is s= —0.2 F~.
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"For this shape, T. Kikuta, M. Morita, and M. Yamada
I Progr. Theoret. Phys. (Kyoto) 15, 222 (1956)g have shown how
to obtain the parameters for a potential containing a hard core
if those of the "equivalent" potential are known.

~' For the experimental values, see Richard Wilson, The Eucleon;
ENcleon Interaction (Interscience Publishers, Inc. , New York,
1963), p. 37."S.A. Moszkowski and B. L. Scott, Ann. Phys. (N. Y.) ll,
65 (1960).

FIG. 1. S-wave part of the off-energy-shell t-matrix elements,
2''to{k, 'k; s), for two "equivalent" potentials of exponential
shape, in the low-energy region. One has a hard core of radius
c=0.4 F. The "energy" parameter is s= —0.2 F '.

Figure 1 presents the results obtained from Eq. (23)
using the potential of (24) for s=0.2 F '. One should
note that the two t matrices are nearly equal when k', k,
and s are all small. This results from choosing the eGec-
tive ranges and scattering lengths of both potentials to
be equal, along with the analyticity properties imposed
by the defining equations. If any of the variables k', k,
s diBer appreciably from zero, then effects of the hard
core may be seen. In particular, for large values of k or
k' the hard-core t matrix changes sign while the zero-
core t matrix does not.

Figure 2 is similar to Fig. 1 except that very large
values of k are shown. It can be seen that, while the
no-core elements are negligibly small for k larger than
4 F ', the core elements still have significant size. This
may be expected to manifest itself in the three-body
bound states, by, perhaps, giving a somewhat smaller
binding energy and larger mean radius.

Figure 3 shows the behavior of the diagonal element
t(k, k; s). In particular, the asymptotic limit cj47rs is
evident, while Fig. 4 shows the s dependence of these
matrix elements. Only a single value of s is shown in the
first three figures because the curves for other values
of s are quite similar.

The t-matrix elements in the form presented in this
section are not really useful for attacking the three-
nucleon problem because of the complexity of the
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Fro. 3. Diagonal element of the S-wave part of the OG-energy-
shell t-matrix, 2s'to(k, k; s), for two "equivalent" potentials of
exponential shape, one having a hard core of radius c=0.4 F. The
"energy" parameter is s = —0.2 F 2.

-S(F )

F&G. 4. S-wave part of the oB-energy-shell t-matrix elements,
2s'to(k', k;s), as a function of s for two "equivalent" potentials
of exponential shape, one having a hard core of radius c=0.4 F.

resulting equations. However, if a separable approxi-
mation can be found, then the resulting Faddeev
equations are tractable. The usual approach has been

. to define a separable potential that fits the positive
energy on-shell matrix elements (by matching phase
shifts) and then to use the results to extrapolate to the
desired region. If one is interested in three-body bound
states, then only matrix elements for negative values of
s occur, and the necessary extrapolation from positive
to negative energies has not been shown to be reliable. '8

For the bound-state problem, it would seem preferable
to use a local potential to compute the t-matrix elements
for negative values of s and then to approximate the
results obtained with a suitable separable form. A
preliminary attempt to do this with a sum of two
separable terms has been carried out by the authors but
with little success. Although it appears that the matrix
elements for the c=0 case can indeed be approximated
by sums of separable terms, the more complicated
behavior of the hard-core matrix elements has made a
quantitative approximation much more dificult to
achieve. The separable approximation can be made for
low values of k, k', where the core has not yet mani-
fested itself, but we have not yet been successful in
developing a formula that will be valid over a large

' This point is currently under investigation.

range of the variables (k', k; s). This problem is being
investigated extensively at present.

V. SUMMARY

We have presented oB-energy-shell t-matrix elements
for S waves at negative values of the "energy" s using
a potential having a hard core. The results have been
compared with those for an "equivalent" potential
having no core. There were substantial differences

apparent at large values of k, k', or —s. It was not found
possible to approximate quantitatively the hard-core
matrix elements by a sum of two separable terms al-

though a single term, equivalent to the effective range
approximation, worked well for small values of k', k, and
—s. Further attempts to 6nd a separable-type approxi-
mation, at least for the regions of interest in the three-

body bound-state problem, are now underway. It is felt
that this procedure —using a local potential to compute
the oG-shell t-matrix elements in the region of interest
and then approximating them with sums of separable
terms —is more reliable than the usual technique of
fitting phase shifts with sums of separable potentials
and then using these to extrapolate to negative energies.

This paper has developed a method for computing
off-shell t-matrix elements for potentials that contain a
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hard core. Using this method, several problems should
be considered. An evaluation of the aforementioned
phase-shift fitting and extrapolation procedure shouM
be made. An investigation of the sensitivity of the three-
body bound state to various features of the hard-core
elements should be carried out and attempts to impose
a separable approximation should be pursued. Perhaps
an extension of the separable approximation to higher
partial waves is worthwhile. Positive energies have not
been considered in this paper, but they occur in scatter-
ing problems such as m-d scattering. It would be of great

interest to compare the off-shell behavior of the usual
separable approximation with the results of the local
potential containing a hard core at positive energies.
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Hamiltonian Operator for Velocity-Dependent Potentials
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The Hamiltonian operator for a class of velocity-dependent potentials is studied. It is shown that the
Hamiltonian and the energy of the system are not simply related, and while the former is a constant of
motion and does not depend on time explicitly, the latter quantity is time-dependent, and the Heisenberg
equation of motion is not satis6ed.

VKI OCITY—DEPENDENT nuclear forces have
been used by many authors to explain the strong

short-range repulsion of the two-nucleon interaction at
high energies. Phenomenologically the velocity-depend-
ent interaction arises from the expansion of a nonlocal
operator by Taylor series. ' To the lowest order in powers
of p= —iV one finds

E(r, iV)P—(r, 8) = hp(r, 8) (1)

as the Schrodinger equation and

E(r,p) = (1/2~)p f(r)&+e(r)

for the Hamiltonian operator. Here f(r) is a smooth
function of r having third derivative and approaching
unity as r becomes larger than the range of nuclear
forces. The constants in Eq. (1) are determined by
fitting the resulting phase shifts, cross sections, and
bound-state energies to the empirical values. '%hile the
Hamiltonian (2) satisdes the general requirements of
Hermiticity, rotational and time-reversal invariance,
and the invariance under reflection in space, it is not
a proper quantum-mechanical Hamiltonian. By a
proper Hamiltonian H(p, r) we mean the operator that
describes the development of the system in time, or the
operator with the property that for any dynamical

* E. W. R. Steacie Fellow.
' See, for instance, N. F. Mott and H. S. Massey, The Theory

of Atomic Collisions (Oxford University Press, New York, 1949),
p. 183.

s A. M. Green, Nuci. Phys. 85, 218 (1962).

variable F(r,y, t) the relation

dF/dl =BF/Bl i [F,Hj- (3a)

is satisfied. The operator H(y, r) is closely related to the
energy of the system. If we eliminate p between B and
r'=BII/By while preserving the order of factors we
6nd the energy operator E(r, r'). Then by expressing F
in terms of r and i we can write Eq. (3a) as

dF/dt= BF/Bt+i[E„Fj. (3b)

The operator E(r,p) is a constant of motion that gives
the correct equation of motion when it is used in
Hamilton's canonical equations:

r'= BE/By,

BE/Br—
From Eqs. (2), (4a), and (4b) we can calculate the
equation of motion, and from the equation of motion
we can construct the energy operator. Knowing the
equation of motion, the energy operator, and the
definition of the time derivative Pq. (3b)j we can
obtain the commutation relation between r' and r and
also between p and r.' For a Hamiltonian that can be
written as the sum of two terms, one depending only
on momentum and the other being a function of
position, the operator equation (3b) is consistent with
the usual commutation relation between p and r. Now
we want to show that if: (a) the equation of motion is

' K. P. Wigner, Phys. Rev. 77, 'l11. (1950).


