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The energy-density formalism is applied to finite nuclei. The total energy of the many-nucleon system
is expressed as a functional B(p) of the local density p (r), and the ground-state density distribution is found
by minimization with respect to p(r). The functional of the potential energy is directly derived from a
nuclear-matter calculation with variable neutron excess by Brueckner et al. The density-gradient correction
which takes care of the density variation at the nuclear surface contains an exchange- and a correlation-
energy part. In a first attempt, proton and neutron densities are assumed proportional; therefore the present
calculation is limited to light nuclei. The density distributions are found to be of the so-called modified
Gaussian type with a cubic polynomial. Binding energy, radius, and surface thickness are in good agreement
with experiment.

I. INTRODUCTION

HK Thomas-Fermi approximation has proved to
be very useful in reproducing bulk properties of

the nucleus. Easier to handle than the Hartree-Fock
method, the statistical theory may well serve as a
starting point for nuclear-structure investigations. Re-
markable results have been obtained by Gombas, '
Skyrme, ' and Seyler and Blanchard, ' for instance, as-
suming diGerent kinds of simple interactions between
the nucleons. Their special choices of the two-body
nuclear force, however, restrict somewhat the "range"
of their conclusions.

In a semiphenomenological way, the Thomas-Fermi
method has been applied by Berg and Wilets4 to the
study of nuclear-surface eGects. They showed how even
crude assumptions on the energy density of the system
can yield results in qualitative agreement with experi-
ment. Further refinements have been made by Wilets'
and Bodmer' for studying details of the matter
distribution.

Since it was recognized that the strongly repulsive
short-range part of the nucleon-nucleon potential plays
a key role in nuclear structure, attempts have been
made by Hara~ and Kumar et al. to deal with more
realistic nuclear interactions using the X-matrix theory
of Brueckner et al.' Recently, Bethe has reexamined the
Thomas-Fermi theory of nuclei" in the same spirit, that
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is, in trying to remain as close as possible to the theory
of nuclear matter and assuming realistic nuclear forces.

The present work is also a straightforward application
of the energy-density formalism to nuclei. We express
the total energy of the many-nucleon system as a
functional Et pj of the local density p(r) and 6nd the
ground-state density distribution through minimization
with respect to p(r). Justification of this treatment can
be found in the work by Kohn and collaborators. "The
functional of the potential energy is directly derived
from a nuclear-matter calculation with variable neutron
excess carried out by Brueckner et al." As far as the
inhomogeneity corrections are concerned, the main part
arises from the finite range of the nuclear forces. The
numerical coe%cient of this correction is adjusted in
order to reproduce the experimental binding energy of
Ca~. This is the only phenomenological parameter
entering into our calculation and we show that our
choice is consistent with a theoretical estimate. What is
more, the radii and surface thicknesses obtained are not
strongly aGected by this choice. The so-called Weizsacker
term with the corrected coeKcient is found to be not
negligible and is included. As a first step, proton and
neutron densities are assumed to be proportional, so
that our calculation is limited to light and medium
nuclei.

In Sec. II the general method is given in some detail,
together with our energy functional. Sections III and IV
are devoted to the minimization procedures. Results and
conclusions are presented in Sec. V.

II. ENERGY FUNCTIONAL

A complete theory of finite nuclei would require the
knowledge of the nuclear two-body force as well as
some appropriate treatment of the many-body system.
To the extent that nuclear forces can be simulated by
smooth, even nonlocal, eGective interactions, it should
be possible to solve the problem by using the Hartree-

"P.Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964);
L. J. Sham and W. Kohn, ibid 145, 561 (1966).."K. A. Brueckner, S. A. Coon, and J. Dabrowski (to be
published).
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Pock approximation. " For realistic interactions it is
known that the short-range correlations have to be
treated by a ladder summation through the introduction
of the X matrix. ' In both cases finding the self-con-
sistent average potential

'U(tN)= Q (mN)V)me)

gives rise to a tedious calculation that is hardly feasible
at present, especially for heavy nuclei.

The problem for infinite nuclear matter, however, is
considerably less complicated. In fact, because of trans-
lational invariance and the absence of the Coulomb
energy, the state vectors are plane waves and the
Hartree-Pock self-consistency problem just reduces to
the definition of the single-particle energies
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z„=P /2m+~(p).

Therefore, it would be worthwhile to make as much
use as possible of nuclear-matter results in describing
the finite nuclei. The statistical theory provides a
natural framework for such an approach. Kohn and
collaborators" have shown that for a quantum-me-
chanical system the energy can be expressed as a unique
functional of the density. The exact knowledge of this
very complicated and, of course, unknown functional
would lead to the solution of the problem through
minimization. The aim of a statistical theory is to ap-
proximate this functional in a semiclassical way. When
the density is slowly varying we can expand the energy
in powers of the density gradients. In this approxima-
tion, however, we lose the shell structure that can be
considered as arising from the quantum oscillations
created by the vanishing of the density outside the
nucleus. ' The Thomas-Fermi approximation consists in
assuming that the energy dependence in the density is
locally the same as that of a homogeneous medium in its
ground state. This is equivalent to assuming that the
correlations between the nucleons in Gnite nuclei are the
same as in nuclear matter' and is known as the local-
density approximation. It breaks down when the density
becomes low, because then the de Broglie wavelength
becomes large.

We turn now to a discussion of the individual terms in
the energy functional.

A. Homogeneous Term

We have fitted the nuclear-matter saturation curves
for variable neutron excess of Brueckner et cl.l2 by the
expression

&»~)+U(p ~)

» See, for instance, K. T. R. Davies, S. J. Krieger, and M.
Baranger, Nucl. Phys. 84, 545 (1966);J.P. Svenne, A. K. Kerman,
and F. Villars, Phys. Rev. 147, 710 (1966); D. M. Brink and E.
Boeker, Nucl. Phys. A91, 1 (1967); and D. Vautherin and M.
Vsn6roni, Phys. Letters 25$, 175 (1967).

FIG. i. Nuclear-matter saturation curves for various neutron
excess. These are 6tted to the results of Brueckner et ai. (see
Ref. 12).

where

with
~»~)=Cx(~)p"—' (3)

C,p(r)C, (r)+C„p(r) /'

"E.H. S. Burhop, Nucl. Phys. $1, 438 (1967).

(5)

CK (rr) 0 3 ($2/~) (3s.s)2/3

&«L-:(1- )j"'+L-:(1+ )j'/'& (4)
and

~» )=~ ()p+&.()p"+~.()p".
The coeKcients8;(n) areof the form 8;(o/) =f/;(1+g, rr').
Here p is the total nucleon density and ~ is the neutron-
excess parameter: o/= (1V—Z)/(1V+Z). The reason for
including a term linear in p is that at very low densities
the interaction energy is proportional to the probability
of having another particle in the neighborhood. Using
the analytical expression (3) we were able to fit nu-
merical points of the saturation curve" with a precision
better than 1%.These curves are plotted in Fig. 1.

In this paper we limit ourselves to the case where the
neutron and proton densities are proportional to each
other throughout the nucleus. This approximation is
expected to be good for medium-size nuclei. It definitely
will break down for heavy nuclei in which the Coulomb
energy produces an accumulation of protons near the
surface. There is also strong evidence from E-capture
experiments" that the neutron tail extends out farther
than the proton tail. Work on the more general problem
with independent proton and neutron densities and its
application to isotope shifts and E capture is now in
progress.

B. Coulomb Energy

The form of the energy density pLv'(prr)+"Q(pcs)j
is valid for uniform, infinite nuclear matter. For finite
nuclei we have to add the Coulomb-energy term
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with

C,=-,'f —,'(1—a)]e and C„= —1 06. 36$,'(-1 —n)j"' (6)

The Coulomb potential is dered as

p(~')
C,= e-,' (1—n) d'r'.

/
r r—'/
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The reason for taking the direct Coulomb energy pro-
portional to Z' rather than to Z(Z —1) is discussed by
Peaslee. "The small term proportional to p'~' comes from
the exchange part of the Coulomb potential. '

C. Inhornogeneity Corrections

For a density-varying medium such as the nucleus

we have to include gradient corrections to the energy
density which will take the form"

&Lpl= &o(p)+ (&-(p)+&.(p)) (~p)'+" (8)

The density-gradient correction has been separated
into an exchange- and correlation-energy part. The
exact form of the exchange part, arising solely from the
Pauli principle and known as the Weizsacker correction,
is of the form B„(p)= (PP/SM)$(Vp)2/p with t=~. It
will be rederived in a very simple way in the Appendix,
where we shall also motivate our particular choice of
B,(p) = g(h~/83II) for the correlation-energy term. . Here,

g will be kept as a parameter and will be adjusted to
give the correct experimental binding energies. In the
present calculation, q is expressed in fm', whereas f is
dim ensionless.

Collecting together the various contributions, we

obtain the functional to be minimized in the form

7.0 t

20
I

A

l

60 80

FIG. 3. Binding energy of the 0', =0 nuclei obtained with the
diGerential equation with q =8. The crosses represent the experi-
mental values of the even-even nuclei whereas the circles corre-
spond to odd-odd nuclei. The solid line is the theoretical curve.

p(r)d'r= A,

we arrive at the following second-order differential
equation for the density:

2 5C~ Bg 782 883
P"= P'+ P—'I'—+ P-+ —P"+——P"-—

r 3 2a u 32u 32u

with

2C„
+ '"+—-(C.C'. ( )—@o) (12)

3 8 2Q

111. DIFFERENTIAL EQUATION

In this section we calculate the ground-state density
distribution by solving the Lagrange-type diffprential
equation associated with (9). In other words, we seek
the function p(r) that minimizes the total energy of the
many-nucleon system. Since p(r) is subject to the
condition

&Lp(r) j(«)' (9)
a= (h'/SM)g.

with

&Lpl= ~xp"'+ p'U(p ~)+C.pC'.+C-p"'
+ (h'/SM)(((VP)'/p+q(V'p)'}. (10)

Pp

0.-8—

0.6—

The origin of the terms has been explained in the
previous section. For the sake of simplicity, the so-
called %eizsacker term has been neglected in the
inhomogeneity correction. The Lagrange multiplier bp

is the binding energy of the last particle. Because of
symmetry reasons, p'(0) =0, the other boundary condi-
tions being p' and p ~ 0 as r ~~ and p (0)=po.

Because of the Coulomb term, Eq. (12) is an integro-
differential equation. It is convenient, however, to
reduce it to a system of two second-order differential
equations. The Coulomb potential C, (r) is then given by
the Poisson equation

V&C, (r) = 4~eL-,'(1—~)$p(r) (13)
0.2—

5
x (f11

!0

FIG. 2. Typical results for the one-dimensional nucleus for p =5,
10, and 15.The corresponding surface thicknesses are 2, 2.9, and
3.6 fm, respectively.

"D.C. Peaslee, Phys. Rev. 95, 717 (1959).

with the boundary conditions C, (0) =CO,C,'(0) 0 and
C, (r) —+0 as r~ao.

Self-consistency requires the simultaneous solution of
the two diGerential equations, which could lead to a
tedious iteration process. However, reasonable assump-
tions concerning the boundary value C, (0) reduce the
problem to a two-eigenvalue search.
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TABLE I, Comparison between the solution of the differential equation for Ca~ and results of the variational method for modified Fermi
(m=1) and modified Gaussian (a=2) distributions. These results are obtained with n=6 and )=0.

—(Binding energy)
(MeV) E,f g jeff Po

A1
A2
A3
A4

—0.04—0.0395—0.016
0.0062

0 4.30
0 4.29—0.005 4.23—0.01 4.25

Differential equation

0.28
1.50
0.31
1.70

362.4
362.5
362.9
363.2
364.3

3.65
3.65
3.57
3.64
3.62

2.80
2.81
2.44
2.11
2.11

0.2235
0.2217 +Q
0.207
0.194
0.1993

The solution of our two coupled differential equations
is by no means a simple function. Also for given pp and
Ss values, p(r) may well go to &~ or oscillate. It has
been shown, however, by Kumar et al.' that the proper
solution is such that p (r) and p'(r) vanish at some point
r=R and that p=—0 for r)R. The two coupled differ-
ential equations have been solved for Ca~. This nucleus
has been chosen because its A is already large enough to
allow a statistical treatment and probably still small
enough, so that proton and neutron densities may be
taken as proportional.

The results are shown in Fig. 2 and Table I for the
arbitrary choice &=6. The binding energy and the
surface thickness are, respectively, larger and smaller
than the experimental values, whereas the half-density
radius R,gg

——3.62 fm is in good agreement with the
empirical law R,qq= 1.06)&A I' fm. Taking g 10 lowers
the binding energy to 325 MeV and raises the surface
thickness to 2.70 fm without affecting the half-density
radius. The experimental situation corresponds to q—8.
The central density pp comes out to be =0.20 fm ' for
g=6 and =0.19 fm ' for g=10, to be compared with

pp 0.16 deduced from electron scattering data; this
means that the tails of our distributions extend over a
shorter range.

We have also computed the binding energy per
particle for the 0.=0 nuclei, setting q=8. The results,
plotted in Fig. 3, are in good agreement with
experiment.

A usual way of simplifying the problem consists in
considering a one-dimensional nucleus and neglecting
the Coulomb energy. In this case Eq. (12) becomes

and 15. This approximation is certainly useful for
comparing diferent saturation curves and yields quali-
tative results. However, it is not appropriate for actual
nuclei in which the curvature e6ects are not negligible.

IV. VARIATIONAL METHOD

Because of the very large sensitivity of the solutions
to the eigenvalues, the handling of the differential
equation is rather tedious, and it is desirable to And a
numerically faster way of dealing with the minimization
of Eq. (9). In a variational approach to this problem,
we assume a parametrized form for the density
p(r; Xr Xs) and search for a minimum of E[p] within
this chosen functional space.

The analytical forms we have tried are:

(A) a modified Fermi-type (n=1)

p(r)= pp(P(r)(1+e pxt (r"—R")/8"1) ',
or a modified Gaussian (ran = 2), both with

(P(r) =1+Pr'+ mrs; (19)

(8) a Gaussian-type

p(r) =pea'(r) exp( —r'/R'); (2O)

(C) and finally

p(r) =ps[(1+Prs) {1+expL(r—R)/Bj}] '. (21)

The parameters to be varied are R, 8, p, and q. The
constant pp is determined by the condition for keeping

0.25C, 8, 78, 8~, bp
p"= p"'+ p+ -—p'"+ —p"' -— (1-4)— ——

3 2 Q 3 2Q 3 28 28

The integration with respect to p is immediate and gives

p"=CIp"'+&jp'+& p"'+& p"'—bop (15)

The boundary conditions imply

O.I—

and
@0 ckp0 +J31pO++sps ++sp0 (16)

2Cs+38ips' +4Bsps 158spp=O. (17)

Therefore, bp and pp are 6xed by the saturation condi-
tions and the numerical integration of (15) is straight-
forward. Typical results are shown in Fig. 4 for &=5, 10,

Fxo. 4. Comparison between the solution of the differential
equation (solid line) and those of the variational method for a
modified Fermi function (short dashes) and a modified Gaussian
function (long dashes) both with a cubic polynomial. Here g= 6,
g=0.
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TAsLE II. This table illustrates, in the case of Ca", the fact that the binding energy is a slowly varying function of the
parameters near its minimum. E,„,g represents the gradient correction (s= 6).

Input parameters R = 4.25
n=2 8= 1.675

p = 0.00625
q= —0.01

nE=~ 1%

AB=+ 1.5%

aP =~20%

nq =~12.~%

—(Binding energy)
(MeV)

363.26

363.06
363.12

363.14
363.08

363.08
363.12

360.34
361.44

po

0.1961

0.1909
0.1995

0.1967
0.1903

0.1898
0.1985

0.2109
0.1788

~Cou1omb

87.6

87.1
88.1

87.6
87.1

87.1
88.1

89.9
85.5

80.7

79.1
82.4

80.2
79.4

78.6
82.9

83.2
77.6

0.2—

0.1

2 3 5 6 7 8

FzG. 5. Results for 0", Ca', and Ce' obtained from the
variational method for a modiied Gaussian function vith a cubic
polynomial. Here g=5, (=9.

the number of nucleons A fixed. The polynomial (P(r) is
set equal to zero when it becomes negative at large r to
avoid having negative densities. This abrupt cutoff is, of
course, unphysical since a localized quantum-me-
chanical system is always characterized by an expo-
nential falloff for large r. However, we are not particu-
larly worried about this fact, because the Thomas-Fermi
energy functional breaks down anyway at small densi-
ties, where the de Broglie wavelength becomes very
large. Generally, no improvement is found in 6tting an
exponential tail to our density curve. This is necessary,
however, when the (V'p)'/p term is taken into account,
because in this case the gradient is supposed to vanish
faster than the density.

In order to check the results obtained by solving the
differential equation for Ca~, we omitted the Weizsacker
exchange density-gradient correction and also set p=6.
We had to discard the trial functions (8) and (C) be-
cause they gave far too small binding energies. The so-
called three-parameter Fermi function (A) with a
quadratic polynomial did not come close to the solution
of the differential equation, so we included a cubic term.

The results of the variation are given in Table I. The
contribution of the Coulomb energy to the binding
energy lies between 87 and 88 MeV for all four distribu-
tions. The inhomogeneity contribution to energy is
slightly higher for the "squarer" distributions (A3) and
(A4). We have defined the effective radius (R,rt) as the
half-density radius and the surface thickness (T,f f) as
the 90%—10% falloff distance.

As is also seen from Fig. 5, where we plotted curves
(A2) and (A4) as well as the solution of the differential
equation, the curves are very close to each other for
large r although the central densities are different. This
comes about through the r' weighting factor in the
radial integration. The total energy is then not very
sensitive to the central density and most of the contri-
bution comes from the surface region of the nucleus.

The results of the variational method are also com-
pared to those of the diGerential equation in Table I.As
far as the binding energy is concerned, the small re-
maining discrepancy ( g%) is attributed to the
Coulomb energy. As explained in the preceding section,
this is not treated self-consistently in the case of the
differential equation and depends somewhat on the
choice of C,(0).

The binding energy is a very slowly varying function
of the parameter near its minimum. In order to exhibit
this eGect and the precision with which we have dered
the parameters, some numerical results are given in
Table II.

tA'e have performed the numerical integration using
Simpson's rule with a mesh size of 151, integrating up to
3.5 times the radius parameter E. Minimization is ob-
tained by varying one parameter while keeping the
others 6xed until the desired precision in all the parame-
ters is achieved. Because of the crudeness of the inte-
gration method and the relative insensitivity of the
energy, it has not seemed useful to us to increase the
precision in the determination of the minimal set of
parameters beyond that achieved.
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Having established that the two methods give essen-
tially the same result, we proceeded to include the
Weizsacker exchange correction (h'/72M) (V'p)s/p. This
proved to be much easier and numerically faster with
the variational method. Because of the density ap-
pearing in the denominator this correction has the eRect
of giving a longer tail to the distribution and of reducing
the binding energy by almost 40 MeV. Again the form
(A) with I=2 and with a cubic polynomial gives a lower
energy than the other trial forms. As the parameter p
enters phenomenologically into our treatment we let it
vary between 3 and 7.The results are given in Table III.
The binding energy, as obtained from minimization of
the form (A4), varies almost linearly with t) in the range
considered. The eRective radius is practically unchanged,
but the surface thickness is slightly reduced as p de-
creases. The optimal choice of g to give the correct
experimental binding energy of 341.5 MeV was found to
be g—5.

The variational approach has also been applied to 0"
and Ce'". The results are not expected to be very
accurate in the former case because of the small number
of particles. The fact that the statistical theory yields
reasonable values illustrates the existence of the mean
field even in very light nuclei.

The results for 0" Ca", and Ce" are summarized in
Table IV. In all the three cases the lowest energy has
been obtained with a modified Gaussian with a cubic
polynomial. The parameter p has been fixed to 5. The
distributions are plotted in Fig. 3.

It is interesting to note that in the case of Ce'" the
binding energy is too small by 4%. This could mean
that bringing the binding energy into agreement with
experiment requires a slow decrease of g against A.
However, additional binding energy is expected to arise
from relaxing the proportionality of neutron and proton
densities, so that no definitive conclusions can be drawn
for heavy nuclei. On the other hand, as A increases, the
distributions become hollow in the center and the
contribution of the second-order correction in the
gradient expansion, which is found to be negligible for
light nuclei, should increase.

V. CONCLUSIONS

The present investigation gives an outline of the re-
sults that may be obtained from the energy-density
formalism. The calculated density distributions are in
good agreement with experiment. The method, would be
more trustworthy for heavier nuclei than those con-
sidered here. However, in this latter case, proton and
neutron densities could certainly no longer be set
proportional and the whole calculation mould become
much more tedious. It is interesting to note that the
tails of our distributions are somewhat shorter- than.
those of the Fermi-type functions generally used in
analyzing electron-scattering data. Nevertheless this
result may be irrelevant since the validity of our method

TAmE III. Results for Ca" obtained with a modiaed Gaussian
(a =2) in function of q and in setting p=-', .

3.0
5.0
7.0

—(Binding energy)
(MeV)

362.9
341,5
317.7

3.60
3.59
3.58

Teff

1.91
2.12
2.28

TmLE IV. Results obtained for 0", Ca", and Ce'" with a
modified Gaussian (os=2) taking e=5.0 and g=-,'. Figures in
parentheses are the experimental binding energies.

018

,Ce140

—(Binding energy)
(MeV)

125.2
(127.6)

341.5
(341.5)

1126.9
(1172.7)

2.55

3.59

Teff

2.11

2.12

2.69

at very low density is not well established. It has to be
pointed out that Bethe" also 6nds that his calculated
distributions have a short tail or, more specie. cally, that,
at the point of the steepest slope, p itself is only (0.25
to 0.35)Xpo, whereas it is 0.5Xpo for a Fermi distribution.

On the other hand, the shape of the nuclear surface is
sensitive to the slope of the potential energy curve
"U(p,n). Therefore the results may differ according to
what two-body force is used in the nuclear-matter
calculation. Study of these eRects, however, lies outside
the scope of this work.

The fact that the experimental binding energy is
reproduced with a reasonable value of the parameter g
means essentially that the surface energy comes out
correctly from the theory. On the other hand, since g
has been adjusted to Gt the experimental binding
energy, part of it accounts for the pairing effects, which
are known to be very important at the surface.

As mentioned in the previous section the two methods
for finding the ground-state density are nearly equiva-
lent. The variational approach is more adaptable and
provides a simple way of studying the sensitivity of the
solutions to the diRerent parameters or, eventually, to
the eRect of additional terms. However one has the
problem of finding a suitable trial function, and this
introduces a certain arbitrariness.

The energy-density formalism provides also a simple
way of deriving the mean potential U(r) experienced by
the last bound nucleon. Taking this mean 6eld as the
shell-model potential could be a good starting point for
further developments. Such a treatment would be useful
in studying deformations of the mean 6eld or the
stability of superheavy nuclei. The pairing correlations
could then be introduced explicitly using the Hartree-
Bogoliubov theory.
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B(pq) = (i'r'/72M) p (A9)
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E-E'+ ', P p, q P-(q, 0)
ego

(A1)

and the density response as

pq= ~(q,0) ~q (A2)

where &(q,&q) is the full density-response function. The
expression for the kinetic energy is thus

+KE=+KE z p pqP —q&EE (q&0)+p pqp —q ~ (A3)
ego e

A.ssuming a slowly varying inhomogeneity, we expand
the response function in powers of g:

r(q,0)=1/a+bq'+—O(q ),
P—'(q 0)=a—a'bq'+0 (q') . (A4)

Similarly, we expand the energy:

(~ (p(*))+B(p(a))I Vp(~) I'+ "}(«)'

=~ (po)+ z~ "(Pq)Z
ego

(A5)

+B(p) Z q'pqp q+"-
eWo

Identifying Eqs. (A3) and (A5) we obtain

APPENDIX

We sketch here a short derivation of the density-
gradient corrections to the kinetic energy following the
density-correlation-function method. For further details
we refer to the paper of Ma and Brueckner. "

The energy of a system, weakly perturbed by a
density-coupled interaction p„can be written to lowest
nonvanishing order in q as

which corresponds to P= —,'. This value has also been
found by Moszkowski and Wilets's in a very similar
way.

In the case of protons and neutrons, we obtain for the
exchange-density-gradient correction

L(Vp) /ph(1&~)-p "s(Vp)'. (A11)

However, the latest investigations on the convergence
of the Brueckner-Goldstone theory for nuclear matter~
yield an expansion for the energy in powers of (c'p),"
where c is the correlation length (or wave function
healing distance), which is of the order of the core
radius.

This leads to a gradient correction of the form (Vp)s.
The weakness of the long-range attractive force brings
about the fact that it is the size of the core which
determines the convergence of the theory. However, the
gradient corrections are essentially due to the long-
range force even if it is much weaker than the short-
range part (a very-short-range force does not give rise
to gradient corrections at all) so that the previous
argument breaks down. Nevertheless we shall see that
the long-range force gives the same form.

If we write the contribution of the long-range part as

A2 A2 1
(Vp )'+—(7P-)' = -(~p)' (A1o)

f2% p„p 7235 p

The fact that the exchange contribution to B(p) is
proportional to 1/p could have been predicted on
dimensional grounds since p '" is the only length as-
sociated with a noninteracting system. %eizsacker had
incorrectly given the factor b'/SM.

The form of the potential-energy-gradient correction
is more dificult- to derive. In the spirit of a simple X-
matrix theory, which is equivalent to an expansion in
powers of (tk~)," where t is the forward-scattering
amplitude, we would expect a gradient correction of the
form

1
(«)'p(r) («')ss(r')p(lr+r'I)

2

B(pp) = -'a'b. (A6)
(A12)

From the well-known free fermion gas density-response
function,

q 2Ps
~o(q, ) = —+ (q' fo')—

2qr' qPp q+ 2pp "A. S. Kompanects and E. S. Pavlovskii, Zh. Eksperim. i
Teor. Fiz. 31, 427 (1956) LEnglish transl. :Soviet Phys. —JETP 4,
328 (1957)$.

~8 S. Moszkowski and L. filets (private communication).
"V. M. Galitskii, Zh. Eksperim. i Teor. Fiz. 34, 152 (1958)

t English transl. : Soviet Phys. —JETP 34, 104 (1958)j.
'q B. D. Day, Rev. Mod. Phys. 39, 719 (1967); K. Rajaraman

and H. A. Bethe, ibad, 39, 745 t'1967&.

we find, upon expansion and use of Eq. (A6),

(AS)B(po)= (~'/»)Ps '.
xs S Ma and K. A. Brueckner, Phys. Rev. 165, 18 (1968).

and expand the density (supposed to be slowly enough

(A7)
varying for the gradient expansion to make sense), we
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