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Inelastic electron scattering at low momentum trans-
fer has been found to be a particularly useful source of
model-independent data in cases where the 6rst Born
approximation could be used. In most cases, however,
this approximation is not good enough and the distortion
of the electron waves in the Coulomb field of the nu-
cleus has to be taken into account. This e6ect seemed
to destroy the model independence of the data, since
the Coulomb corrections could only be calculated for
a given nuclear model.

The new representation of the Coulomb corrections
that is presented in this paper offers a possibility of de-
termining the corrections in a model-independent way.
It is demonstrated that this can only be done by measur-
ing the differential cross section at low momentum
transfer for different electron energies. Under these con-
ditions the Coulomb corrections can be determined di-
rectly from experiment. The model independence, which
is themain purpose of our representation, is fullyrestored.

Although this method has been primarily devised for
a model-independent analysis, it can also be used for

the calculation of the Coulomb corrections for any
given nuclear model. It provides a simple way of find-

ing these corrections without making compulsory the
use of a digital computer.

The results given in this paper deal with the Coulomb
corrections for monopole and quadrupole excitations
and for low momentum transfer. The same method can
be used for dipole as well as higher multipole transitions,
but it cannot be applied to inelastic electron scattering
at high momentum transfer. In this case a diferent ap-
proach such as outlined in Sec. IV D seems to be the
appropriate extension of this method.
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We treat d-n elastic scattering, using a simple, physically motivated approximation to include the eGects
of the He'(d, np)He4 (breakup) channel. This article extends and amplifies preliminary results published
earlier. A treatment of the breakup amplitude is given, in addition to a more complete derivation of the
dispersion relation for the elastic amplitude. We are able to obtain a closed-form solution for the elastic
particle-wave amplitudes in the one-pole approximation. We compare the elastic phase shifts parametrized in
this way with experiment, obtaining good agreement. We thus estimate with some con6dence the contribu-
tion arising from the inclusion of the breakup channel. Since we treat the (tightly bound) He' nucleus as an
elementary particle, our model may be regarded as representing scattering on a polarizable target. From
this viewpoint we discuss the implications our findings may have for several nuclear structure and reaction
theories.

INTRODUCTION

'ANY mathematical techniques have been dc-
- ' veloped in an eGort to understand the enormous

complexity of nuclei and the bewildering variety of
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their reactions. Despite numerous attempts to provide
a unified picture of nuclear structure and reactions,
there is as yet no general theory.

In this paper, we present an intrinsically rather
simple calculation that nevertheless has qualitative
implications for several structure and reaction theories.
These theories are the optical model, ' E-matrix theory, 2

' G. E. Brown, Rev. Mod. Phys. 31, 893 (1959).
~A. M. Lane and R. G. Thomas, Rev. Mod. Phys. 30, 257

(~958).
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the extended shell model, ' dispersion theory, 4 and the
cluster model of light nuclei. "We shall discuss these
qualitative implications at some length.

In a previous article, ~ we constructed a simple,
exactly soluble model of deuteron-He4 elastic scattering
that included approximately the deuteron breakup
channel. We decided to study the d-He' system for
several reasons. First, its three-body (breakup) thresh-
old lies very close to its elastic threshold, whereas the
next (He'+H') inelastic threshold lies relatively far

( 12 MeV) away. Our original interest was oriented
toward the three-body problem, and this seemed a
relatively straightforward way to examine three-body
effects isolated from the spin and symmetry difficulties
that beset the three-nucleon problem, ' and from the
inelastic eGects characterizing heavier systems. Sec-
ondly, the Li' ground state (J =1+, T=O) is only
weakly bound with respect to the 2+He' channel, and
so it seemed reasonable that a unitarized pole approxi-
mation' "should be moderately successful, at least in
the J = 1+, L'=L=O channel. Finally, the profusion of
experimental data" on this system enabled us to con-
vince ourselves of the consistency and essential validity
of our approach by direct comparison with experiment,
and therefore lent weight to our estimates of the effects
of including the breakup channel.

Our model is constructed by the following procedure:
We treat the He4 plus deuteron system as three ele-
mentary particles (rt+p+n) and assume that the
coupling to the He'+ H' channel is weak. We then write
down the (exact) unitarity relation, including only
elastic and breakup thresholds. A rather simple, physi-
cally motivated approximation allows the decoupling of
the equations for the elastic and breakup amplitudes,
permitting us to write a partial-wave dispersion relation
for, say, the elastic LHe4(d, d)He') on-shell amplitude
alone. This dispersion relation will (for the J=1+, T=O
channel) contain either a left-hand cut' alone or a pole
(representing the Li' ground state) in addition to the
left-hand cut. The residue of the bound-state pole may
be determined either by insisting that the formulation
without it be equivalent to the formulation with it or by
requiring that the bound-state renormalization constant

of the Li' ground state be zero, in accordance with our
prejudices that Li' is a composite rather than an
elementary particle. It turns out that both of these
procedures yield identical results and so the choice is a
matter of taste and convenience.

Although the preceding description of our formalism
sounds formidable, this is really the result of the
specialized jargon that has grown up in the field of
dispersion theory. Actually, the methods w'e employ are
extremely simple at our level of sophistication. Since the
result we shall ultimately derive is a generalization of
the usual effective-range approximation, we begin with
a brief review of the one-pole approximation in two-
body scattering and its equivalence to the usual eRec-
tive-range expansion. We then generalize this formalism

by using the three-body unitarity relation appropriate
to our model of d+cr. Section II describes in some detail
our approximation scheme for eliminating the breakup
channel and introduces experimental evidence'2 for the
validity of this approximation scheme. In Sec. III, we
show how the breakup amplitude may be calculated in
terms of the elastic amplitude by solving the Omnes-
Mushkelishvili equation. 4" Section IV contains a de-
scription of our comparison with experiment, together
with some remarks on various approximation schemes
such as the Born and impulse approximations. In Sec. V,
me describe our estimates of the eGect of the three-body
channel and discuss the implications of our model
calculation for the various nuclear theories enumerated
above.

I. DISPERSION THEORETIC APPROACH TO
LOW-ENERGY SCATTERING

A. Review of Results in the Two-Particle Case

We first briefly review the familiar case of two-

particle (single-channel) elastic scattering. The partial-
wave amplitude fr&+&(E) is regarded as the boundary
value

ft!+&(E)=limF(F+irt)~+
of a real analytic function F(s). F(s) has singularities

only on the real s axis4; these are the right-hand cut
(arising from unitarity) which runs from 0 to + oo, the
left-hand cut (arising from the interaction) which runs,
in the case of the Yukawa potential V (r) = ge &"/tsr,

from F.= —tt'/Snt to —oo, and finally, poles (repre-
senting bound states of the system) which may lie

anywhere to the left of s= 0. We remind the reader that
the "left-hand cut" need. not be a cut: The Hulthen
potential V(r)=g)exp(ter) —1J ' and the exponential
potential V(r)=g exp( —ttr) both produce infinite se-

quences of poles beginning at E= —tt'/Bnt.

"K. Nagatani, T. A. Tombrello, and D. A. Bromley, Phys.
Rev. 140, B824 (1965).

"M. L. Goldberger and K. M. Watson, Collision Theory (John
Wiley R Sons, Inc. , New York, 1964), pp. 533 and 908.

' W. MacDonald, Nucl. Phys. 54, 393 (1963); H.
Weidenmuller, ibid 75, 189 (196.6); C. Bloch, in 3Eany Body-
Description of Nuclear Strnctnre and Reactions, edited by C. Bloch
(Academic Press Inc. , New York, 1966), p. 394.

4 I. S. Shapiro, Selected Topics in Nnclear Theory (International
Atomic Energy Commission, Vienna, 1963), p. 85.' D. R. Thompson and Y. C. Tang, Phys. Rev. Letters 19, 87
(1967).' D. Brink, in Many Body Description of-Nnclear Strnctnre and
Reactions, edited by C. Bloch (Academic Press Inc. , New York,
1966), p. 247.' P. M. Fishbane and J. V. Noble, Phys. Rev. 160, 880 (1967);
hereinafter called I.

s R. D. Amado, Phys. Rev. 132, 485 (1963).
e S. Weinberg, Phys. Rev. 137, B672 (1965).
' S. C. Frautschi, Regge Poles and S-Matrix Theory (W. A.

Benjamin, Inc. , New York, 1963), p. 7.
"L.C. McIntyre and W. Haeberli, Nucl. Phys. A91, 382 (1967).
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F(z) is most easily studied using the Weiner-Hopf' "
factorization. Quite generally, F (z) may be written as a
ratio of two functions,

F(z) =X(z)/D(z) . (2)

where we have used Cauchy's theorem together with the
conventional normalization lim~, ~„„D(z)=1. At this
point, we employ the elastic unitarity relation (m is the
reduced mass)

The function D(z) is taken to have only the right-hand
cut, whereas E(z) has the left-hand cut. LThe poles at
the bound-state energies s= —s„,n= 1, ~, may be put
into X(z); it is also possible to make these poles appear
as zeros of D(z). We shall soon see why zeros of D(z)
have traditionally been connected with the idea of
compositeness. ) Since D(z) has only the right-hand cut
and is nonsingular, we may immediately write it as

1 " ImD(x+ie)
D(z) = 1+— dx

P=Hp+ V, (10)

where Hp describes the noninteracting particles and V
is their interaction. The noninteracting Hamiltonian Ho
may have a discrete state Pp with the same quantum
numbers as the bound state Pz of the interacting
system. This latter state is dehned by

(a+ a) Its&=0.

mak. e Eq. (8) have a zero at z= —8; the binding energy
can be made arbitrarily large by making X sufficiently
large. Also, by making X small or negative we can pre-
vent Eq. (8) from having a zero, and so there will be no
bound state. The fact that this sort of zero of D(z) can
be produced by increasing the strength of the two-
particle interaction indicates that the bound state of the
two particles is composite, rather than elementary.

I et us examine in detail the connection between the
Inoving zero of D and the composite nature of the bound
state. Following Weinberg' we suppose that the two
particles are described by a Hamiltonian

(a,—E,) Ik&=0 (12)
hm ImF(x+ie) = E(x—)ImD(x+ie)/ID(x+ic) I

'

= (2mx)'tsQ (x)/ I D(x+is)
and the discrete state Pp given by

Thus, (~o+~o) l~o&=0
hm ImD (x+ie) =—(2mx)'»$(x),
e~p

The ov«»p
I (pp I pit& I

s= Z is called the renormalization
constant of pit. If Z=O, then there is no discrete state
of &p (i e., 4p—=0) and so the bound state pit is entirely a
result of the interaction, i.e., it is a composite particle.

0
Thus, Z measures "how composite" the bound state is.

Similarly (we suppose here that there are no poles Since Pp and Pit have unit norm we find using the
in E), Holder inequality, '

leading to
1 " (2mx)'t'lV(x)

D(z) = 1+— dx

D(x) ImF(x+ie)
dx

X—5
E(z)= I(lt pl&~& I'& IV pll'll+~ll'=1

The spectrum of Hp is composed of continuum states
e

We note that
I

since E(z) is real on the right-hand cut] I k& g»en by

Let us represent the left-hand cut by one simple pole:
this amounts to the replacement N(z) —+X/(z+Ep). ip We
can immediately perform the integration in (6) and
obtain

D (z) = 1—(2m) "9/(Ep't'+ (—z)'t') .

The s-wave scattering amplitude is thus

jp(+) (E) (LE /h (2mE )1/2j+E/g z(2mE)lfs) —i (9)

which corresponds exactly with the usual effective-range
aPProximation (2mE)'t cot8p (E)~1/ttp+r, mE. 's As has
been pointed out many times before, " the eQ'ective-

range approximation and the one-pole approximation
lead to identical forms for the scattering amplitude. We
see that by taking X= (Ep/2m)'"+(8/2m)'t' we can

'4 P. M. Morse and H. Feshhach, Id'ethods of Theoretical Physics
(McGraw-Hill Book Co., New York, 19531, p. 978.

» Reference 13, p. 286.

We see (restricting Pit to be an t= 0 state for simplicity)
that if 8 is small, ' the major contribution to the integral
in (15) comes from the pole at Es 8; thus we may-——
write

Z—1—IQzl Vli(2mB)"'&I (1S)
(&+E.)'

Suppose we take Z=0; then

'n(I=0)
I
Vli(2mB)' &

I'~(2mB)'t'/srms. (16)

Kazarino8, ANalytic Isteqstalities (Holt, Rinehart and
Winston, Inc., New York, 196j.), p. 71.

that 0&Z&1. In terms of the eigenfunction spectrum
of Hp we can find an explicit representation of Z:

l(~. l vl»l'
1=Qslgst&=—Z+ dsh

(&+Ex)'
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On the other hand, it is easily seen" that the residue
of the bound-state pole in the scattering amplitude is
—~ml g n I

V li(2mB)'~s)
I
~—(28/m)'"

Comparing this result with the residue of fpf+l(E)
Drom Eq. (9), with ) = (Ep/2m)'f'+ (8/2m)M'), we see
that the residues are in agreement to order (8/Ep)'I'.
I This is actually good agreement: 8/Ep must be «1 in
order that the one-pole approximation be physically
meaningful, and in. order to write Eq. (15).) Weinbergs
has applied this procedure in reverse. Using the experi-
mentally determined low-energy m-p scattering param-
eters he has demonstrated the compositeness of the
deuteron (i.e., that Z=O for the deuteron, within the
experimental errors).

It is conventional in high-energy physics, where
the poles of the scattering amplitudes may not repre-
sent purely composite states (i.e., Z)0) to insert
these singularities into N(E), with residues —Igl'

mm—
l Qnl Vl (2mB)"') I'D(8) = —(1—Z)

I
gpl' where—

I gp ls is the residue when Z= 0.
Finally we should note that for convenience, the

preceding discussion was restricted to 1=0. In this case,
the approximation of the left-hand cut by a simple pole
led to a convergent integral in Eq. (6). In general, the
amplitude 1'rf+&(E) has the dependence E' near E=O:
If we insert a simple factor of E' in 1V (E) to give the
correct threshold dependence, then the integral in (6)
will not converge in the one-pole approximation for
l&0. One way out of this dilemma is to take subtrac-
tions in the dispersion relation (6).That is, one employs
identities like

"dx f(x) = (sp —s)
dx f(x)

+a(«)
(s—x) (sp —x)

and then treat g(sp) as an arbitrary constant. We prefer
the equivalent approach of inserting the threshold
factor LE/(Ep+E))' and shall use this method in
Sec. II.

B. Generalization to Three-Particle Case

We now consider the system of m+ p+n mentioned in
the Introduction. With the 0. treated as elementary, the
only channels are d+n and ts+p+n. ' Following the

Im A (E) ~
=-~ a A (E) A (E)

ON SHELL

p ~ n

+ B E)) S {E)

FIG. 1. Schematic representation of elastic unitarity relation
expressed by Eq. (17).

notation of I, we write the elastic unitarity relation

Im(E'I g+(E)
I g)

=—
s s.(2M) sl'(E+ e)"'e(E+e)

x «"O'I ~-(E) I&")(&"l~+(E) I @

dK" dk"(X'I 8 (E) I
K"k")

Xo(E 0"'/2fl, E"—'/2M)(K—"k"
I
8+(E)

I K). (17)

Figure I shows a schematic representation of this rela-
tion. In Eq. (17), k" and K" are the relative I-p mo-
mentum and the fs-p total momentum relative to n,
respectively, in the intermediate states. The reduced
masses are

M=M.M./(M. +M.), (18a)

&=M„M„/(M.yM„). (1gb)

(X'IA+(E)IX) is the elastic (d-n) on-shell scattering
amplitude, and (K'k'IB+(E) IK') are, respectively, the
normal or time-reversed amplitudes for the breakup
reaction, in which the particle d, incident on 0. with
momentum E and energy E=Ks/2M e, breaks u—p into
e+p, with relative momentum k' and total momentum
K' (relative to n). We note that conservation of isospin
also implies the conservation of S„„(S~=0 +e„) and
we are only interested in 7=0, 5„„=1. Expanding (17)
in partial waves leads to'

Im(l. 1 la, f+&(E)
I
J.1)

ster(2M) s~s(E+ e) 1/28(E+ e)

xZ(L'1l&. f-&(E) IL "»(I-"1I&.f+'(E) IL»
LI l

' The scattering matrix may be written formally T= V
+V(W H) 'V; near the pole at B, —(W H) '~(ga)(—W+B) —'
XQs~, so that the residue is

iim I(& I Vlp, ) I'.
~s(2ftsB) 1/2

Using our conventions for the scattering amplitude and the
partial-wave analysis (see Ref. 19), we find that the residue of
fp&+&(B) is —em[pe( V)s(2mB)'~', l=0)('.

18 Our energy scale is the same as in I, with &=2.225 MeV the
deuteron binding energy, and with the zero of energy taken at the
breakup threshold.

((r. 1I8 —(E) IZ u I.-i-~-)

XS(E—E „,„)(Z'V I.V"q"IB,f+l(E) IL,1)}
XZ"'dE "k"'d7p", (19)

where L is the orbital angular momentum associated
with K, l is that associated with k, j=l+S„~,J=L+j,
and Exp= (2M) 'E'+(2p) 'k'—.
"Reference 13, p. 226.
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In I we introduced the approximation that only
states with small k" contribute importantly in the
integral in (19). We shall give detailed arguments
justifying this approximation in Sec. II. For the mo-
rnent, we remark that it leads to the replacement of the
integral in (19) by

77/2

', (4IiM)-@'E'8(E)g dX" sin9."cos9,"
I /I

&& ((L', 1
~

8q& i (E)
~

(2ME)'I' cosh",O,L",0,1)

Exactly as before, we write the matrix

@,&+& (E)= limN, (E+s.)D;r(E+s.) .
e-+0

(23)

[There are obviously many ways" to introduce the
Weiner-Hopf factorization in the case of coupled
channels: Since our ultimate interest is to truncate the
matrix equation (22), the form of Eq. (23) is irrelevant. )
As in I, we find

Dq(Z)=I+ ds 9J(s) Ng(s)(s —s) ', (24)

)& ((2ME)'&' cosV', O,L",0, 1
~
8J &+& (E)

~
L,1)} (20) where

where
7& /2

d)&" sin')&" cos'y"Pq '((2ME)'I' cosy") .

"D. Y. Wong and G. Zambotti, Phys. Rev. 154, 1540 (1967).

and that the weak binding of the deuteron makes it
reasonable to replace

((2ME)'i' cosX",O,L",0,1 i
BJ &+& (E) i L&1)

by

(4rr) "$((2ME)"cosh",L"1
~

&&Ay&+'(E)
~
[2M(E+e)]'&',L,1),

where (E'L'1~2~&+ (E) ~EL1) is the off-shell partial-
wave elastic amplitude, g is a constant, and we have
made the transformation to cylindrical coordinates:

[
K"

[
= (2ME")'~ cosh", (k"

t
= (2pE")'~' sinV'.

The above approximation for the breakup amplitude
uncouples the partial-wave elastic unitarity relation
from this amplitude. This procedure retains approxi-
mately the coupling to the breakup channel without
actually requiring us to solve for the breakup amplitude.
We note that conservation of total angular momentum
and parity require that the matrix

(E'L'1i A &+i (E) iEL1)

be 3)&3.We explicitly remove the threshold dependence
of this matrix by writing

(K'L'1~~, &~&(E) ~KL»
=Pi, (K')gg;r, r&+&(E; K',K)PI (K) (21)

The type of approximation used in the above has also
been suggested by Wong and Zambotti" in a slightly
different context. The uncoupled approximate unitarity
relation is thus

Im5g r, r, &+i (E)
——,'n-(2M)' '(E+ e)' '0(E+ e)

&& 2 ~~;r r "& '(E)pr-'[(2M(E+e))"'Ã~. r."r&+'(E)
I /I

—2~'(4') sE e(E)

X+5.,..-- (E)~,-(E)5.,,- + (E), (22)

[e~(E)]~ ~

=4 i(s(2M)st'(E+e)"f)(E+e)Pi'[(2M(E+e))"']
+27r(4@M)"'E'8(E)

~
$~'yL(E)) ~ (25)

The analogy of the effective-range approximation (9)
now becomes clear: We need merely replace Nq(E) by
nq (E+Eo) ', where n J is a constant matrix, and perform
the integral in (24). This formalism differs from the
usual effective-range theory in that in addition to
satisfying two-body unitarity exactly, it approximately
satis6es three-body unitarity. In general, for any Nz(s)
analytic for Re(s) & —s, we may write

lim[Dg (E+t'ti) ]I,.r,

= [R&(E)]r.&+im [io&(E) N&(E)]r,.&
27r(4@iiII) sls

~ g &E&yg, (E) in
~
jq [Ng(E)]g, g (26)

Equation (26) is the generalization of a result we gave
in I. We derive this equation in Appendix A. The func-
tion Rz(E) is analytic for Re(E))—e, and its radius of
analyticity at E= —~ is the distance between the elastic
threshold (E=—e) and the beginning of the left-hand
cut. In addition to the term i7r[yq(E) N~(E)] ap-
pearing in (26), which follows explicitly from the
unitarity relation (12), we find that the three-body
threshold contributes a nonanalytic real term, pro-
portional to in~ Ei. This singularity is therefore quite
diferent in its eGect from the two-body threshold.

In exact analogy with Sec. I A, we may identify a zero
of det[D&(E)] with a bound state of a purely composite
system. We show in Appendix 3 that a zero of DJ is
equivalent to setting the renormalization constant to
zero.

It is known experimentally that the ground state of
Li' (viewed as a weakly bound state of d+He' 3.697
MeV below He'+ts+ p) has quantum numbers J = 1+,
T= 0. Since this state is just below the elastic scattering
threshold, and since it is principally an 1=0 state, it will

strongly inQuence low-energy d-He4 scattering. The
other important low-lying T=O Li' state is the sharp
(23 keV) 3+ resonance at —1.513 MeV. Since we intend
to compare our results vrith experiment, we prefer to

"J.B.Hartle and J. R. Taylor. J. Math. Phys. S, 651 (1967).
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preclude a plethora of phenomenological parameters.
We do this by using the one-pole approximation de-
scribed above, and we truncate the 3)(3 matrix Kq.
(24), keeping only the L'= L=J 1—amplitude. Since
even pi,.op(E) increases as E' for large E, it is clear that
the integral in (24), with Ni, pp(E) =xi;op/(E+Ep), will

diverge. It turns out that two subtractions are necessary
to ensure the convergence of this integral. We arbitrarily
choose them such that Di pp( Ep) =1, Di pp ( Ep) =0,

glvlng

Di, oo(E) = 1—(E+Eo)'

~
~

Sy pp

X ds pi;oo(s) . (27)
(s+Eo)'(s E—ig)—

Clearly ipi, pp should be chosen so that D(—3.697 MeV)
=0. Doing the integral by elementary methods and
letting Iso(k) = 1, we obtain

C]7I

Di;oo(E) = 1—pipe;oo Ep E 2p+2i[(E+ p)(Ep —p)]' '
(Ep—p)'i'(E+Ep)

(E+Ep)' cp
(2E' ln( —E/Ep) —(3E+Ep) (E+Ep)), (28)

4(Ep—p) E+Ep

where
ci——ip(2M)'I' co= i~'(4@M)~i'~ $~'.

The analogous result for the I- =L= 2, J =3+ channel requires a specific form for Pz, (k). Again for simplicity,
we take

P '[(2m(E+ p) )'"]= (p+E)'/(E+E )'
and similarly,

cpvp(E) =E'/(E+Eo)'(57r'/128) (4iiM)'i'
~ $ ~'

This leads to (with the same subtraction convention and a single pole for N)

Dp;pp(E) =1—(E+Eo)'rip, pp

p

cs
dS

(s+Ep p) '(s E —p ——iq—)

$4

dS ~~~c2

(s+Os)'(s —Z—ss))

( E+s "' 5(E+E, 15 EssJs„s 5 Z+O„s 5 (J:s,-J „)s=1— ci(Eo—p)'I'or 1—~— +
(E+Eo)' Eo p 2 EsEp p 8 Ep p 16 Ep p 128 Eo

i pcpEo. [(25/12) (1+E/Eo) (13/3) (1+E/Ep) + o (1+E/Ep)P

(1+E/Eo) (E/E p) ln (—E/E p) $ . (29)

The parameters e$;pp and Ep may be chosen to fit the
binding energy and scattering length in the 1+ channel;
similarly e3 22 and Ep may be chosen to fit the position
and width of the resonance in the 3+ channel. (Note that
Zp will in genera'. be diGerent for the two cases, although
a priori we would not expect them to differ greatly, as
we show in Appendix C.) We shall discuss these param-
eters in more detail in Sec. IV,

II. ELIMINATION OF THE BREAKUP CHANNEL

In deriving the approximate unitarity relation (22),
we have made the crucial assumption that the major
contribution to the integral over three-body inter-
mediate states comes from states in which the neutron
and proton are at low relative momentum. The reader
will recall that this assumption allowed us to make the
approximation (20), which in turn led to the soluble
form (22). Let us now examine what is involved in this
approximation. First, the fact that the intermediate
states are on the energy shell means that 0&k'"& 2+8,
so that for small energies k'" must perforce be smal'. . At

larger energies, what we have essentially assumed is that
over the range 0&k'" &2pE the variation of the breakup
amplitude

(K"k"
j
8'+i (E) i K)

is so slow that the major variations in the breakup
cross section result from the phase space. Once this
assumption has been made, there is no reason not to
evaluate the breakup amplitude at any value of k" that
happens to be convenient, such as k"=0.

The work of Nagatani, Tombrello, and Bromley" on
the o.-induced breakup of deuterium indicates that our
assumption is quite reasonable. Figure 2 shows one of
their proton singles spectra, together with the phase
space normalized to the same area: It is clear that the
major variation of do/dE~dQ„with proton energy is
already given by the phase space. There is a small bump
at the upper end of the proton spectrum, corresponding
to the Hes resonance; there is also an excess of protons
with energy near 13.2 MeV, about half the maximum
proton energy. This latter effect probably arises from
the fact that the breakup amplitude has 3, ~|;a,k, bring, d
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FIG, 2. Comparison of breakup proton spectrum of Nagatani
et al. (see Ref. 12) at 12.6' (a) and with phase space normalized to
same total area (b).

maximum at k"=0 (which corresponds to this point on
the spectrum). We can see this by noting that the im-

pulse approximation and even the plane-wave Born
approximation (PWBA) already give proton spectra
agreeing in shape (although cot in normalization) with
those observed experimentally. " That is, the major
momentum dependence of the breakup amplitude is
essentially determined by the P'|A'HA. Assuming isotopic
invariance, the PKBA amplitude has the form

(K'k'
I
8'+'(E)

I K)pw]3a

= I'(IK' —KI){4.(k'+l(K' —K))
+Ps(k' —s(K'—K))&

where V(Q) is the Fourier transform of the nucleon-tr

potential, and presumably has a range 1.4 fm. Given
this sort of range, the potential only localizes

I

K'—K I'

FIG. 3. (a) Schematic representation of elastic scattering as a
matrix element of the formal operator A. (b) Schematic repre-
sentation of the breakup amplitude as a matrix element of the
formal operator B.

to within m 'c'. Thus, even though the deuteron wave
function Ps(k) is strongly peaked at k=0, k" in the
above PWBA amplitude is only restricted to be &m„'c'
also. In energy terms, we see that k"/2p is only re-
stricted to be &m c'/7= 20 MeV. That is, one must go
to rather large barycentric energies before the variation
of the breakup amplitude with k' becomes important:
As we have already seen in Eqs. (27) and (29), however,
the dispersion integrals emphasize the low-energy be-
havior of the amplitudes, so that the end result is not
sensitive to the details of the approximation.

The above assumption eGected a considerable simplifi. -
cation in the three-body contribution to elastic uni-
tarity; the weak binding of the deuteron allows a further
simplifi. cation which, by decoupling the elastic and
breakup amplitudes, makes the solution of the resulting
dispersion relation straightforward. To see how this
simplification comes about, we note that from the
defi.nitions of the scattering amplitudes as matrix ele-
ments of forrnal operators

(O,v'I t„v'(E+zq KIs//2M) I k"v")—
lim (K'k'»'I&'+'(E)

I
Klv)= (K'o»'I&(E+itl) I Kk»)cd(k)dk+Q

I&'l~ pl/ (E+i rf E"/2M k"'/2p)— —

X(K',k"1v"IS(E+irf) I Kk1r)P (k)dk"dk, (30)

where 5(W) is the elastic formal scattering operator. Figures 3(a) and 3 (b) show schematic representations of the
matrix elements of 5. I See Appendix D.j In (30), f„» is the e-p o8-shell scattering matrix with $»=1. This
scattering matrix is well approximated at low energies by the separable form"

(k'v'I t„($')
I kv) —8„.„e(k')r (g )se(k) (31)

and clearly, "the deuteron wave function is given by

yd (k) = —v(k) (e+k'/2p)-'.
Thus we fi.nd, on the energy shell,

(K'01v'I 8 ~(E' /2M) I Klv) = k(dK' 1 0ISv(K' /2M+i&)
I
Kk1v)gs(k) —v(0)rs(0)

(32)

s' J. V. Noble, Phys. Rev. 157, 939 (1967).

2pe+k'"
X

I
ps*(k")(K'k"1v'I g(Z"/2M+irl) I Kk1v)ps(k)dk"dk. (33)k"'
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at small k, so that
omentum in ee=((P is extreme

(k)i kdim lies thatthe smallness of ((j pfurthermore, the sma

kd'd'1v " 1v = d*(k')(K'k'1v'i'iv'id&'+&(K"/2M)
i

1v —= @(Z"/2M+in) I
Kkl v)y&

k1v d(k)dk (33')'I5(&"/2~~~n) (
Kkl, ,g*(k')dk' (K'01v'
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a) x dqf (q)

TAsz.z I. Comparison of s-wave phase shifts calculated from
Eq. (28) with experimental results of Ref. 11;for a discussion of
the uncertainties in the experimental values see Ref. 11.

k =0
np

b)

"I -I

dq t(q) + f (0)

Ke take partial-wave Inatrix elements and factor out
the threshold dependence in E to obtain

=0
IIP

FIG. 4. (a) Schematic representation of the approximate relation
given in Eq. (35). (b) Schematic representation of the approxi-
mate relation given in Eq. (34). Note that —v(0)rq(0) is very
nearly ps (0).

~Lab
(MeV)

2.0
2.5
3.0
3.5
40
45
5.0
6.0
7.0
8.0
9.0

10.0

Sp' (theory)
(deg)

118.0
112.5
108.5
105.0
102.0
99.5
98.0
94.0
91.5
89.0
87.0
85.0

Bp' (experimental)
(deg)

126.4
116.5
109.2
104.4
106.0
68.0
84.6
69.9
78.4
84.8
83.6
80.5

ImBi r, r,r(+i(E)
(kinematically complicated) breakup cross sections. We

J(—) (E)p, (E)g, J(+l (E) (39) reserve this calculation for a future paper.

IV. COMPARISON WITH EXPEMMENT
where pr."(E) is the (diagonal) matrix element of pr
defined by Eq. (25). We may treat B&.r;, rr(+&(E) as the
boundary value of an analytic function B& i', ir(W)
that satisfies a dispersion relation of the form

Bvr. , r. (W)=b& r:,r. (W)

Bi.r:,r, "(s irl)pr" (s)—5r;,r, (s)
ds , (40)8"—s

which is known as the Omnes-Mushkhelishvili equa-
tion. 4" The function b~ r, r,r(W) contains all of the
dynamical singularities of B& r, r,r. Equation (40) may
be solved in the form" (we must truncate the matrices
by taking I."=I=J—1)

B iver. i;r, (W) =Ã(W)D (W) &

where

D(W)=P(W) exp —(2ai) '

In Li', the lowest T=O channels that are dominated
bypoles are the J =1+and J =3+channels. Equations
(28) and (29) represent two-parameter fits to the
I.'=I.=J—1 amplitudes in these channels. We were
able to determine ei pp and Ep(1+) from the binding
energy of the Li' ground state and the d-He' scattering
length as determined from the data of Haeberli and
McIntyre. "Similarly, we obtained the parameters e3., 22

and Ep(3+) by fitting the position and width of the 3+
resonance. We found Ep(1+)=13.0 MeV and Ep(3+)
=39.2 MeV (we do not give the strengths here since
they are not simply related to any physical parameter).
In Appendix C, which treats the left-hand cut, we dis-
cuss the reasonableness of these values of Eo. In Table I,
we compare our theoretical values of bp'(E) with the
experimental phases"; in Table II, we compare our
values of bs'(E) with the experimental ones. As a matter
of interest we also calculated the 3+ phase shift using

where

2&jQY J (—) fs)IN fs)IN 1 Tmz.z II. Comparison of d-wave phase shifts calculated from
Eq. (29) for the simple pole representing the left hand at a position

(4 ) equal to 25.0 and 39.2 MeV, with the experimental results ofS'—s" Ref. 11.

$(W)=x. ' 'D(E) Imbi r';r, (s)ds
(42)

and where P (W) is a real polynomial in W. We choose to
let the bound states appear as zeros of P(W), rather
than as poles in rV(W), for convenience. For the I.=O,
J =1+ state in Li' this 6xes

P (W) = 1+W/B(Lis) . (43)

Assuming that the integrals in (41) and (42) may be
evaluated and that Im(br) is known, the problem is now
solved.

Of course, there are practical problems to be over-
come in applying this formalism to the calculation of the

~Lab
(MeV)

2.0
2.5
3.0
3.5
4.0
4.5
5.0
6.0
7.0
8.0
90

10.0

823 (theory,
Ep ——39.2 MeV)

(deg)

17/.2
176.9
176.5
176.1
175.7
175.2
174.7 .

173.7
172.8
171.9
171.0
170.1

ssa (theory,
Ep 25.0 MeV)——

(deg)

1/2.2
171.6
170.7
169.8
168.7
167.7
166.7
164.7
162.8
161.0
159.3
157.6

Sss (experi-
mental)

(deg)

171.7
171.5
167.0
169.6
172.4
180.0
164.5
159.7
156.5
154.6
156.8
154.0

'3 These theoretical values are the same as given in I.
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Ee(3+)=25 MeV, changing the strength to leave the
resonance position unchanged. This gives a width of

50 keV, which is somewhat larger than the experi-
mental width of 21 keV, but gives excellent agreement
with the phase shifts. One must recall that a substantial
part of the observed lifetime of the 3+ resonance may be
attributed to the Coulomb barrier, which has already
been extracted from the experimental data in the usual
way'4: Thus it may be consistent for us to fit a larger
width than the experimental one. The reader may notice
that our theoretical phases in Table II differ from those
of Table II of Ref. 7; in the present work we have used a
better treatment of the energy dependence of the 3+
amplitude near threshold.

As we mention in the Introduction and show in
Sec. I A and Appendix B, the bound state can be
inserted in the E function or can appear as a zero of the
D function. We tested this numerically by calculating
the 1+ amplitude both ways: We insisted that the
residue of the bound-state pole be the same in either
formulation, which, as we have seen, is equivalent to
demanding that Z=O. The numerical results agreed
within five signi6cant figures.

Our original intention was also to calculate the elastic
differential cross section. For this, one needs some model
of the amplitude in the other T=O channels (besides
J =1+ and J =3+). Since the only poles are in the 1+

and 3+ channels, it seemed reasonable to approximate
the amplitude in the nonresonant channels by Born or
impulse approximation. "That is, one would write for
these channels

(K'I.'1i A g~+' (E) i
KL1)n„,

=(d; K'I.'1
~
(V„.+ V„.),~d; KL1)

(K'L'1~ A J &+'(E)
~
KL1);my, ),,

=(d; K'L'1l [1„.&+&(E)+1,.&+'(E)jJ ~
d; KL1),

where t„, and t~ are the rI, nand p-u two-body -scat-
tering operators in the three-body space, corresponding
to U„and U„, respectively. We found, to our conster-
nation, that the Born approximation exceeded the
unitarity limit by about a factor of 5 in the low L
channels, and the impulse approximation violated uni-

tarity by a factor of 20. On the other hand, both the
Born and impulse approximations give reasonable
shapes for the elastic differential cross section, as is

typical in nuclear reactions. We shall have more to say
on this subject in Sec. V. Because the magnitudes of our
predicted cross sections are in such bad agreement with
experiment we do not present them here.

V. CONCLUSIONS

We have constructed a simplified dispersion theoretic
model of d-He4 scattering. This system (with the as-

'4 Reference 13, p. 263.
'~ Reference 13, Chap. 11.

sumption that He' is elementary) may of course be
treated exactly by solving the Faddeev equation. ' In
practice this represents an extremely diTicult numerical
problem": The utility of a simple model such as ours is
that it gives a direct and intuitively satisfying way to
estimate three-body eGects. We have no intention of
proposing our model as a substitute for the exact equa-
tions. Our purpose is rather to qualitatively illustrate
how the three-body threshold alters the solution, and to
estimate its quantitative eftect.

In terms of the structure of its singularities, a reaction
amplitude containing three-body thresholds is quali-
tatively different from one containing only two-body
thresholds. The energy dependence at the three-body
threshold is E' lnE rather than E'~' as at a two-body
threshold. "This feature alone, with its implication of an
indnite Riemann sheet structure in the complex energy
plane, allows a vastly richer array of phenomena in-
volving resonances and bound states. We mention these
rather well-known characteristics of three-particle scat-
tering only to indicate the motivation for this work. The
fact that no reaction or structure theory currently in
vogue (with the exception of a few recent applications of
the Faddeev approach "") includes the breakup chan-
nels makes it all too easy to forget that heretofore
almost no estimate of the magnitude of their effects in a
physically realistic model has been made. As a rare
example of such a calculation, it is worth noting that
Segre,"using the methods of Weinberg, ' has been able
to estimate the effect of the three-body state in a
calculation of an upper bound on the neutron-deuteron
'S scattering length. No detailed knowledge of the
nuclear potentials is required in this calculation.

We wished to estimate the inhuence of the breakup
channel on the 1+ scattering amplitude. Keeping the
values of st pp and Ee(1+) previously determined by our
fit to the Li' ground-state binding energy and d-He4

scattering length, we set
~
$~'=0 and recalculated the

1+D function (Eq. (28)]. This procedure removes the
coupling to the breakup channel without changing the
pole by which we represent the left-hand cut, which
presumably rejects the strength and range of the ele-
mentary two-particle interactions. We find that the
bound state moves from —3.697 to —3.12 MeV; this
represents a change in the binding energy of 40% as
measured from the elastic threshold. To understand this
result more clearly, we introduce the familiar equivalent
single-channel deuteron-He potential obtained from the
three-particle Schrodinger equation by the projection

D Faddeev Mathematical Aspects of the 3-J3ody problem in
the Qmantgm Scattering Theory (Israel Program for Scientific
Translation, Jerusalem, 1965).

» R. Aaron and P. Shanley (private communication).
"A. J. Dragt and R. Karplus, Nuovo Cimento 26, 168 (1962).

These energies are of course measured from their respective
thresholds.

~9 G. Segre, Nuovo Cimento 38, 422 (1965).
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formalism"

V.ff =&dI (V-+V.-) I d)+(dI (V-+V.-)
X(~+'.—RfIR)- (V..+V.-) Id), (44)

where
I d) is the deuteron ground-state wave function,

R is the projection operator 1—
I d)(dI, and H is the

three-particle Hamiltonian. Setting I g I

2 = 0 (and thereby
turning off the coupling to the breakup channel) is
equivalent to taking (dI (V„+V, )R=O in Eq. (44). If
we assume a simple, local form for the (purely real)
effective potential (44), we may calculate the change in
its strength needed to produce a given change in the
binding energy. In particular, taking the Hulthen form
Vo(ei'"—1) ' gives DVe/Ve=6%, where we have taken
the inverse range p, to correspond to the position of the
pole representing the left-hand cut. (For Ze= 13 MeV,
p~1.8 fm '.") We erroneously reported AV&/Ve to be

15% in I. One should note that for a weakly bound
state, such as the ground state of Li', large changes in
the binding energy and scattering length may be
effected by a small change in the coupling strength.

The energy-dependent second term in Eq. (44) arises
from internal excitations (polarization) of the target
nucleus (in this case, H' since we regard the n as
elementary). Below the deuteron breakup threshold,
this term is real, negative definite, and monotonically
decreasing with increasing energy. Therefore the effec-
tive d-He' potential given by Eq. (44) will be more
attractive at the energy of the 3+ resonance (which is
closer to the breakup threshold) than at the 1+ bound-
state energy. Keeping the parameters Ee(3+) and e3;22
obtained by fitting the position and width of the 3+
resonance using Eq. (29), we set

I
(I~=0 and tried to

locate the new position of the 3+ resonance. We found
that it disappeared. entirely, i.e., its position and/or
width had increased su%.ciently that there was no longer
a minimum in

I D~, ~2 I up to 2.5 MeV above the breakup
threshold. Furthermore, at the 3+ resonance energy, we

found that the term in (29) proportional to
I
$I' (and

thereby arising from the presence of the breakup
channel) contributed about 30%%uo of the real part of
[1 D3; n2(&)].

Let us now discuss some of the implications of our
results for nuclear structure and reaction theories.
Early shell-model calculations were performed using an
infinite single-nucleon potential (for example, an oscil-
lator well), and so the basis of unperturbed single-

particle states was entirely discrete. More recent calcu-
lations, based on a realistic finite single-particle po-
tential (e.g. , Woods-Saxon), have been restricted to a
set of states with at most one particle in a continuum

state, for reasons of computational simplicity. " For
bound states in 0" lying within 2 MeV of the 0'e+I

30 J.p. noble, Phys. Rev. 148, 1528 (1966).
» The value of p is determined from the relation p.'=8~+0//g2.
» W. Ehenhoh, W. Glockle, J.Hiifner, and H. A. Weidenmnller,

Z. Physik 202, 301 (1967).

threshold, for example, Keidenmuller et a/. 32 have found
corrections on the order of 2—5% to the in6nite-
harmonic-oscillator results. In view of the results of our
calculation (which would be equivalent, in a shell-model
picture, to allowing two particles in continuum states),
it is not clear that it is possible to set up a hierarchy of
successive approximations beginning with one particle
in a continuum state and the rest in discrete states.

Once again referring to Eq. (44), we note that our
treatment of the scattering of o. particles by H' is a
model of the scattering of an elementary particle by a
polarizable nucleus. In other such processes, for ex-
ample, elastic nucleon-nucleus scattering, the chief un-
solved problem is to determine the contribution to the
real part of the effective single-channel potential arising
from the principal-value integral in the term analogous
to the second term of (44). The second-order perturba-
tion theoretic correction to the eGective nucleon-nucleus
potential is typically of the same order as the first-order
result.

We estimated the second-order correction

p
(dI(U-.+V..) (V..+ V,.) Id&E—IIp

in d-He' scattering, using reasonable forms for V„,V~,
and Id), and found that it was of the same order as
(dI (V„+ U~ ) I d&. Independent of whether the pertur-
bation series converges, " the largeness of the second-
order correction, when contrasted with the smallness of
the actual correction, as estimated above from the
bound-state energy shift in Li', indicates that the
perturbation series is unlikely to be useful. YVe feel that
the results of our simple model at least render suspect
perturbation-theory-based conclusions in the case of
nucleon-nucleus scattering. There is indeed evidence for
the smallness of polarization corrections to the effective
potential for elastic scattering of various projectiles
from nuclei: This evidence is found in studies of the
systematics of optical-model fits to scattering cross
sections.

There have been many attempts to understand the
empirically determined optical-model parameters in
terms of the basic nucleon-nucleon interaction and some
nuclear-structure model, using first-order perturbation
theory. ' The smallness of the polarization corrections to
the real part of the effective interaction, as indicated by
the above evidence and by our calculations, makes the
partial success of these attempts more plausible than
heretofore.

Clearly our results also have implications for dis-
persion-theoretic models of nuclear reactions. Treatment
such as those of Shapiro4 are always restricted to dia-
grams with only two-body intermediate states (whose
contribution diminishes with distance from the physical

» The perturbation series almost certainly does not converge,
see, e.g., Ref. 20.
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energy). Particularly in reactions involving deuterons,
our results indicate the danger of a priori neglecting
contributions from the three-particle intermediate states.
These remarks also apply to R-matrix theory, ' in which
many two-body intermediate states are assumed, and
three- or more-body intermediate states are neglected.

Finally, it has been suggested that the Li' ground
state may contain a large admixture of the cluster con-
figuration (He'+H'), in addition to the more usually
assumed configuration (He4+H'). ' '4 Clearly there must
be some such admixture since the matrix element of the
Hamiltonian between the two types of states is not
identically zero. However, in view of the weak binding
of the Li' ground state with respect to the n+d channel
and the a+n+ p channel, and its large binding with re-
spect to He'+H', we consider a large admixture of this
latter configuration unlikely. Furthermore, the presence
of a large component of He'+H' in the Li' ground-state
wave function would seem to preclude our model, which
neglected coupling to this channel, from htting the
J"=1+ 1.=0 phase shift as well as it did, over such a
wide range of energy. "It may thus be more appropriate
to represent the Li' ground state as a mixture of (n+d)
and (n+n+p) configurations, and in general, in a
cluster picture of light nuclei it may be better to include

low-lying three-particle configurations than distant
two-particle states.

Although we have made little reference to the
problems of many-particle intermediate states in high-
energy physics, this is clearly a subject of great impor-
tance. It is therefore worth noting that pioneering work
on this problem from a somewhat diferent viewpoint
has been done by Cook and Lee" and by Blankenbecler'
in the context of the problem of the p bootstrap.
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APPENDIX A: ANALYTIC BEHAVIOR OF Ds(E)
In general, Ns(s) is a rather complicated function

that is analytic for Re (s))—e and has the left-hand cut.
This lets us write the integral in (24) as

dsgq(s)Ns(s) (s—z) I

0 S—8

(Pi,'P(2MS)I 'jN&;I, 'I(s e) Pi, 'f(2Mz)"'jN& I,'I(z)f(z)f '(s e)}+API'f (2Mz)II'jN&;I, 'i(z) f(z)
S—S—6

dsgs ds
X +B f '& ()N; ~ ()—'7 ()N; ~ ()f()f '()}

p f(s e) (s —z e)——

+Bz'yr, (z)NS , I;i,(z)f(z). (A1)
f(s)(s z)

'—
where A = sI(2M)'I, B=2m (4@M)'I'( $ ~

s, and f(s) is an
entire function of s with no zeros to the right of —e that
increases at least as fast as s. The functionsPI, 'L(2Mz)'I g
must be analytic in z for Re(z)) —e, and clearly the
left-hand side of (A1) must be a convergent integral or
our whole analysis would be meaningjess. We have
written the right-hand side of (A1) in this way in order
to isolate the singularities arising from the elastic and
breakup thresholds. For simplicity we choose f(s)
=s+sp, where sp) e. We find

dsgs(s+sp —e) '($—z—e)

z.$(sp—e)'Is+i(z+ e)'I j
sp+z

=z((sp —e)'Is+i(z+e)'"jf '(z)
~4 I". C. Young, P. D. Forsyth, and J. B. Marion, Nucl. Phys.

A91, 209 (1967).» See Table I.

and

ds(s+sp) '(s—z) '= f I(z)Dnsp —ln( —z)j

=f I(z)/lnsp —1 ~z~n+i jz
Inserting these results back into the right-hand side of
(A1) and noting that the remaining integrals are func-
tions analytic on the positive real z axis, we see that we
may write

limLDs(E+iq) ji, I,
q—&0

= LRs(E)]i,.i,+i~L9s&~I Ns(E) ji,.i,
—21r(4@M)'"

( (~'E'yi, .(E) lil
~

E
~
N J, I,.i,(E) . (A2)

"L.G. Cook, Jr., and B. W. Lee, Phys. Rev. 127, 297 (1962)."R.Blankenbecler, Phys. Rev. 125, 155 (1962).
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where
H=Bp+ V,

V= V„„+V„,+V„.
If there is an elementary component to the Li' ground
state, it must satisfy

(B'p+ V ) IA&= Bolii'o& (B1)

Conversely, the actual ground state satis6es

(I12)

The completeness relation for the eigenstates of Ho

+V„~ is

APPENDIX 3: RENORMALIZATION OF Li'

In exact analogy with Sec. I A, we may identify a zero
of detl Dz(E)$ with a bound state of a purely composite
system. For convenience, we examine this result in the
specific case of the (weakly bound) T=O, J =1+ Lio

ground state, assuming it to be pure L=O. Again we
write the full Hamiltonian

chosen to make the coefficient —,
' appear in front of the

C2 term and to simulate the large-energy behavior of
the matrix element. Ke then apply the approximation
detailed in Sec. II to obtain

—Z=4 I(KiI2M(B—o)g),dl(V„.yV„.)lyn)l
X I C22r/2(B e—)'(2+ 'C—E ]

When Z=O, the residue of the L=O amplitude then
agrees with that computed from Eq. (28), to order
(B—e)/(Eo —e).

APPENDIX C: NATURE OF THE LEFT-HAND CUT

When we simulate the left-hand cut by a simple pole,
two questions arise: (1) Does a simple pole give reason-
able asymptotic dependence? (2) Is the position of the
pole in the particular channels J=1+ and 3+, T=O
reasonable? If d-n potential were a pure Yukawa form,
the partial-wave on-shell Born term would be pro-
portional to

E 'Qi(1+2Eo/E),

which is asymptotically dominated by E, lnE, inde-
pendent of l. On the other hand, when we take the
nucleon-o, interaction to be a superposition of Vukawa
potentials that we smear over the deuteron (i.e.,
Vq ~=(dl LV„,+V~ jld)), we obtain amore rapid fall-
oQ with E; in fact, an E ' asymptotic dependence.
Therefore, the pole that represents the left-hand cut
should be simple.

As mentioned in Sec. IV, we found the position of the
left-hand cut pole in the 1+ channel to be —13.0 MeV,
while the position of this pole in the 3+ channel was
approximately 2—3 times this amount. We believe these
results are reasonable. To see why this is so, we examine
the discontinuity across the left-hand cut. The lowest-
order contribution to the left-hand cut is the Born ap-
proximation to the elastic scattering amplitude, which
has the form

d Kl K,d&(K, dl

dK dk
I
K,k'+))(K,k'+) I, (B3)

where

B(IK'—K I)= 2 A*(k+-', (K'—K))

X V(l K—K'I)y„(k)dk, (( 1)

where V is a local potential supposed to represent the
nucleon-n interaction and fq is the momentum-space
deuteron wave function. Assuming for convenience that
in coordinate space"

I
C17r/2 (B e) + sC2Ep)

with the residue

lim l&K,dl(V..+V .)Iaa&l'
ice—ar (1 e ar)—

Pg(r) =
(42r)'" r

we 6nd for this integral

(Q)=( (Q)/Q){t -'(Q/ )— t -'(Q/ (+2))
+tan '(Q/4(n+)r) )){((()-'+ (n+2)()—'

+(4( + )) '} ' (C2)

~~;(Sma~3)1/~

of the T matrix, as obtained from (B4) with &=0. We
remove the matrix element from the integral in the
first term of (34) as in (15); unfortunately we cannot
use this procedure to remove the matrix element from

the second integral, as the remaining integral diverges.
Yo get around this, we put in a convergence factor

(Rd, ,r„„!K,d)= (22r) @' exp(iK. Rq, )fq(r„2),

(R, ,r., I K,k'+') = (2~) '"exp(iK. R~-)ii s'+'(r-~) 2

and IRq, „l is the distance between the ri pcenter of-
Inass aild tliat of the n. D«»ng &= I(fp!WB&l', we

have, as before,

l&K,dl(v-+v. -) le~&l'
i—Z= d'E

[(2M) 'K' —o+B]'

I&K,k")
I (v..+v..) I~.&l

+ d'K d'k- —. (84)
L(2M)-'K'+ (2p) 'k'+Bf'

We wish to compare the leading terms (in B/Ep) of the
residue of the 1+ amplitude as computed from Kq. (28),
that is,

3 g
!(-"E,+ (2M') 'EC'+ (2g) '2')

"The essential feature of Pq that determines the left-hand
branch point is the asymptotic behavior e ""/r, common to anv
deuteron wave function.



INFLUENCE OF 8 REAKUP CHANNELS

The partial-wave on-shell projection of B(Q) is

(C3)

of the forms

8(W) = (V.„+V..+- V„.)
X (1+(IV—H)-i(V..+ V„.)) (D5a)

or

Assuming that the leading singularity in V is a pole
(Q'+ti') ' it is easily seen that for large positive K',
&&(&) 0(& ') =O(E ') Bi(K) has several branch
points along the negative real K' axis. The nearest one
comes when Z/2«= &i or E'= —4«2. Numerically, this
occurs for E= —5.6 MeV, which is to be compared with
the 1+ bound state at —3.697 MeV. Thus we see that it
is reasonable to approximate the effect of the cut for
I.=O by a pole at E= —13.0 MeV. The discontinuity
resulting from the nearest singularity in (C2) above is
a weak one and quickly diminishes with increasing l.
Therefore, it is not surprising that we find, when we
simulate the higher partial-wave channels by a pole,
that the pole recedes to the left.

APPENDIX D: RELATIONS BETWEEN
SCATTERING OPERATORS

Ke now state several identities satisfied by the formal
scattering operators of our model of d-He4 scattering.
The system of it, p, and n is described by the
Hamiltonian

~ (IV) = [1+(V„,+ V~ +Vu~)

X(W H) ']—(V„+V„,). (DSb)

Since both these forms yieM identical on-shell breakup
amplitudes, and since we deal only with on-shell
quantities in our dispersion relations, we have not
bothered to distinguish between the two forms.

Comparing Eq. (DSb) with (D2), we see tha. t

8(IV)=g(W)+V „(IV—H) '(V +V„). (D6)

However, using the ubiquitous identity

(W—H) '= [(W—H) '(V +V„)+1]
X (IV Hp V—) ' —(D7)

together with Eq. (D2), we find

(IV H) '(V —.+V„)=(W—Hp —V „) '5(I4~). (D8)

Finally, we require one other well-known identity„
namely,

V „(W Hp V~) '=—t „(I—V)(IV—Hp) ', (D9)

(D1) whereH=Ho+V ~+V +V~

The formal elastic scattering operator describing Be'-
(d,d)He' is given by

@(W)= (V-+ V.-)+(V-+ V.-)
X (W —H)-i(V„.y V„.) . (D2)

t„„(l~v)= V„„+V„„(IV—Hp) 't „(Iiv) (D10)

defines the e-p scattering matrix in the 3-particle space.
Combining (D6), (DS), and (D9), we obtain Eq. (30),
which may be formally written

8(W) =5(IV)+t„„(Il')G,(II )5(II ). (D11)
In terms of K(IV) and the deuteron internal wave
function, the elastic scattering matrix may be written The scattering operator for He'+n+ p ~ He'+n+ p

is written
(Ig) V+ V(W H) 'V (D-12)

(K'id&+&(E) iK)=
' ' dkyg*(k')

K(W) =$(W)+ V(W H) 'V„„. —(D13)

lim dk
~p+ where V—:V„„+V„+V„. Comparing (D12) with

(DSa), we find
X(K'k'~ 5(E+iit)

~
Kk)yg(k), (D3)

where spin sums are left implicit. Similarly, the ampli-
tude for the breakup reaction He'(d, mp)He' is given by

(K'k'~Bi+i(E) ~K d)

= lim dk(Kk ~e(Z+ig) ~K,k)y, (k), (D4)

Using the transpose of Eq. (D7) and (D5a) we find

V(W —H) '=$(W)(W H, V„„) ', (—D1&)—

which together with the transpose of (D9) immediately
yields

K(IW) =8(IV)+8 (W) (W—Hp) 't (W) . (D15)

where the formal breakup operator P is given by either Equation (D15) is just Eq. (36).


