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A reformulation of the optical model is developed in which the real parts of the potential are obtained
from nuclear-matter distributions and the nucleon-nucleon force. The model is applied to proton elastic
scattering data at 24.5, 30.3, and 40.0 MeV and succeeds in Gtting the data as well as, or better than, the
standard optical model despite the fact that two fewer parameters are needed in the new model. Values,
accurate to a few percent, are obtained for the nuclear rms matter radii which are independent of the incident
proton energy. These values are greater than the corresponding rms proton radii obtained from electron
scattering and muonic x-ray work, and indicate that nuclear neutron rms radii are greater than nuclear
proton rms radii by about 0.6 F. Information is also obtained concerning the spin-isospin-independent
part of the nucleon-nucleon force, indicating a mean-square radius of 2.25&0.6 F' and a volume integral of
400&20 MeV F'. The neutron and proton density distributions found from this work and muonic studies
are used to calculate the imaginary potential, and this is compared with the phenomenological form found in
the analyses performed with the new model. The good measure of agreement between the two potentials indi-
cates that the model can be extended to include this term in a more logical manner, and with fewer para-
meters, than in the standard formulation of the optical model. The model is readily extended, in appropriate
cases, for use with complex particles.

I. INTRODUCTION

'HE optical model has been used extensively in the
analysis of elastic scattering data for a wide

variety of particles and over a wide range of energies. '
The present paper deals with a reformulation of the
model which expresses the potential in terms of nuclear-
matter distributions and the nucleon-nucleon force.
The new model is used to analyze proton elastic
scattering data between 14.5 and 40 MeV. As developed,
the model is directly applicable to neutron scattering
data and is readily extended, in appropriate cases, to
heavier particles.

In the energy region below 50 MeV, extensive
proton elastic scattering data exist. ' These have, in

general, been analyzed in terms of an optical model in
which the interaction is represented as the scattering
of a point particle (proton) by a potential of the form

U,v(r) = Uc(r)+ U(P+iW(r)+ U„(r)+iW„(r),
where Uc(r) is the Coulomb potential due to a uniform

*Work supported in part by the U. S. Atomic Energy
Commission.

' The literature on this topic is very extensive. References 4-8
of this paper are immediately relevant to this work and they in-
clude references to other work on the subject.

distribution of appropriate size and total charge. ' The
real term U(r) is almost always taken to have a volume
form —Vztfzt(r) with fzt(r) = f1+expL(r —Rtz)/aa)i
the Woods-Saxon form factor. This real central term
thus involves three parameters Vg, Rg, and ug. The
imaginary central term W(r) has been taken to have
a surface form, a volume form, or a mixture of surface
and volume terms. Below proton energies of about 20
MeV the surface form is satisfactory and may have a
Gaussian or a %oods-Saxon derivative shape. The
derivative form is written as W4 tft, '(r) and contains
three parameters 8'„R„and u, . The volume form is

correspondingly W„f„(r) with three parameters. If both
surface and volume terms are used, six parameters are
involved. At proton energies above about 20 MeV, a
volume term as well as a surface term seems to be
necessary, but good agreement with experiment is

achieved with RR,=(=„Rz say) and a, =a„(=az say),
leaving four parameters W„S'„, E~, and al for
the imaginary central term. The spin-orbit term

t U„(r)+iW„(r)), is generally taken to have a Thomas

2 The predictions are not very sensitive to the details of the
charge distribution used; see, for example, F. Secchet ti and G. %'.
Greenlees, Annual Progress Report in Nuclear Physics, University
of Minnesota, 1966 (unpublished) .
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form, with
h'

U,.(r) = V,. —f,.-'(r)l e.
m~'c' r

In the absence of convincing evidence to the contrary,
it is usual to take 8'„=0, leaving three parameters
V„,E„,and a„.The model thus involves ten parame-
ters although several analyses have been performed
using more restricted sets by equating some of the
geometrical parameters and/or neglecting one of the
imaginary terms. 3

When data for a range of elements at one proton
energy are analyzed, it is usua1 to use a set of "average"
geometry parameters by taking the radii E.z, E&, and
E., to vary as A'" for some 6xed diRuseness values. The
introduction of the assumption of a specific A de-
pendence for the radius parameters worsens the agree-
ment between the model and experiment and in some
cases, where this is particularly severe, an A depend-
ence has been introduced for the di6useness parame-
ters. The advantage of such procedures is in the colla-
tion of more data in terms of a limited number of
parameters and in exhibiting trends in the strength
parameters with A. Such trends, however, are only
significant if the basic assumptions regarding the A

dependence are valid and these assumptions are not
independently justi6ed. Since E&, R& and R„can
differ by about 20-30'Pz for a given element and pro-
jectile, a mechanism which produces the same A de-
pendence for all three radii presents some diKculty.
When data for a range of energies and elements is
considered, it is usual to extend the above assumption
by requiring that the average geometry be energy-
independent. This exhibits trends in the strength
parameters with energy. Variations of the parameters
with energy are attributed to the strength rather
than the geometrical parameters without any solid
justification.

Thus the energy and A(1V,Z) dependence of the
strength parameters obtained from the normal formula-
tion of the optical model are dependent entirely upon
the validity of speci6c geometrical assumptions which

may or may not be correct. The introduction of these
assumptions worsens somewhat the agreement be-
tween the model and experiment. One advantage of
the formulation presented here is that these assump-
tions are avoided and both geometrical and strength
parameter information is extracted directly from the
optimum 6ts.

Although ten parameters are needed for an optimum
fit to proton scattering data for one element at one
energy, the main features of the experimental data are
well represented by more restricted models. Thus
Percy, in analyzing proton data at energies between 9
and 22 MeV, used a six-parameter model by choosing
W.=0, Rn Er R.. (~A'"), ——and ——up=a, . and ob-

' References 4-8 of this paper, among others.

tained reasonable agreement with the differential cross-
section data and the limited amount of polarization
data then available. 4 Rosen et ul. analyzed data in the
energy range 7—22 MeV with similar parameter re-
strictions and obtained reasonable agreement with data
which included extensive polarization measurements. '
A similar treatment between 11 and i8 MeV has been
given by Buck. '

With the availability of more extensive and higher-

energy data, the parameter restrictions imposed by
Percy and by Rosen et ut. have been removed so that a
ten-parameter model is now considered necessary unless

signi6cant compromises on the fits are to be tolerated.
Although ten parameters are necessary for the best
fitting of the data, ambiguities have been observed in

the parameterization and it is not possible to specify
a. unique set of parameters even for one set of data. ~ 8

Nevertheless, the over-all success of the model testifies
to the basic validity of the approach. There is, however,
clearly a need for a formulation more closely related to
physical invariants and avoiding, if possible, the
assumptions and ambiguities of the present approach.

An earlier publication used the results of a standard
optical-model analysis of 30-MeV proton data to
establish a connection between the real central geometry
and the spin-orbit geometry via the nuclear matter
distribution. ' The present paper is a more complete
treatment a1ong these lines. The real parts of the
potential (central-isospin-independent, central-isospin-
dependent, and spin-orbit) are obtained from the
nuclear-matter distribution and specific components of
the nucleon-nucleon force. The strengths of the various
components of the potential are left as adjustable
parameters but the four geometrical parameters as-
sociated with the real central and spin-orbit parts of
the potential in the normal formulation are replaced

by two parameters associated with the matter dis-

tribution in the new model. It is thus an eight-parame-
ter model instead of a ten-parameter model. The fits
obtained with the new model are in general slightly
better than those obtained with the old model despite
the fact that two less parameters are being used.
Well-defined values for nuclear-matter mean-square
radii and the volume integrals of the real parts of
the potentials are obtained for a range of A(58—208)
and E(14-40 MeV) without further assumptions. In-
formation is also obtained concerning the nucleon-
nucleon force and when nuclear-proton distributions,
obtained in other experiments, are combined with the
nuclear-matter information obtained here, nuclear-
neutron distributions can be derived. Although the

4 F. G. Percy, Phys. Rev. 131, 745 (1963).
s L. Rosen, J. G. Beery, and A. S. Goldhaber, Ann. Phys. (N.Y.)

34, 96 (&965).
6 S.Suck, Phys. Rev. 130, /22 (1963).
7 G. R. Satchler, Nucl. Phys. A92, 2/3 (1967).
8 G. %'. Greenlees and G. J. Pyle, Phys. Rev. 149, 836 (1966).
s G. W. Greenlees, G. J. Pyle, and Y. C. Tang, Phys. Rev.

Letters 17, 33 (1966).
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model still contains eight parameters, there are strong. obtains
indications that some of the parameters of the imaginary
central term can also be eliminated. f*(H—E')%d(=0.

II. MODEL

A. Formulation

In order to compute the interaction potential be-
tween the incident nucleon and the target nucleus the
following approximations will be used:

(1) The incident nucleon will be treated as dis-
tinguishable; i.e., the requirement that the wave func-
tion be antisymmetrized with respect to the exchange
of the incident nucleon with a nucleon in the target
nucleus will be ignored.

(2) The effect of polarization of the target nucleus by
the incident nucleon will not be taken into consideration.

These approximations are very likely to be valid for
the present problem, since the presence of a fairly
strong absorptive component in the optical potential
has the consequence that the elastic scattering is
sensitive mainly to the potentials in the surface region.
In this latter region, it has been shown by Drell" that
the eGective potentials arising from polarization
and antisymmetrization eGects have rather small
magnitudes.

With the above approximations, the wave function
of the system can be written as

'P =&(()4(rp, sp, to),

Using Eqs. (1) and (4), it can be easily shown that

where Ep is the energy of the incident nucleon in the
c.m. system and the effective interaction potential Up

felt by the incident nucleon is

Uo —— P P upyfdg.
.' i~1

(6)

In this investigation, the nucleon-nucleon potential
considered is of the form

upi=ud(roi)+ur(roi)&o' &i+ua(roi)iro rri

+u„(rp;)op e;ep ~~+[ui(rp;)+ui, (rp,')co' 0 1Sgs

oui, (rp;)-[(rp —r;) X (yo —p;) (o'o+e;)j, (7)
h

where Sl~ is the tensor force operator. For nuclei with
total angular momentum zero, the contribution to Uo

of Eq. (6) comes from the 6rst, second, and last terms in

Eq. (7). Hence

U'o= &s+&s+Um,

where P is a normalized wave function describing the
ground state of the target nucleus and P is the scattering
function. The quantity ( denotes, collectively, the
spatial, spin, and isospin coordinates of all the nucleons
in the target nucleus, and rp sp, and tp denote the cor-
responding coordinates of the incident nucleon. To
determine the function it, a, variational principle is
used; i.e.,

with

and

A

4* Z u.(ro')Id'

A

Us= y* P u, (ro~)~o ~,ydg, (10)

+*(H E')+do =0, —

where E' is the total energy of the system and H is the
Hamiltonian given by

A

H=H +pTp+Q up;,

X[(ro—r;)X(yo—p;) ( +;)]Id(. (11)

Using the expressions

with H~ being the Hamiltonian of the target nucleus,
Tp being the kinetic-energy operator of the incident
nucleon, and Npi being the two-body interaction be-
tween the incident nucleon and a nucleon i in the
target nucleus. From this variational principle, one and

»(r) = F Z ~(r'—r)s(1+r'*)Ides,

p-(r) = P E 0(r'—r) s(1—r'*)4d(,

p-(r) =p.(r)+p-(r)

(12)

"S. D. Drell, Phys. Rev. 100, 97 (1955). for the proton, neutron, and matter distribution in the
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V,= p.(r)u. (~r—r, ~)dr,

Us= LP„(r)—P.„(r)ju, (~r—rs()dr 7s„(16)

target nucleus, it is straightforward to show that are the volume integrals of the potentials Ug and N~,

respectively. "
A detailed phenomenological analysis of n-n scatter-

ing has been made by Ali and Bodmer, " who found
that the 1=0, 2, and 4 phases can be very well ex-
plained by using a potential which has an attractive
component:

U~ =—Vo~ exp( —p~'r') (22)

1~ kr 2ed

Ii ~=~ (2m+1)! rs dr p

-2(u —1) d'"-'
X—

d2" 2

P~+ Pm
pp gprp2S 3 gpPp2 71 2

X ui, (rl)rl'"+'dg Ip es. (17)

It should be mentioned that the right-hand side of
Eq. (17) is an asymptotic series and, hence, care must
be exercised in its summation. "

With a wave function of the form given by Eq. (1),
the existence of open reaction channels is not accounted
for. To take into consideration these channels in a
crude manner, a phenomenological imaginary potential
W will be added to the potential Us of Eq. (8). In this

way, a potential U„~ is obtained, which is of the type
commonly used to analyze data on the scattering of
nucleons by complex nuclei.

B. Preliminary Evaluation

Before proceeding with the application of the model
to the analysis of proton elastic scattering data, it is
worthwhile to make a preliminary evaluation to see if
the consequences of Eqs. (15)—(17) are consistent with
published analyses of scattering data. This is done in
the present section; subsequent sections are devoted
to the analysis of data using the model.

From the form of Eq. (15), it follows that

g (18)

where (r')g, (r')q, and (r') are the mean square (ms)
radii of the real potential Ug, the spin- and isospin-
independent part I& of the two-body potential, and
the matter distribution p, respectively, and

where

and

Jg=A Jg,

Jg = — Vn(g)de

(19)

(20)

Jg —— ug(g)ds7—
"The erst term (m=1} in Eq. (17) has also been derived by

R. J. Blin-Stoyle, Phil. Mag. 46, 973 (1955).

with pal=0.475 F ' and Vpg=130 MeV. This potential
has the properties that'4 (r')a ——6.65 F' and Jn ——6760
MeV F'. Using Eqs. (18) and (19) and (rs) =2(r')
=4.14+0.40 F', where (r') is the ms radius of the
nucleon distribution in the 0, particle, "we 6nd

and
(r')g ——2.51&0.40 F'

JR=422 MeV F'.

(23)

(24)

This can be compared with the corresponding quantities
obtained from a phenomenological nucleon-nucleon
potential which has been used in a number of scattering
problems involving light nuclei'; this potential is of
the form

u;;= —Vs exp( —iiru')

X (Gd+ Gr'ei ' 'ej+ Salmi '
ijr+Gz& ir'iirTi'i4&) & (25)

with V,=72.98 MeV and a=0.46 F '. With a Serber
exchange mixture, the constants aq, a„a, and a„
have the following values:

a~ —— 0.306, a, = —0.148,

a = —0.056, u, = —0.102 . (26)

(r')&=3.26 Fs

JR=400 MeV F'.

(27)

(28)

Comparing these values with the values of (rs)s and
Jq of Eqs. (23) and (24), it is seen that there is a
fairly good agreement, indicating that the relations
(18) and (19) are reliable.

A second example of the reliability of Eq. (19) is ob-
tained by using it to estimate the depth of the potential
Ug. Assuming the usual form

U~= —Vg{1+expL(r—R~)/a~j) ', (29)
'2 More generally, the quantity A in Eq. (19) should be re-

placed by A&A;, where A& and A; denote the number of nucleons
in the target nucleus and the incident particle, respectively."S. Ali and A. R. Bodmer, Nucl. Phys. 80, 99 (1966).

'4 Ali and Bodmer (Ref. D) have also found another potential
which fits the phase shifts equally as well. This potential has
pal=0. 5 F ' and V0g=150 MeV. The interesting point is that,
for this potential, Jz has a value of 6710 MeV F', which is very
nearly the same as the value of 6760 MeV F' quoted above.

"R. Hofstadter, Rev. Mod. Pbys. 28, 214 (1956); G. R.
Surleson and H. W. Kendall, Nucl. Phys. 19, 68 (1960)."Y.C. Tang, E. Schmid, and K. Wildermuth, Phys. Rev. 131,
2631 (1963); S. Okai and S. C. Park, i'. 145, 787 (1966); D. R.
Thompson and Y. C. Tang, iMt. 159, 806 (1967).

This potential gives a good Gt to the low-energy two-
nucleon scattering data; it has
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it is found that term of Kq. (17); i.e., we can approximate U„as

Js ——Vs -', 7rRs'(1+ m-'as'/Rs') .

Equating this with A J&, we obtain

(3o)
U„—

1 4x 1 dp

Ig 3 rp drp
ut. (rj)g A &o'o'o. (38)

V@=50.4 MeV for Pb2ps

=45.4 MeV for Ni". (32)

From analyzing the scattering data, the phenomenologi-
cal value of Vg was found to be around 45 MeV, which
agrees quite well with the values of Kq. (32).

For the symmetry potential Uz we note that in
the special case where

p, =Zp„/A,
p„=Np /A,

u, (r) = —i'u~(r),

(33)

with f being a constant independent of r, it reduces to

Vs=A Js(3/47r)Rs '(1+~'as'/Rs') '. (31)

Using J~——400 MeV F', Eg=1.20A'" F, and a~=0.7 F
the values of Vg are

This approximation should be a reasonably valid one
for the following reasons: First, the two-body spin-
orbit potential is expected to be short-ranged, with
A/Mc equal to only about 0.3 F.'r Second, the terms
with e) 1 in Eq. (17) have a rapid variation with ro with
a reasonable form for p, such as a Saxon-Woods form
and, hence, they become important only when the
incident nucleon energy is greater than about 100 MeV.

By examining Eqs. (15) and (38), it becomes im-

mediately obvious that the form factors of U& and
U„are quite different. As has been reported in a
previous publication, ' this readily explains the ob-
servation from optical-model analyses of proton
scattering data ' " that the rms radius for the form
factor of the spin-orbit interaction (p ) is smaller than
that for the form factor of the real central interaction.

If the spin-orbit potential is written in the form
generally used in optical-model analyses,

Us= i [(N Z)/A]ro, —Us, (34)

which is of the form commonly used in optical-model
analyses. The magnitude of i can be estimated by
using the two-body potential of Eqs. (25) and (26);
it is

V„h '1 d
U„= —— f(ro,r„,a..)lo o'o,

h m c rp drp
(39)

f'= —a,/a, = 0.48, (35) = (1+exp[(r—r„A'")/a. ,)) ', (40)

which does compare favorably with that found by
phenomenological analyses of nucleon-nucleus scatter-
ing data. 4 '

Under the conditions expressed by Eq. (33), in-
formation about the nucleon-nucleon potential can be
extracted from the parameter values of the phe-
nomenological optical-model potential. For the proton-
nucleus case, ro, has an eigenvalue of +1 and (Us+ Us)
can be de6ned as

Uss= Us+ Us= Us+I(N —Z)/A)f'Us. (36)

Taking the volume integral of both sides and using
Eq. (19), one obtains

N —Z
Uss«= Jss=AA~ 1+

or
J /sAs= Js+fJs(N Z)/A. —

(37)

Thus, by making a straight-line fLt of J /Assdeter-
mined from the optical-model analysis as a function of
(N Z)/A, one obtains —the values of both Js and f

Finally, the properties of the spin-orbit potential
will be discussed. At incident energies below 50 MeV
it will be a good approximation to take only the 6rst

then, by comparing with Eq. (38), one obtains

with
V„=-'o~p o(h/m c) 'J4, (41)

u), (g) g'dg. (42)

Here again, information on the two-body spin-orbit
potential can be used to estimate V„. The spin-orbit
splitting in He' has been studied" using

u), (r) =—V(, exp( —p(,r') . (43)

With p&, equal to 0.27, 0.42, and 0.57 F ', the values
of V~, were found to be equal to 2.2, 4.9, and 8.9 MeV,
respectively, while the corresponding values of J4 are
equal to 41.1, 29.2, and 24.8 MeV F5. In this investiga-
tion a value of J4 is needed which corresponds to a two-
body spin-orbit potential of much shorter range. This
can be obtained by studying the variation of J4 with p.

"R.A. Bryan and B. L. Scott, Phys. Rev. 135, B434 (1964)."J. A. R. Gri%th and S. Roman, Phys. Letters 19, 410 (1965);
D. A. Lind, D. E. Heagerty, and J. G. Kelly, Bull. Am. Phys. Soc.
10, 104 (1965); L. J. B. Goldfarb, G. W. Greenlees, and M. B.
Hooper, Phys. Rev. 144, 829 (1966).

L. N. Blumberg, E. E. Gross, A. Van der Woude, A. Xucker,
and R. H. Bassel, Phys. Rev. 14?, 812 (1966).

~ Y. C.Tang, K.Wildermuth, and L. D. Pearlstein, Phys. Rev.
123, 548 (1961l.



1120 GREE NLEES, P YLE, AN D TANG

Using the three values of J4 mentioned above, a crude
estimate of 20 MeV F' is obtained for J4 in the present
problem. Taking p„p equal to 0.16 I' ' yields

(4) take only the first term of Eq. (17), giving

V„=6.7 MeV, (44)

which, again, agrees very well with the values found
from phenomenological optical-model analyses. ' '8

III. APPLICATION OF THE MODEL

It is seen from Eqs. (15)—(17) that if specific forms are
used for p„, p, Nq, e„and N~, ,then Ug, U~, and U„
can be computed without further assumption. At
present, information is available concerning p„, Nd, I„
and nl„so that an obvious procedure wouM. be to
assume suitable forms for these quantities, parametrize

p, and use a search program to fit experimental data.
To allow for minor corrections due to effects ignored

by the model, the strength parameters V&, Vz, and
V„of the folded potentials could be left adjustable.
Such a procedure is entirely feasible but involves a
separate numerical integration to obtain each of Ug,
U~, and U„and, consequently, a relatively long com-

puting period for each parameter iteration. Two of
these integrations can be eliminated, and the model
tested in a good approximation, by noting that (1) the
main contribution to U„comes from the 6rst term of
the series in Eq. (17), as was discussed in Sec. II 8,
and (2) Vs is small compared to Vir and need not be
treated exactly.

In this paper, recognition of these facts is made by,
first, using only the first term of Eq. (17) and, secondly,
assuming that

p.(r) =Zp-(r)/~,

p (r)=&p (r)/~

N, (r) = —t e,(r) .

These assumptions lead to Eq. (34),

and give U~ and Ug the same volume form. This
volume form for the isospin part of the potential weal

only occur under the assumption of identical form
factors for the neutron and proton distributions. The
analysis shows this assumption to be incorrect but not
to the extent of materially altering the conclusions.

Hence the procedure followed in this paper to obtain
the effective interaction potential is:

(1) assume p has a Saxon-Woods form with parame-

ters E and u;
(2) assume a form for uq',

(3) obtain the form of UiiaL= Un[1+((A' —Z)/A)|']]
from folding of p„and e~ tEq. (15)1, leaving the
coefficient V~8 of U~~ as a strength parameter;

with

f (r) =exp( pr)/pr—
"The longer-range components of the force are associated

with terms in Eq. (/} which do not contribute to the interaction
potential in 6rst order.

2'The spin-orbit term of Kq. (45) divers from that given in
Eq. (39) by a factor k '. Equation (45) conforms to convention
with 1 having the magnitude of the angular-momentum quantum
number. In Eq. (39), lp /which is l of Eq. (45)j is the angular mo-
mentum itself and eras used to make See. II consistent.

with the coefficient V„as a strength parameter, and

(5) introduce an imaginary potential with both
surface and volume components.

The form used for I& is to be obtained from analysis
of two-body data. Many such analyses have been made
yielding mean-square radii (msr) for I„in the range 1.5
to 3.5 F'. Theoretically, this term is often attributed
to a 2x exchange mechanism which, with a Vukawa
shape, has a msr of 3 F' in agreement with the results
of phenomenological analyses. "In the present paper a
Yukawa form is used which enables Eq. (15) to be
reduced to a one-dimensional integral. Initially a range
corresponding to a 2x exchange force is used, and in
Sec. IV 8 the sensitivity of the model to this range is
explored. Phenomenological analyses of two-body data,
which include high-energy results, require a repulsive
core for the potential. In this analysis, however, the use
of a purely attractive potential should be appropriate
since, in the energy range being considered, the presence
of an absorptive component in the optical potential has
the consequence that the nucleon-nucleus scattering
data are sensitive mainly to the tail region of the real
central potential and, for this latter region, the contribu-
tion comes predominantly froln the long-range part of
the potential N~. 'p At higher energies, on the other
hand, repulsive core effects may well become im-

portant and will place an upper limit of about ].00 MeV
on the model.

The interaction potential used can be written as"

U.p(r) = U~(r) V»1(r)/1(O) —i'.fi(r)—
+iW,4')d fr(r)/dr/+ V„(Alm.c) '

X(1/r)t.df (r)/drji o', (45)
where

Uc (r) = (Ze'/2R. )L3—(r/R, )'), r ~& R,
=Ze'lr, r~&R,

is the Coulomb potential between a nucleon of charge e

and a uniformly charged sphere of radius R,=1.2A'" F.
Also,

I(r) = f (g)f.(l q rl )dg, —
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and

f-(r) =u-(r)/u-s= L1+exp((»—~-)/~-) j ',
fr(r) = L1+exp((r—Rr)/ar)] '.

A numerical comparison of the predictions of the
model and the data was obtained in the usual manner
from the X' criterion, where X' is defined by

In this expression for U,~(r) the suffix zero has been
dropped from rp lp, and u'p. This procedure will be
retained for the remainder of this paper.

Subsequent parts of Sec. III 8 give details of the
Gtting procedures followed in the application of the
model to proton data. The results of this section of the
work are summarized in Figs. 2—7 and Tables III—VI.

The performance of the model has been tested by
analyzing existing proton elastic scattering data using
the potential of Eq. (45). A minimum requirement for
such data is that corresponding differential cross-
section and polarization measurements should be
available. Data at three energies were considered
suitable; these are data at 14.5, 30.3, and 40 MeV. At
14.5 MeV the differential cross-section data of Lind
et a/. "were used together with the polarization data of
Rosen et al. '; at 30 MeV the Rutherford Laboratory
data were used'~" and at 40 MeV the Oak Ridge data
were used. " In all cases the quoted errors for the ex-
perimental points were taken as being the best estimate
available of the accuracy. A more convenient error
treatment, from the computational viewpoint, is to use a
constant percentage error at all angles for a given
element; it was felt that such a procedure was not
justified in the present case since it must necessarily
obscure some of the information present in the data.
The polarization data had in all cases been obtained
using an angular acceptance suAiciently large to in-
troduce some experimental averaging into the measure-
ments. This makes the experimental polarization curve
somewhat different from that which would be obtained
using an angular acceptance small compared to the
width of the angular oscillations in the data. The model
predictions for polarization were therefore averaged
over the angular acceptance used in the experiment,
before a comparison was made with the data in the
search routine. This 'smearing' of the predictions was
obtained from the expression

where he is the experimental angular acceptance which
includes a contribution from both the detector aperture
and the finite target beam spot.

"D.A. Lind et al. (private communication)."B.W. Ridley and J. F. Turner, Nucl. Phys. 58, 49'7 (1964)."J. F. Turner, B.W. Ridley, P. F. Cavanagh, G. A. Gard, and
A. G. Hardacre, Nucl. Phys. 58, 509 (1964)."R. M. Craig, J. C. Bore, G. W. Greenlees, J. S. Lilley, J.
Loire, and P. C. Rowe, Nucl. Phys. SS, 515 (1964).

where qrh(0;) and q,„~~(8;) are the theoretical and ex-
perimental quantities at scattering angle 8;, respec-
tively, and q„„,(e;), is the associated experimental
error. The parameters of the model were varied, using a
search procedure to 6nd a minimum in X.'.

The data at 30.3 MeV'~" were considered to be the
most detailed and accurate of the three sets considered
(14.5, 30.3, and 40 MeV). In addition, this data has
been extensively analyzed using the conventional
optical model, ' ' thus facilitating a comparison with
the present model. For these reasons, most attention
was paid to the 30.3-MeV data and the results of the
study applied to the 14.5- and 40-MeV data.

A. Analysis of 30.3-MeV Data

Differential cross sections" and polarization data'6
were available for Ca4, Ni' Co", Ni60, Sn", and
Pb"'. The cross-section data in general covers an
angular range of 4 to j.60 in 2 intervals and has an
accuracy of 1 to O'P~ except for a few forward and back-
ward angles. The polarization data spans the angular
range 20-120 in 5 intervals with an absolute accuracy
of 0.02-0.03, except at large angles. Thus approximately
80 cross-section and 20 polarization points were avail-
able for each of six elements. It was felt that to include
all of these data points in the 6tting procedure would

give too much weighting to the cross-section measure-
ments at the expense of the polarization results and
that this might result in an insensitivity to the quality
of the polarization 6ts. For this reason, only half of the
cross-section points were used covering the angular
region 4 —160' in 4' steps. The smoothness of the ex-
perimental cross-section angular distributions ensures
that this procedure will not materially affect the
cross-section fitting.

Three analyses of these data have been performed,
using the standard optical model, ' ' '~ and in each case
the fits found for Ca4 were relatively unsatisfactory.
It was noted in an earlier paper by the present authors'
that the optical-model parameters found for Ca4' in a
standard optical-model analysis did not show the
features found with the other elements at 30 MeV.
Since these features have been incorporated in the

"P. E.Hodgson, R. G. Barrett, and A. Hill, Nucl. Phys. 62, 133
(1965).
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present model, Ca4' was excluded from the initial
study 28

This section, therefore, presents the analysis of
30.3-MeV proton elastic scattering data for Ni", Co",
Nie, Sn", and Pb'"."For each element approximately
40 cross-section points between 4 and 160' and 20
polarization points between 20 and 120' were used.
The experimental reaction cross section was also
available for each element" but this single data point
was not included in the search procedure.

A diKculty arose because the energy at which the
cross-section and polarization data were taken differed
by approximately 1 MeV. The differential cross sections
were for an energy of 30.3 MeV and the polarization
data for 29.0 MeV. The difference is due to the thicker
targets needed in the polarization measurements.
Greenlees and Pyle, in a conventional optical-model
analysis, s used an energy of 29.5 MeV for both the
cross-section and the polarization data. However,
Satchler, ~ in a similar analysis, compared the parame-
ters obtained using 29.5 MeV for all the data with
those obtained using the cross sections only at the
correct energy (30.3 MeU). The differences in the
parameters found by Satchler were negligible for the
medium-weight elements, but were noticeable for Pb"'.
In the present work, using the new model, a comparison
has been made between the results using both schemes:
(1) analyzing cross-section and polarization data using
an energy of 29.5 MeU, and (2) analyzing cross-section
data only at 30.3 MeV.

The model has four strength parameters V~~, kV„
LV„and V„and four geometrical parameters E, a,
Eq, and al. It was not possible, in general, to search on
all eight parameters simultaneously and obtain a con-
verged minimum in X'. The principal diKculty was
associated with par ametrization of the imaginary
central potential where ambiguities exist. Two groups
of six parameters were used which in most cases could
be searched on simultaneously to yield a converged
minimum. These groups were: (1) Vzis, 8'„ IV., Rz,
R, and V„, and (2) Vgs, W„, W, , az, a~, and V„. If
the search is commenced with group (1), uz is initially

15.0—

g ~0.45 F
~ g =0.50 F
x g =0.60 F
+ g ~0.70 F

Ni

03 MeV

10,0—

fixed. Following the search on group (1) with a search
using group (2), when az is varied, may not produce
any very appreciable change in a& and the search, in
some cases, has been limited to a restricted region of
parameter space by the initial choice of a&. Starting with
a different al can produce a different X' minimum and
a different set of imaginary parameters. The procedure
used, in general, was to search on parameter groups (1)
and (2) cyclically until the X' converged and to check
that the best minimum had been obtained by repeating
the process a few times using different starting parame-
ters. In one case (Ni") this procedure did not prove
satisfactory and each different set of starting parame-
ters gave a different minimum in parameter space,
making it impossible to be sure that the best minimum
had been found. The procedure used in this case (Ni")
was to perform a double grid on lV, and al. Thus, for
a fixed 8'„, searches were performed on the other
parameters for a range of fixed values of al, and this
procedure was repeated for a range of values of 8', . The
results of these double grids for Ni58 are given in Fig.1.
In this figure, part (a) gives the results of searches on
the cross-section and polarization data at 29.5 MeV,
and part (b) gives the results using cross-section data
only at 30.3 MeV. Each point plotted on Fig. 1 repre-
sents a converged X' minimum for the variation of
Vg~, tT„V», E~, a, and Eq for the appropriate
values of lV, and al. This 6gure clearly shows that a
number of local minima exist for a range of values of a~

and a range of values of 8', . The al and 8', values for
the lowest minima in Fig. 1 were chosen as starting

' Several optical-model analyses of Ca data have been per-
formed and, in all cases, the agreement between the model and
experiment has been relatively unsatisfactory. The reason for
this is not clear. It is possible that for a nuc eus as light as Ca, the
antisymmetrization eRect cannot be neglected and, hence, the
use of a purely attractive real central potential in these analyses
is not justified. In fact, it was found in the analysis of the n-n
scattering data that the experimentally determined phase shifts
can only be reproduced with the introduction of a repulsive com-
ponent in the phenomenological potential. Thus, it would indeed
be interesting to see if such a modification can also improve the
results of the Ca analysis. Although Ca data were not included in
the analysis given here, the fits obtained for the 30-MeV Ca4'
data, using the results of the analyses, produce p~ values equally
as good as those obtained in standard optical-model analyses
(Refs. 7, 8, and 27).

"The spin of Co" is nonzero so that, strictly speaking, the
model cannot be used in this case. However, with a mass number
as high as 59, it was felt that no serious error would be involved in
the use of the model and it is of interest to confirm this view.

15.0-
.5 MBV::

10.0—

50 I I I I I I I

1.0 2.0 5.0 4.0 5,0 6.0 7.0
VOLUME STRENGTH Wy (M8Y)

FIG. 1. Plots of best-fit x' values for Ni" as a function of the
imaginary volume strength {8'.„) for various values of the im-
aginary diifnseness (tzr). (a) Used cross-section and polarization
data at a mean energy of 29.5 MeV; (b) used cross-section data
only, at 30.3 MeV.
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TABLE I. Best-fit parameter sets obtained (1) using cross-section' and polarization datab and an energy of 29.5 MeV,
and (2) using cross-section data' only at 30.3 MeV.

Element Ni" Cosa Ni60 Sn"0 Pb 208

Energy (MeV)
V» (MeV)
W, (MeV)
W, (MeV)
&I (F)"(F)
V. (MeV)
r (F)
a (F)
X&

2

Xy2
XT2

29.5
53.95
4.15
3.90
1.385
0.549
5.53
1.149
0.592
5.3
5.9
5.5

30.3
53.99
4.69
3.44
1.396
0.492
5.16
1.147
0.575
5.0

29.5
56.02
3.40
4.80
1.350
0.622
6.12
1.129
0.603
5.4

10.1
7.2

30.3
54.69
4.13
4.31
1.352
0.583
5.67
1.150
0.560
5.6

29.5
53.08
3.46
5.02
1.328
0.611
5.65
1.170
0.571
5.1

17.1
9.2

30.3
54.04
4.08
4.37
1.350
0.579
5.31
1.154
0.569
4.5

29.5
52.88
3.00
7.83
1.351
0.600
5.84
1.188
0.630
3.8
74
4.9

30.3
52.87
3.43
7.18
1.351
0.605
5.6&
1.188
0.528
3.2

29.5
57.46
2.14
8.13
1.355
0.777
5.43
1.153
0.611
1.8
3.7
2.5

30.3
56.07
2.61
7.79
1.332
0.751
5.16
1.176
0.489
1.0

a Reference 24.
b Reference 26.

values, and parameter groups (I) and (2) were varied
successively to yield a rapid convergence on the
optimum X.' fit. This procedure for Ni" involved very
lengthy computing periods and it was not practicable
to apply this treatment to all elements. Fortunately
Ni', at 30 MeV, was the only case where it appeared
to be necessary.

Table I gives the best-fit parameter sets obtained for
all the elements using both 29.5 MeV with cross-section
and polarization data and 30.3 MeV with only cross-
section data. The radius parameters in Table I and in all
sebsequent parts of this paper are quoted as r =R/A'~'
This conforms to convention and makes a comparison
between different elements easier; however, this is only
for convenience and no assumptions are made in this
paper concerning the A dependence of nuclear radii.
The quality of the Gts as measured by the cross-section
X' values (X,') are not appreciably different for the two
procedures, except in the case of Pb"', although, in
general, the 30.3-MeV values are slightly lower. For
Pb'" the improvement in X,' using 30.3 MeV is a
factor of nearly 2 and is just discernable on visual in-

spection. The parameter values found using the two
energies show little variation for Ni", Co', and Nil'.
However, with Sn"0 and Pb' ' a signi6. cant difference
in the matter diffuseness a is obtained with these
two treatments.

The 30.3-MeV treatment using cross-section data
only, at the energy for which it was measured, is un-

doubtedly a more correct analysis of this part of the
data but raises the question as to the validity of obtain-
ing a matter geometry (R and a ) that determines the
form factor for both the spin-orbit and the real potential
without using the restrictions imposed by the polariza-
tion data. In other words, the improvement in X '
obtained using the 30.3-MeV procedure and only cross-
section data could be due simply to using the same
number of parameters to 6t less data. The parameters
determined at 30.3 MeV were therefore used to Gt the
polarization data at 29 MeV. Experience with normal
optical-model analyses indicates that the geometries
and the spin-orbit strength are relatively insensitive to

Tax,E II. Comparison of polarization x' values (x„') obtained
(1) using average energy and fitting cross-section and polariza-
tion data simultaneously, and (2) using parameters obtained
from Gtting cross-section data only at 30.3 MeV, adjusted for use
at the energy of the polarization data (29 MeV). Two diferent
adjustment procedures were used (A and B, see text).

Element 29.5 MeV
Polarization y2
29.0 MeV (A) 29.0 MeV (B)

¹i58
Co"
Ni'0
Sni20
Pb208

5.9
10.1
17.1
7.4
3.7

6.3
9.1

15.4
5.4
40

5.2
9.1

14.6
5.1
3.3

the proton energy, but that the strength parameters
for the central potential show an energy dependence. It
is therefore reasonable to expect a fit to the polariza-
tion data at 29.0 MeV using the 30.3-MeV parameters
with small changes in Vgq, S'„and O', . When a 6t was
obtained to the polarization data by searching on these
three parameters, appreciable changes of Vgq, 8'„and
8', were found, changes which were inconsistent with
the energy dependence of the model parameters deter-
mined over the energy range 14-40 MeV and given in
Sec. V B. The comparison between the model and the
polarization data at 29 MeV was therefore obtained
by making 6xed changes to some, or all, of V&8, 8'„
and 8 „and comparing the predictions with experiment.
The energy dependence of Vzz for constant geometry
was estimated using the results of Sec. V 8 and the
central strength found at 30.3 MeV was increased by
0.5 MeV for use at 29.0 MeV. The corresponding
changes in 8", and 8", were estimated from Table I,
which gives calculations at 29.5 and 30.3 MeV. Two
procedures were used to fit the polarization data at
29 MeV, yielding parameter sets A and B. Parameter
set A is identical with those given in Table I for 30.3
MeV except that Vzz is increased by 0.5 MeV. For
parameter set 8, V» is increased by 0.5 MeV, 8', is
decreased by 0.8 MeV, and 8', is increased by 0.8 MeV.
Table II compares the polarization X' values (X~')
obtained using the 29.5-MeV procedure with that
using sets A and 8 at 29.0 MeV. In general, set A
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Element

Vms (MeV)
g tt (Mev)
W' (MeV)

rs (F)
as (F)
V (MeV)
rm (F)
am (F)
XK

xy'

o& (mb)
eg (expt) (mb)

Ni»

53.95
4.69
3.44

1,396
0.492

5.16

1.147
0.575

5.0
5.2+

1089
1038+43

CO50

54.69
4.13
4.31
1.352
0.583

S.67

1.150
0.560

5,6
9

1157
1169&39

Niso

54.04
4.08
4.37
1.350
0.579

5.31
1.154
0.569

4.5
14.6+

Sn'20

52.87
3.43
7.18

1.351
0.605

5.61
1.188
0.528

3.2
5.1+

1161 1657
1053&51 1638~68

Pb20s

56.07
2.61
7.79

1.332
0.751

5.16

1.176
0.489

1.0
3.3+

2047
1865+98
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Element

Energy (MeV)

Vms (MeV)
W' (MeV)
6'a (MeV)

rs (F)
aI (F)
V..{MeV)
r (F)
a (F)
x~'
Xy'
XT2

4.0
6,4
49

Niss

14.5
55.22

7.59
1.344
0.644

6.55

1.189
0.442

4.2
5.1
4.5

Ni60

14.5
53.08

~ ~ ~

10.96
1.339
0.503

7.27

1.221
0.511

3.5
3.4
3.5

Zr00

14.5

Sn120

14.5
S2.74 57.15

7.07 10.01

1.374
0.659

6.70

1.243
0.436

1.280
0.672

6.55

1.203
0.494

1.1
2.4
1,5

Ni»

40.0
51.53
5.64
2.16

1.410
0.520

6.07

1.116
0.613
8.0

30.5
15.1

Zr90 Pb20s

40.0 40.0
52.50
5.54
3.60
i..379
0.510
4.85

1.158
0.572

26.0
18.7
24.0

56,67
5.61
4.2 7

1.458
0.587

5.09

1.118
0.716

27.7
6.1

20.7

~ References 5, 19, anand 23.

AB . — arameter sets for 14.5- and 40-MeV data. '
f th 145-M V t d'8', was set equaj to zero or e



NUCLEAR —MATTER RADI I ii25

increasing with angle, together with about 30 polariza-
tion values with absolute accuracies ranging from
0.07 to 0.15. A,t 14.5 MeV about 30 di6erential cross-
section points were available between 20 and 170' for
each element with accuracies of 3-4%%u& together with the
same number of polarization points in the angular
range 30'-170' with absolute accuracies ranging from
about 0.05 to 0.08 and increasing with angle.

The polarization and cross-section data at both 1.4.5
and 40 MeV were taken at the same proton energy en-
abling both pieces of information to be used simul-
taneously in the search procedure. This was done using
the method outlined for 30.3 MeV and the best-fit
parameters together with the X' values found are given
in Table IV. The corresponding angular distributions
and experimental points are given in Figs. 4-7. In the
14.5-MeV analysis a pure surface form was used for
W(W, =O); such a procedure is normally followed in
standard optical-model analyses at this energy since
the inclusion of a volume component does not improve
the quality of the 6ts obtained.

C. Comyarison with Other Analyses of the Data

Z. 30.3-3EeV Data

The 30.3-MeV data has been extensively analysed
using the standard optical model ' ' and it is the data
to which most attention has been paid in the present
analysis; it therefore represents the best basis upon

I I I I 1 I I I I
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FIG. 5. Fits to 24.5-MeV polarization data for various elements.
Solid lines are the model predictions; the points are the data of
Rosen et at. (Ref. 5). Where error bars are not shown they are
less than the size of the points.
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Blumberg et al. (Ref. 29). Where error bars are not shown they
are less than the size of the points.
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factory than the usual Saxon-Woods shape of the
standard formulation.

Z. 14.5- and 40-3feV Data

A similar comparison to the one given above for
the 30.3-MeV data was not possible in the case of the
14.5-MeV data, since no standard optical-model
analysis has been published for the cross-section and
the polarization data together. However, the X.' values
of Table IV together with Figs. 4 and 5 indicate
clearly that the data are being well reproduced in the
present work.

The 40-MeV data used here are published together
with a standard optical-model analysis so that the
comparison can be made. This is done in Table VI.
Both analyses give X"s appreciably greater then those
found at the other two energies examined but are
similar in their ability to represent the data. '

Iv. INVESTIGATIOH OF THE MODEL

A. Matter Parameters
FIG. 7. Fits to 40.0-MeV polarization data for various elements.

Solid lines are the model predictions; the points are the data of
Blumberg et al, (Ref. 19). 8'here error bars are not shown they
are less than the size of the points.

which to compare the two models. The difficulties
occasioned by the cross-section and polarization data
being for different incident energies were resolved by
using the cross-section data only for the corresponding
energy, 30.3-MeV, and adjusting the parameters to
allow for the energy change before making a comparison
with the polarization data at 29.0 MeV. A similar pro-
cedure was used by Satchler for these data using a
standard 10-parameter model. 7 Table V compares the
cross-section X' values obtained using Satchler's
parameters and the standard optical model with the
present results of Table III.

It is seen from Table V that somewhat better
&' values are obtained with the present model despite
the fact that two less adjustable parameters are being
used. This provides a good justification of the present
approach and implies that the real-potential shape,
obtained here from the folding procedure, is more satis-

TABLE V. Comparison of the x' values obtained for the 30.3-
MeV differential cross-section data using (1) Satchler's parame-
tersb obtained with a 10-parameter standard optical-model
analysis, and (2) the present 8-parameter model. The p' values
given in (1) may diGer slightly from those quoted by Satchler
since he used a constant fractional error for all points whereas, in
the present work, the quoted experimental errors were used.

It is seen in the previous two sections that the model
produces good its to experimental proton elastic data

TABLE Vl. Comparison of the p~ values obtained for the
40-MeV dill'erential cross-section and polarization data using (1)
the parameters of Blumberg et a/. with a 10-parameter standard
optical-model analysis, and (2) the present 8-parameter model.

Element

10-parameter model
8-parameter model

12.0
15.1

Zr90

18.0
24.0

Pb&08

64.1
20.7

+ Reference 19.

in the energy range 14,5—40 MeV. As proposed, the
model parameters are directly related to nuclear-matter
distributions. It is to be expected that the detail that
may be obtained concerning nuclear-matter distribu-
tions will be limited by the accuracy of the data, the
averaging effects due to the finite proton wavelength
(K= 1 F), and the simplifying assumptions of the model.
Analyses of electron scattering by nuclei indicate that
the mean-square radius of the nuclear-charge distribu-
tion is the feature most readily determined rather than
details such as the half-density radius and the edge
falloff distance. "Thus the R and a of the present
Saxon-Woods parametrization of the matter distribu-
tion may be less well defined than the matter mean-
square radius (r') . In order to explore this, the data for
each element were 6tted for a range of fixed values of u
by searching on all other parameters including E . This

Element Ni'8 Co'9 Ni~ Sn" Pb"

10-parameter model 5.51 5.72
8-parameter model 4.98 5.59

a Reference 24.
b Reference 7.

5.40 4.07
4.50 3.21

1.13
0.95

0 Subsequent to this section of the work being completed, the
40-MeV data has been corrected slightly and reanalyzed with the
standard optical model fM. P. Fricke ei oI., phys. Rev ]56 1207
(196'l)j.» B. Hahn, D. G. Ravenhall, and R. Hofstadter, Phys. Rev.
l07, 1131 (1956).
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gridding on a was performed for all cases at the three
energies. The parameter sets obtained for Ni" at 30.3
MeV for a ranging from 0.45 to 0.70 F in steps of
0.05 F are given in Table VII together with the rms
radii for the matter distribution and the minimum X,
values found. Table VII clearly demonstrates the con-
stancy of the rms radii for wide variations of E. and a
and a range of a factor 3 in the minimum X,' values.
This implies that for any value of a within a wide

range, obtaining a X' minimum determines the rms
matter radius very well even though the fit obtained
may be far from optimum. The same feature was found
for all cases and the data are summarized in Table
VIII. In this table the expression AI corresponding
to a quantity Y is de6ned as 100X(Y, —Y; )/
(Y,„+Y; ) and gives a measure of the variation of
I' in the range explored. The variation found for the rms
matter radii are, in all cases, much smaller than the
variations in R, a, and X,', generally an order of
magnitude smaller. Table VIII clearly demonstrates

TAaLE VII. Optimum parameter sets for a range of values of
the matter diffuseness (a ) for the scattering of 30.3-MeV protons
by Ni60

Uas (MeV)
W, (Mev)
W, (MeV)

rl (F)"(F)
Vs. (MeV)

(F)
a. (F)
(r2) 1/2 (P)

48.64
3.72
5.27

1.303
0.576

6.25

1.237
0.45

4.105

14.50

50.92
3.76
5.27

1.304
0.571

5.49

1.204
0.50

4.097

7.91

52.90
4.09
4.51

1.339
0.577

5.27

1.170
0.55

4.094

4.77

55.52
4.12
4.06

1.376
0.579

5.45

1.130
0.60

4.088

4.99

58.29
3.83
4.08

1.399
0.582

5.96

1.087
0.65

4.086

7.44

61.07
3.42
4.36

1.412
0.588

6.67

1.041
0.70

4.092

10.72

that (r'), as defined in the model, is well determined

independent of the details of the search routine and

fitting procedure.
The variation of X,' with a for Ni' at 30.3 MeV

(Table VII) is plotted in Fig. 8. The width of this

curve can be used to estimate the range of values of u

and R which will produce acceptable fits to the data.
The plots of the data and the predictions for the
various a values were examined to determine when the
fit obtained became visibly worse than the optimum. In
this way it was empirically determined that an increase

of X,' by a factor of 3..5 was noticeable. The factor 1.5
was found to be reasonable for all the medium-weight

elements whereas for the heavy elements a factor 2.0
in X ' was needed before the fit became visibly worse.
The variations allowed in r and a are, of course, not
independent since, for a given a, r is such as to keep
the ms radius (r') nearly constant, where

(r') =sR 'L1+(7/3)(s.a /R )'g with R =r~'/'.
In order to obtain an error for the rms radius deter-

mined by these fits, it is strictly necessary to obtain

Energy
Element (MeV) ++2 n('12) 1/2

i68

N j68
Niss

Co69

Ni"
Ni60

Zr'0
Zrao

Sn"0
Sn'"
Pb208
Pb208

14.5
30.3
40.0
30.3
14.5
30.3
14.5
40.0
14.5
30.3
30.3
40.0

94
10.4
12.3

9.2
6.9
8.6
95
6.7
3.9
5.5
5.7
7.5

40.0
21.7
28.0
21.7
33.3
21.7
33.3
21.7
33.3
33.3
33.3
30,8

34.7
19.4
36.5
46.1

45.4
50.5

70.6
15.5
43.0
41.5
51.8
35.4

0.35
1.22
1.50

0.45

0.43
0.23

1.88
0.59

0.27
0.58

1.78
0.98

contour plots of constant X' values for variations of r
and a . The range of rms radii allowed by the contour
with X' equal to 1.5 (medium 2) and 2.0 (heavy A}
times the optimum gives a measure of the error in-
volved. Such contour plots are given for Ni' and Pb'
at 30 MeV in Fig. 9, where it is seen that variations of
10-15% in r and about 50% in c are possible for
visibly equivalent fits. Lines of constant rms radius
are also shown in Fig. 9 and are seen to run closely
parallel to the lines of constant X'. The contours shown
are for X'= 1.5X»t' for Ni", and X'= 2.0X»t, ' for
Pb"', so that any values of r and a enclosed by these
curves yield acceptable fits. For the other cases ex-
amined, full contour plots were not obtained since this
was too time consuming. In these cases plots of X'
against rms radius were obtained for corresponding
values of r and u moving along a line perpendicular
to lines of constant rms radius and passing through the
best-fit values. The width of such curves readily yields

IS.O—
~ 60

IOO-

OP

o.os o.so o.ss oso o.6s o.vo o.7s
INATTER DIFFUSENESS (~) F

FIG. 8. Variation of best-fit x,' with the matter
diffuseness (a ) for Ni" at 30.3 MeV.

TABLE VIII. Summary of the results of a grid studies for all
cases considered. The entry AI of a quantity Y is defined as
100(F —U; )//(U +U; ).
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x
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4.05
3.95

58
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error values. The rms radii and the associated errors
obtained for all cases are given in Table IX.

Table IX includes 6ve examples where the rms
matter radius has been determined at two or inore
energies. In all cases the agreement is excellent and in-
dicates the validity of the approximations of the model
over the energy range 14.5-40 MeV. The fact that the
agreement at diQerent energies in Table IX is better
than could be expected for the quoted errors suggests
that the method used to obtain the errors from the
visual quality of the 6ts gives an overestimate.

B. Sensitivity to Taro-Body Force Range

In the analysis presented thus far the 'direct' part
of the nucleon-nucleon force has been taken to have a
Vukawa shape and a 2x range. Phenomenological
analyses of two-body data clearly show the necessity

gc} I I I I I I I

0.1 0.2 0.3 0.4 0.5 016 0.7 0.8
MATTER DlFFUSENESS (o~) F

FIG. 9. Contours of constant best-fit x"s for variations of matter-
radius (r ) and -diifuseness (u ) parameters. The crosses represent
the best-6t points. The shaded areas encompass a region within
which the Gts are visibly indistinguishable. Lines of constant rms
rnatter radius are seen to run nearly parallel to the sides of the
shaded areas.

of including a hard core in the potential and suggest
that the range may be shorter than 2'-. Neglecting the
hard core will place an upper energy limit of about 100
MeV on the validity of the model. The constancy of the
rms matter radii found at different energies in the
previous section indicates that no serious error is in-
volved in neglecting the hard core up to energies of
40 MeV and is consistent with the above conclusion.

In order to explore the sensitivity of the model pre-
dictions to the two-body force range, the analyses were
repeated for a range of values corresponding to (r')~
values between 0.01 and 6 F' (a 2s range has a ms
radius of 3 F'). The parameters found for Co" at 30
MeV for this range of two-body ms radii are given in
Table X. This table shows systematic trends in the
parameters with change of (r')d and, in particular, a
decrease of (r') with increasing (r')d. However, the ms
radius of the folded, real central potential (r')gs, equal
to (r') +(rs)z, is remarkably constant over the region
of acceptable X"s. Clearly, for variations of (r')~, the
matter parameters are adjusting to maintain the real
central potential close to the optimum shape and this
term of the potential is dominating the analysis. The
geometry of the spin-orbit term of the potential is very
closely equal to the matter geometry (Sec. II) so that
sects due to this term are not well specified in the data
being analyzed. The polarization data are the most
sensitive to this term and such data can, in principle,
limit the acceptable range of matter radii and, together
with differential cross-section data, determine the
matter radius and the two-body force range. That this
is not so for the present data is illustrated by Fig. 10,
where the X' values for cross-section and polarization
data are plotted as a function of (r')~. Figure 10 shows
that, whereas the cross-section curve has a distinct
minimum around 2.5 F', the polarization curve is
comparatively Oat and is doing little to limit the ac-
ceptable values for (r')d. Clearly, much more accurate
polarization data will be needed for this purpose.

However, Fig. 10 can be used to place limits on the
value of (r')~. The fits for the various (r')~ values for all

TABLE X. Best-6t parameter sets found in the analysis of
30.3-MeV diBerential elastic scattering data for Co" using various
values of (r')a.

Element

Niss
Ni's
Ni"
C059
Ni'0
Ni"
Zroo
Zr'0
Sn120
Sn"'
pb208
Pb208

Energy (MeV)

14.5
30.3
40.0
30.3
14.5
30.3
14.5
40.0
14.5
30.3
30.3
40.0

&r') '" (F)

3.92 0.82+'"
4.05-0.07+0.07

4 05 0 6+0.17

404—o o7
4.16 0.20+0'09

409 o.os+ '

4.61 p.zz+'"
4 55 +0.17

4 95 +0.14

4 95 +0.14

5.69 p.sz+'-"
5.78 0.87+0's

TABLE IX. Matter rms radii obtained for all the cases considered
using a value for (r')q of 3.0 F'.

&r')s (F')

Vms (MeV)
W, (MeV)
W, (MeV)

rr (F)
or (F)
V„(MeV)
r (F)
u„ (F)
&r') (F')
(r')as (F')

47.8
03
7.9
1.21j
0.643

7.0
1.207

-0.548

1j.96
17.97

29.7
33.3

48.3
3.1
5.2

.1.266
0.658

6.2
1.197
0.622

1837
19.12

11.7
12,6

0.01 0.75

50.7
3.4
5.0
1.278
0.645

5.9
1.182
0.594

17.58
19.08

7.5
10.6

3.0

55.1
4.2
4.2
1.360
0.581

5.7
1.144
0.568

16.34
19.34
5.6
9.0

59.9

43
1.404
0.538

5.9
1.091
0.570

15.28
19.78

9.9
74

6.0

63.8
3.9
46
1.428
0.507

6.3
1.041
0.578

14.47
20.47

15.7
7.2
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cases were examined and, as found previously, these 6ts
got visibly worse when X' increased from the optimum
by a factor of 1.5 for medium-weight elements, and by a
factor of 2.0 for heavy-weight elements. Using these
empirical criteria the optimum value and limits of (rs)s
were found for all cases. In two cases (Ni" and Pb"'
at 40 MeV) the visual quality of the its was unchanged
over the range explored and in these cases no limits
could be determined. The results are given in Table XI.

In any individual case in Table XI, the range of (rs)z
values allowed is quite large (typically 1.0-4.0 F') but
the optimum values (column 3) show a good measure of
agreement. The limits for Ni" and Pb"' at 40 MeV were
undetermined but certainly appreciably greater than
all other values; these data were neglected and an aver-
age (r')q value was obtained from the remaining 10
cases, giving them equal weight. The error in (r )s is
dificult to assess since there is clearly a discrepancy be-
tween the individual errors and the spread in the
optimum values. Using only the variations in the
optimum values yields an error in (r')s of 0.10 F',
whereas using the individual errors of each determina-
tion gives 0.6 F'. These numbers suggest that the in-
dividual errors, obtained from the visual fit X criterion,
are overestimated. On the other hand, plots of X'
against (r')q such as Fig. 10 suggest that the agreement
of the optimum values (column 3, Table XI) is some-
what fortuitous. In the absence of further evidence, the
larger error will be taken, yielding a value for (r')z of
2.25~0.6 I'.

V. ANALYSIS OP PROTON DATA USING
CORRECTED (rs) q

A. Nuc1ear-Matter Radii

The analysis of Sec. III used a range for the direct
part of the nucleon-nucleon force corresponding to a 2x
exchange (msr=3 F'). Examination of the sensitivity
of the predictions to this choice was made in Sec. IV
with the result that a choice of 2.25 F' for this range

I I I

Co 303 MeV

~ -X~

I 5.0—

Al

& IO.O—

0.0 I I I I I I I

I.O 2.0 5.0 4.0 5.0 6.0 7.0
(r &,

FIG. 10. Variation of best-6t x~ values for cross-section and
polarization data (Co" at 30 MeV) with two-body force msr
((r'&a).

seems to be more appropriate. In this section the results
of a reanalysis of all the data using this new value are
presented. It is clear from the results of Sec. IV that
the main features of the model will be unchanged by
this alteration in (r')q but minor changes in the parame-
ters are to be expected. Table XII gives the parameter
sets obtained for the 303-MeV data using (r')~= 2.25 F'
and the same procedure as outlined previously for ob-
taining Table III (3 F'). A comparison of Tables III
and XII conirms that only minor changes in the param-
eter values have occurred; perhaps the most signi6cant
change is that in Table XII (2.25 F'), the reaction cross
sections tend to be less than in Table III (3.0 F') and
in doser agreement with the experimental values. In
particular, the value for Pb"' is 1986 mb compared
to 2047 mb in Table III and an experimental value
of 1865+98 mb.

TABLE Xf. Optimum values of (r')s for all cases considered
together with the range of acceptable values.

Tmr.z XII. Best-6t parameter sets for the 30.3-MeV data
using (r' &=2.23 F'. The analysis procedure was the same as
used in obtaining Table III.

Element
Energy
(MeU)

Optimum
(r')g (F')

Upper limit Lower limit
(F') (F') Element Cofl9 N j60 Snls0 Pb208

Niss
Ni"
Ni'8

Co"
Ni'0¹i"
Zr90
Zr'o

Sn"0
Sn120

Pb208
Pb208

i4.5
30.3
40.0
30.3
l4.5
30.3
14.5
40.0
14.5
30.3
30.3
40.0

2.0
3.0

(3.8)

2.5
2.5
2.0
2.2
2.2
2.4
2.2

1.5
(3.8)

5.6
5.0

3.8
4.5
3.9
3.6
4.2
3.6
3.5

0
1.2

1.5
0.6
0.8
0.9
0.7
1.3
1.4
04

v~8 (Mev)
8'~ (Mev)
W. (MeV)
rz (F)
ar (F)
P'~ (Mev)
rm (F)
a~ (F)
Xe'
x»'
~~ (mb)
o g(expc) (mb)

(yl) 1/0 (F)

52.53
4.50
3.85

1.357
0.520

$.16

1.159
0.597

$.47
7.78+

1085
1038&43

4.12

53.05
3.84
4.58

1.320
0.614
5.75

1.162
0.579

5.39
9.87+

1153
1169&39

4.11

52.16
3.81
4.71

1.311
0.609
5.29

1.171
0.$82

4.50
17.62+

51.13
3.43
6.68

1.332
0.636
$.82

1.206
0.534

2.97
5.58+

53.26
3.45
6,53

1.317
0.752

$.49

1.206
0.497

0.84
3.48+

1154 1643 1986
1053&51 1638+68 1865&98

4.16 5.02 5.84
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TmLE XIII. Best-fit parameter sets for the 14.5-
and 40-MeV data using (r')s=2.25 F'.

Element Ni» Nie4 Zroo Sn»o Ni» Zr» Pb»

Energy
(Mev)

P~g (Mev)
Q'~ (Mev)
g e (Mev)
&I (F)
ai (F)
P~ (MeV)

(F)
am (F)
x~'
xg'

(&2) S/2 (F)

14.5 14.5 14.5 14.5 40.0 40.0 40.0

56.39 55.03 53.57 55.89

6.87 9.36 6.92 10.65

49.71
5.50
2.81

48.77
5.54
4.21

55.52
5.69
3.89

1.353
0.691

1.326
0.569

1.387
0.662

1.267
0.651

1.369
0.541

1.341
0.525

1.467
0.583

6.57 7.01 6.39 6.52 6.05 4.87 5.10

1.197
0.557

1.215
0.539

1.124
0.736

1.139
0.625

1.188
0.550

1.221
0.506

1.164
0.492

5.6s
4.22

3.76
3.01

1.13
2.56

8.81
35.05

3.60
6.62

24.61
17.57

29.13
6.26

3.94 4.14 4.64 S.05 4.13 4.64 S.84

Table XIII gives the parameter sets obtained for the
14.5- and 40.0-MeV data using (r')~ ——2.25 F'. This
table corresponds to Table IV obtained using 3.0 F'.
A comparison of Tables XIII and IV shows that, as at
30 MeV, the parameter changes are only of a minor
nature and, in particular, the rms matter radii do not
change by more than the errors of the earlier
determination.

Since the changes occasioned by the reduction of
(r')s from 3.0 to 2.25 F' were relatively small it was not
considered necessary to repeat the extensive explora-
tion of the parameter space which is described in
Sec. IV for the 3.0 F' case. For the remainder of this
paper the results obtained using 2.25 F' will be used;
however, the errors on these results are those obtained
from the investigation of Sec. IV, using 3.0 F'.

The 6nal values for the nuclear rms matter radii,
determined in this analysis, are listed in Table XIV.

B. VoIume Integrals

The form of the model used in the present analysis
involves the assumptions concerning p„, p„, and I,

given by Eq. (33). These lead to Eq. (37),

Jrrs/A =Jg+PJs(E Z—)/A,
where

Jna= — Uzs(r)dr and Jz= — Nd(g)dl7.

The values of J&8 are readily determined from the
present analysis, being simply the volume integrals of
the real central potential associated with the parame-
ters of Tables XII and XIII. These volume integrals
divided by A are listed in Table XV.

A plot of Jgs/A against (X—Z)/A for all elements at
a given energy gives an intercept Jd and a slope t J&
Results for the three energies examined are shown
separately in Fig. 11, where the values of J~ are also
given. It is seen that the values of J~, ranging from
425&25 to 380%20 MeV F' between 14.5 and 40 MeU,
are nearly independent of energy and are in good agree-
ment with the value of 422 MeV F' obtained in Sec.
II 8 from the n-a analysis of Ali and Bodmer" and the
value of 400 MeV F' obtained from the nucleon-
nucleon potential of Eq. (25). This indicates that, for
the cases considered here, the antisymmetrization and
polarization effects do not play an important role in
the interaction, in agreement with the conclusion
reached by Drell. ' The slight tendency for the intercept
(Jd) to decrease with energy can be interpreted as due
to second-order eKects which are ignored in the present
model. In particular, since the polarization effect is ex-
pected to become less important as energy increases,
the gradual decrease in J& with energy could have been
anticipated.

The errors shown on the points in Fig. 11 are obtained
from the variations in the volume integrals found from
the parameters determined for the a grids of Sec. IV
(e.g. , Fig. 8) using the empirically determined 1.5
X,u&s criterion (2.0 X,e,' for heavy elements). Although

TABLE XIV. Matter, proton, and neutron central densities and rms radii. The matter data are obtained from the parameters of
deduced from the results of Acker e~ + In computing the errors, any error

data has been neglected.

Element

Ni"

Co"

Zr90

Sn 120

Pb208

Energy
(MeV)

14.5
30.3
40.0
30.3
14.5
30.3
14.5
40.0
14.5
30.3
30.3
40.0

3 94-0 23+0.23

4 12 0 07+0 07

4 13 +0,17

4 11 07+0,0B

14 0 20+0 ~ 09

416 „+o oB

4 64 +0.10

4 64 +0.17

5 05 0 13+0 14

+0,14

5 84 +0.28

5 84, +0.34

(r') n'" (F)

3.74

3.75

3.77

4.22

5.44

4 12 0 B2+0 44

4.45 014+ .
4 47 p 3

+o.33

4. 39 +0.11

444 o 37+'"
4 47 +0.11

4 94-o 2o

4.95—0 20+0.30

5 36 +0.24

5 30 0 2
+0.24

08 p F7+0e 4B

6 08, „+0.3B

Average p~o Pyo
(r'~ '"—(r ) Is(F) (nucleonsF ) (protonsp ')

0.136~0.012
0.131&0.016
0.135&0.017
0.131+0.015

0.125+0.012
0.128~0.014

0.121&0.019
0.126&0.019
0.123~0.016
0.126~0.012

0.130&0.016
0.150&0.018

0.71+0.14 0.076

0.64+0.12

0.70&0.10
0.072

0.073

0.0710.72~0.20

0.0660.67+0.20

0.0630.64+0.40

Pno
(neutrons F ')

0.060~0.012
0.055&0.016
0.059~0.017
0.059~0.015

0.052+0.012
0.055~0.014
0.050~0.019
0.055&0.019
0.057~0.016
0.060&0.012

0.067&0.016
0.087&0.018

+Reference 32.
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Element

Ni'0

Sn'-'0

Pb 208

Energy
(MeV)

14.5
30.3
40.0
30.3

14.5
30.3
14.5
40.0
14.5
30.3
30.3
40.0

Jss/A
(MeV F')

421a16
409&20
377&15
411&10
445+11
413&10
445&23
390+11
454+10
406+ 8

411&12
371+14

TABLE XV. Volume integrals (Jas) of the real central potential,
divided by A, for all cases (Tables XII and XIII) using (r')4 =2.25
F'. (The errors are obtained from the a grids using (r'ls= 3.0 F'). 420-

400

sso I

40MeV
Jd=580~20MeV F

T=

l4.5Me Y
Jd*425~25MeV F~-

460-
w

N 44o ~~I
420. lr
400 ~

%0-

340- 503MeV
Jd=412~22MeY F

42O- I--I-- --: j
rr

lO
& 580-

~ 480.

(r')s ——3.0 F' was used in Sec. IV whereas 2.25 F' is
used here, this should have a negligible effect on the
error values. It is clear from Fig. 11 that the slopes of
the curves are not well determined and t is limited only
to the range +1.0 to —0.5. Hence it is not possible to
determine this quantity with any accuracy from existing
proton elastic scattering data. Because of this, no
attempt was made to include corrections due to the
change of Coulomb potential with Z. The best value
for f' is obtained as in Sec. II 3 from the coeKcients
of the terms of the two-body potential I Eq. (35)$.

The volume integrals found here, and their depend-
ence on (1V—Z)/A and 8, are analogous to the cor-
responding variations of the real central strength of the
standard optical model. Such variations in the standard
optical model are only apparent when the assumptions
are made that the diffuseness parameter is constant
and the radius parameter has an A'" variation. An
advantage of the present model is that these assump-
tions are avoided and the optimum parameter sets are
used to deduce geometrical and strength information.
The variations with (JV Z)/A and E f—ound here are
consistent with those found in the standard optical
model but the relatively unique values found in the
latter case are a feature introduced by making geo-
metrical assumptions and are not otherwise well-de6ned

by the data.

VL NEUTRON DISTMBUTIONS

It is of interest to compare the rms matter radii ob-
tained here with corresponding proton values ob-
tained from muonic x-ray and electron scattering mea-
surements. Such measurements were not available for
the isotopes analyzed in the present work so inter-
polated values were used. The results of Acker et al. 32

for nuclear-charge distributions are well represented

"H. A. Acker, G. Backenstoss, C. Daum, J. C. Sens, and S. A.
Dewitt, Nucl. Phys. 87, 1 (1966).
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FIG. 11. Variation of jss/A with (N 2)/A fo—r the 14.3-,
30.3-, and 40.0-MeV analyses. The intercept at (N Z)/A =0 gi—ves
a value for Jd. The inset shows the variation of Jz with energy.

(A =50-120) by a Saxon-Woods shape

P+ exp((r —Z„)/a.,)]-',
with

a,g=0.502 I'
and

R,I,——(1.106+1.05&(10 'A)A'" F.
To obtain nuclear-proton distributions from these
charge distributions a correction is necessary for the
Gnite size of the proton. The major effect of unfolding
the proton size is to reduce the falloff distance of the
distribution and leave the halfway radius almost un-

changed. The msr of the proton was taken to be 0.6 F'
and the correction was made by taking the proton
halfway radius, R„=E,h, and obtaining a„ from the
relation (r'),h

——(r')„+0.6. This gives a„=0.454 F for
all A.

Using the matter parameters from Tables XII and
XIII and the proton parameters given above, the cor-
responding neutron distributions and their rrns radii
are readily calculated. The rms radii are given in
Table XIV. It is also of interest to compare the central
densities of the matter, proton, and neutron distribu-
tions p 0, p„o, and p„o. These are included also in
Table XIV.

It is seen from Table XIV that the nuclear-matter
rms radii obtained here are significantly greater than
the proton values obtained from nuclear-charge mea-
surements and hence that the neutron distributions ex-
tend beyond those of the protons. This result is in
contradiction to the assumption made in Sec. III that
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p~(r)/p„(r) =Z/E. This assumption was introduced to
simplify the computation and is in no way essential to
the model. Its introduction yields a volume shape for
the isospin part of the central potential, whereas the
present results indicate that it is surface-peaked. The
error involved is not serious since the isospin term is
small compared, 'to the main real central term (approxi-
mately 10'Po for'Pb"', the worst case). It will, however,
have the eGect of producing slightly too large a value for
the matter rms radii obtained here. A second simplifica-
tion used in the present analysis was to use only the first
term of the expression for the spin-orbit potential. ~The
error involved due to this is small but also tends to give
too large values for the rms matter radii. The extent of
these errors has been estimated and in all cases they
prove to be less than the quoted errors of the measure-
ment. In the worst case (Pb"8) the matter rms radius
could be as much as 0.2 F too large, with a quoted error
of about 0.3 F.

Although the simplifying assumptions used here pro-
duce only a small overestimate of the matter rms radii
it becomes significant when differences between neutron
and proton rms radii are examined. Thus for Pb' ' a
value for this difference of 0.64+0.40 F is given in
Table XV and this could be overestimated by as much
as 0.33 F. Since these assumptions were only for com-
putational simplicity they can readily be removed and
the complete expression of Sec. II LEqs. (15)—(17)j used
such calculations are not included in this paper. It
should be emphasized that the values quoted here for
the overestimate of the rms matter radius for Pb"' are
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I'IG. 12. Plots of the radial variations of matter, proton, e,od
neutron densities for various elements.

upper limits for the worst case; these upper limits are
much less for the lighter nuclei and the error could well
be unimportant, even for the e-p rms radius difference,
in all cases.

It is noticeable in Table XIV that the neutron-proton
rms radius difference (column 6) is constant, within the
errors, for all the nuclei examined and that the central
density remains remarkably constant (column 7). The
proton central density derived from nuclear-charge
measurements decreases with A; combining this with
the present matter results leads to the central neutron
density increasing with A and the neutron edge falloff
distance decreasing markedly with A. The proton and
neutron central densities become equal, within the
limits of accuracy, in the heavy nuclei. These features
are illustrated in Fig. 12, where the density distribu-
tions are plotted for four cases from Ni" to Pb"'.

VII. IMAGINARY POTENTIAL

The considerations given here so far have concerned
only the relationship of the real parts of the optical-
model potential to each other and to physically signifi-
cant quantities; the imaginary part of the potential has
been used with its normal par ametrization. The
imaginary potential represents, in a simple form, the
eGects of all reaction channels other than the elastic
channel and must be inherently very complicated. How-
ever, since the simple phenomenological parametriza-
tion of this term, used both here and in the standard
optical-model treatment, does in fact enable a good rep-
resentation of elastic-scattering data to be made, it is

reasonable to hope that the phenomenological forms

found can be derived, at least in gross features, from an

approximate description of the physical processes
involved.

One basic difhculty of such an approach lies in the
fact that relatively severe ambiguity problems are often
found in the four parameters used to de6ne the phe-
nomenological imaginary potential. An example of such

problems is the case of Ni" at 30.3 MeV discussed in

Sec. III (Fig. 1.) This means that the form found in the

analysis may not be the optimum form but one that
gives an equivalent or an almost equivalent fit to the

particular set of data analyzed, However, two features
of the phenomenological imaginary potential seem to be

always present for protons of incient energies considered

here: (1) a surface peaking, and (2) the tail-region half-

maximum point lies at a significantly larger radius than

the halfway point of the real central potential. Where

ambiguities have been explored, the various imaginary

potentials, giving satisfactory fits, tend to have similar

radial variations in the surface region. It is the purpose
of the present section to show that these features of the

imaginary potential are reproduced from relatively

simple considerations.
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Several authors" "have used a semiclassical method
which enables the proton imaginary potential to be
written as

o„;=Ar/(8;.+Ep), (4g)

with Eo being the energy in the c.m. system and

A„=4.32 MeU b, 8„=0.54 MeU,
A~= 1.55 MeV b, B„=0.85 MeV. (49)

The assumption of isotropic angular distributions will
underestimate the cross sections in the forward and
backward regions and overestimate the cross sections at
other angles. Since forward and backward scatterings in
the nucleus are restricted by the exclusion principle,
this assumption will cause an overestimate of 8' and
this overestimate will be. particularly severe in the
regions of higher density. jThe energy dependence of
assumption (3) gives a fair representation of the data
up to c.m. energies of about 70 MeV'r and probably
injects no significant error into the calculation of 8'.

With these assumptions, it is straightforward to
show that"

where
(o„;)=3PrrIA;F„;/k. r rs,

x(1+x' rr,s)—
(50)

(1+3x'+2&;)+2x)2(1+xx+()j'"
gin dx, (51)

(1+3x'+2& )—2xL2(1+x'+$ )j'"
"A. M. Lane and C. F. Wandel, Phys. Rev. 98, 1524 (1955).
34 K. Harada and N. Oda, Progr. Theoret. Phys. (Kyoto) 21,

260 (1959).
&' M. L. Goldberger, Phys. Rev. 74, 1269 (1948).
~6 K. Clementel and C. Villi, Nuovo Cimento 1, 176 (1955).
~r W. N. Hess, Rev. Mod. Phys. 30, 368 (1958) .
"This expression was obtained by Clementel and Villi (Ref.

36). The present formulation is an extension of their work to the
case of a finite nucleus.

with e~ being the velocity of the incident proton at the
position where the imaginary potential is evaluated.
The quantities (o~„) and (p.») are average proton-
neutron and proton-proton cross sections, with the
average taken in an appropriate fashion over all possible
values of the relative collision momentum under the
restrictions imposed. by the Pauli exclusion principle. In
the present work these averages are obtained using the
following simplifying assumptions:

(1) The momentum distribution of the nucleons in
the nucleus is given by a Fermi-gas model with

kr;s =3s'k'p; (r), (47)

where the subscript i denotes either p (proton) or n
(neutron);

(2) the free nucleon-nucleon differential cross section
in the c.m. system is assumed to be isotropic; and

(3) the nucleon-nucleon total cross section is given by

aIld
xp &x2&0 for u &~1 (54)

xp.~+x~+n 2—1 for n 2~ 1 (55)

To evaluate these expressions, the momentum p at
position r was calculated using the real central and
Coulomb potentials found for the corresponding best-Gt
set parameters (Tables XVI and XIII) together with
the proton and neutron density distributions obtained
as in Sec. VI. The imaginary potential 8' is then readily
obtained from Eq. (46). This radial variation of W is to
be compared with the phenomenological imaginary
potentials given by the parameters of Tables XIII
and XIV.

The comparison for Ni' at the three energies ana-
lyzed is given graphically in Fig. 13. To facilitate the
shape -comparison, the phenomenological curves of
Fig. 13 have been normalized to the calculated curves
to make the surface peak heights the same. It is clear
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FIG. 13. Comparison of radial variation of the imaginary poten-
tial for Ni+ at 14.5, 30.3, and 40 MeV, obtained (1) phe-
nomenologically (lVom) and (2) by calculation from nucleon-
nucleon cross-section data (W &„see text). The phenomenological
curves have been normalized to make the surface peak heights
equal.

with p being the momentum of the incident proton and

m being the nucleon mass. Also, the de6nitions of x,
n;s, and $; are

x=k/p,

&i XEy ~XF2',23 .2

(;=mB;/p',

with k being the momentum of the target nucleon and

x~; given by
xp;= kg;/p. (53)

For the integral in Kq. (51), the limits of integration are
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from Fig. 13 that the surface shapes of the imaginary
potential are being well reproduced by the calculation.
The 30.3- and 40.0-MeV predictions are higher than the
phenomenological values. This was anticipated from the
use of assumption (2) and qualitatively is as expected,
being worse for the central high-density regions. The
extent of the correction involved because of this assump-
tion of isotropy is not readily calculated, but could be as
high as 50%."In the 14.5-MeV case of Fig. 13, the pre-
dicted values of W are less than the phenomenological
ones but here only a surface form was used in the model
fitting whereas a volume component is also predicted. A
pure surface form was used for the phenomenological 8'
at 14.5 MeV since this involved the minimum number of
parameters needed to represent the data. A form closer
to the calculated one could well give equally satisfactory
fits. The calculations, although relatively crude, give a
clear indication that the number of parameters used
for W in the model can be reduced from the present four
to perhaps one or two.

The ambiguity problems normally found for the
phenomenological W suggest that a better approach
would be to analyze the data using the predicted form
and explore the adjustments required to obtain an
equally good fit to the data. It was felt that such an ap-
proach was not justified until a more sophisticated
treatment of the angular dependence of the nucleon-
nucleon scattering has been included in the calculations.

The surface peaking obtained in the calculations pre-
sented here is found only to be present because of the
greater radial extent of the neutron distribution com-
pared to the proton distribution. For p„proportional
to p„no significant surface peaking is found. '0 The sur-
face peaking for W, always found phenomenologically
for protons of these energies, can thus be attributed to
the presence of excess neutrons in the nuclear surface
and as supporting evidence for the results presented
here. It should be pointed out that a consequence of
these features is that the position of the surface peak is
sensitive to the rms radius difference of the neutron and
proton distribution and, since relatively large errors are
found here for this difference (typically 0.1—0.4 F),
using a calculated, self-consistent shape for W might
place added restrictions on the allowed variations of
the rnatter msr obtained from the model and thus yield
a more accurate value of (r')

VIII. DISCUSSION

The reformulation of the optical model developed
here has proved to be quite successful in its application.
The simplest measure of this success 1ies in the fact that
the quality of Q.t to elastic proton data is maintained or

"G. C. Morrison, H. Muirhead, and P. A. B. Murdock, Phil.
Mag. 44, 795 (1955).

"This result is contrary to the earlier result by Harada and
Oda (Ref. 34) due, probably, to the diGerence in the real potential
depths used in the two calculations.

improved with two fewer parameters than are normally
needed (Tables V and VI). More significant, however,
is the physical understanding of the model parameters
associated with the reformulation. Proton elastic scat-
tering measurements of good accuracy can now be used
to obtain information about nuclear-matter distribu-
tions; only limited information is at present available
concerning these quantities from other sources. Informa-
tion can also be obtained concerning the strength and
msr of the direct component of the two-body force.

A. Matter Radii

Tables VII and VIII together with Fig. 9 demon-
strate clearly that a good measure of the nuclear rms
matter radius can be extracted from the analysis by
obtaining a reasonable fit to the data and that (r') is
a well-defined quantity, relatively insensitive to the
details of the parameters used and the quality of the
fitting. This result is in sharp contrast to the behavior of
the radius and diffuseness matter parameters, which
can vary over wide limits (Fig. 9).The elastic scattering
of protons at energies below 50 MeV is largely deter-
mined by the surface region of the nucleus and since the
mean-square rnatter radius emphasizes this region its
constancy is to some extent not unexpected, Neverthe-
less, it is somewhat surprising that (r") should be so
well defined for any value of m; the significance of this
result is not completely understood.

One particularly satisfactory feature of the results
is the agreement between the rms rnatter radii obtained
for the same element at different energies (Table XIV).
This consistency suggests that no serious errors are
involved in the approximations used in the formulation
of the model. The agreement found for the rms radii in
Table XIV is much better than might be anticipated
on the basis of the error assignments. This indicates
that the method used to obtain these errors yields an
overestimate. It is, however, not clear how these errors
can be reduced on an objective basis.

The comparison of the rms matter radii found here
with the rms proton radii obtained in other ways in-
dicates clearly that the matter radii are bigger than the
proton values for the same element. This implies that
neutron distributions are more extended than proton
distributions in nuclei. Such a possibility has been
recognized for a long time but only limited evidence for
the difference has previously been available. " It has
been pointed out that studies of E=rneson absorption
should be sensitive to the ratio of protons to neutrons
in the nuclear surface. ~ Measurements4' of E -meson
interactions in nuclear emulsions have recently been

n M. H. Johnson and K. Teller, Phys. Rev. 92, 8&& 1&953l"P. B. Jones, Phil. Mag. 3, 33 (1958); D. H. Wilkinson, in
Proceedings of the Conference on Nuclear Strmctlre, edited by
D. A. Bromley and E. W. Vogt (University of Toronto Press,
Toronto, Canada, 1960), p. 20.

4'D. H. Davis, S. P. Lovell, M. Csejthey-Barth, J. Sacton,
G. Schorochoff, and M. O'Reilly, Xucl. Phys. $1, 434 (1967).
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analyzed by Burhop~ and indicate a difference of neu-
tron and proton rms radii of about 0.5 F for Ag. This
value is in good agreement with the results of Table
XIV. Further evidence that the differences found here
are reasonable is obtained from a bound-state calcula-
tion by Kallio4' in which the binding energies for the
last neutron and proton in Pb"' were fitted by adjusting
the shell-model well parameters and the msr for neu-
trons and protons were computed from the wave func-
tions. The diGerence between the rms radii for neutrons
and protons was insensitive to the details of the well

parameters so long as the binding energies were cor-
rectly given, and had a value of about 0.3 F, in reason-
able agreement with the value 0.64~0.40 F of Table
XIV.

Recently, results have become available for the charge
distributions of a number of Ca isotopes" and shell-
model calculations have been made by several authors
to obtain an understanding of the variations found. 4

As was the case for the Pb"' calculation mentioned
above, such calculations do not include any connection
between the geometry of the shell-model potentials
used and the proton and neutron distributions predicted
from the wave functions. However, with reasonable as-
sumptions concerning the isobaric variation of the well

depth, the analyses indicate a greater ms radius for
neutrons compared to protons. Similar calculations
using Coulomb energy differences, obtained from mea-
surements of isobaric analog states, suggest the same
effect.4' In contrast to this evidence supporting the
present results, the early measurements of x+, m scat-
tering from Pb"' indicated the neutron and proton dis-
tributions to be the same. 4'

The present work used interpolated values for the
proton radii since measurements of the particular
isotopes analyzed here were not available. Clearly, as
such measurements are made and the corresponding
matter radii obtained with greater accuracy along the
lines developed here, a much more detailed investiga-
tion of nuclear radii will be possible. Of particular
interest will be a study of the variations within an
isobaric sequence and of the feature, found here, of an
approximately constant rt-p rms radius difference for
all medium and heavy nuclei.

44 E. H. S. Burhop, Nucl Phys. Bl, 438 (1967)."A. Kallio (private communication).
4'K. J. Van Oostrum, R. Hofstadter, G. K. Noldeke, M. R.

Yearian, B. C. Clark, R. Herman, and D. G. Ravenhall, Phys.
Rev. Letters 16, 528 (1966).

47 F. G. Percy and J. P. SchiBer, Phys. Rev. Letters 17, 324
(1966); B. F. Gibson and K. J. Van Oostrum, Nucl. Phys. A90,
159 (1957); A. Swift and L. R. B. Elton, Phys. Rev. Letters 17,
484 (1966); Nucl. Phys. A94, 52 (1967).' J. A. Nolen, Jr., J. P. Scheer, N. W'illiams, and D. Yon
Ehrenstein, Phys. Rev. Letters 18, 1140 (1967).

"A. Abashain, R. Cool, and J. W. Cronin, Phys. Rev. 104, 855
(1956). itiote added 'n manuscript It has been b.rought to our
attention that a later analysis of this data t L. R. B. Elton, Rev.
Mod. Phys. 30, 557 (1958)g concluded that (r') '" exceeds
(r')„'"by approximately 0.3 F, in good agreement with the present
work.

B. Nucleon-Nucleon Force Data

The analysis yields information oui the range and the
volume integral of the spin-isospin —independent part
of the nucleon-nucleon potential. The values found for
the msr from the analysis of data for various elements
and at various energies are in good agreement with each
other (Table XI). This agreement is much better than
could be expected from the estimated errors in the in-
dividual determinations and is an indication that these
errors are overestimates. It is clear from Fig. 10 that
the existing polarization measurements are placing no
significant constraints on the value of (r')d. In the
present simplified presentation, in which only the first
term of the spin-orbit folding series is used, the differ-
ence in the msr of the real and spin-orbit geometries is
attributed entirely to this direct component of the
nucleon-nucleon force. When this simplification is
removed, the diGerence in the msr will still be dominated
by the same two-body force component so that polariza-
tion data of significantly greater accuracy should enable
a better determination of (r')a to be made. The volume
integral of the direct component of the nucleon-nucleon
force (Ja) shows a tendency to decrease with incident
proton energy although the results are consistent with
no energy dependence (Fig. 11).

Various forms have been used successfully for two-
body potentials to obtain a fit to nucleon-nucleon scat-
tering data. These potentials use a repulsive core when
high-energy data is included in the fitting. Such effects
were neglected in the present work. and a pure Yukawa
form was used. However, the tail of the force used here
should agree with that found in fitting nucleon-nucleon
data and it is reasonable to compare the present msr
with that of the corresponding attractive components
of the nucleon-nucleon potentials. Thus, Gammel and
Thaler, " using a Yukawa shape, have quoted singlet
and triplet msr of 2.9 and 1.4 F, respectively, indicating
that the msr of uq is around 2 F'. A nucleon-nucleon
potential which has been used successfully in several
bound-state calculations of light nuclei by Tang et at."
uses an exponential form for the attractive part with a
msr for the direct component of about 2.5 F'.An alterna-
tive approach to obtain the range of this component of
the force was used by Ali and Bodmer, "who made a
detailed analysis of a—e scattering which yields a value
for (r')a of 2.51&0.40 F'. These three values for the
Disr of the direct component of the nucleon-nucleon
force are all in good agreement with the value of 2.25 F'
found here.

It is also noteworthy that the value of the volume
integral J~ obtained here agrees very well with that for
the two-body potential of Eq. (25). This latter poten-
tial has been used in a number of resonating-group cal-
culations involving light nuclei, and, in all these cal-
"K. A. Brueckner and J. Gammel, Phys. Rev. 109, 1023 (1958)."Y.C. Tang, E. W. Schmid, and R. C. Herndon, Nucl. Phys.

65, 203 (1965); E. W. Schmid, Y. C. Tang, and K. Wildermuth,
Phys. Letters 7, 263 (1963).
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culations, good agreement with experimental data on
scattering cross sections has been obtained. "

C. imaginary Potential

The relatively crude calculation of the imaginary
potential, described in Sec. VII, proved quite successful
in reproducing the surface shape of the phenomenological
form found in the main analysis. The agreement between
the calculated and the phenomenological imaginary
potentials in the central regions of the nucleus will

certainly be improved by a better calculation along the
present lines. It is probable that the shape obtained
from a more reined calculation will be able to give as
good a Gt to the experimental data as is achieved with the
present phenomenological shape. Thus the geometries of
all the terms of the optical-model potential, at least
in the surface region, have been shown to be related to
the nuclear neutron and proton distributions by the
application of relatively simple physical principles.

D. Approximations of the Model

As developed, the model gives a first-order treatment
of the problem. The analysis of data given here involved
two additional simplifications regarding the treatment
of the isospin- and spin-orbit terms. These simpli6ca-
tions involve only small errors (Sec. VI) and are readily
removed at the expense of longer computational periods.
The internal consistency of the present results of the
analysis indicate clearly that no eGects of major im-

portance have been neglected. Particularly reassuring
are (1) the close agreement between the nuclear-matter
radii found for the same element at different energies,

(2) the constancy of (r')z for the various cases, and (3)
the relatively slow variation of Jd, with energy. This
implies that second-order eGects are playing only a
minor part since any larger contribution would almost
certainly result in an energy dependence of the geometri-
cal results and a pronounced energy dependence for the
strength of the force. Nevertheless, it is possible that
the results found here are to some extent fortuitous and
it is important to investigate, as far as possible, the
effects of including (1) core polarization, (2) a repulsive
core in the nucleon-nucleon potential, and (3) the
antisymmetrization of the incident particle with the
target nucleons. The present work suggests that these
effects will only modify the potential near the origin; the
absorptive component needed in the analysis of proton
elastic scattering data at these energies makes the
results insensitive to the interior region.

"D. R. Thompson and Y. C. Tang, Phys. Rev. 159, 806
(1967);Phys. Rev. Letters 19, 87 (1967).

E. Applicability of the Model

The expressions obtained for the real parts of the
potential in Sec. II were based on the assumption of
scattering from spin-zero nuclei. One of the cases
studied (30-MeV proton elastic scattering from Co")
does not fall into this category. However, no features
were found in the cobalt analysis which were not pre-
sent for the other elements, indicating that the model is
more generally applicable than is implied by the formu-
lation given. The full extent of this applicability has
yet to be determined.

The analysis given here shows the model to be valid
over a proton energy range from 14-40 MeV. There
will be a lower limit of applicability caused by the onset
of sizeable polarization eGects; it seems probable that
this limit, in itself, will be unimportant since it is likely
that other effects such as resonance phenomena and
compound elastic contributions will already have
severely limited the use of a potential description of
the interaction. An upper energy limit of applicability
will be reached when hard-core eGects can no longer be
neglected. This limit is likely to be somewhere in the
energy range 60—100 MeV.

The model has been applied here only to the analysis
of proton elastic scattering data. It is clearly im-

mediately applicable to neutron elastic scattering data
and is readily extended to the analysis of the elastic
scattering of complex particles by nuclei. An additional
assumption required in these latter cases is that the
projectile does not become appreciably polarized during
the interaction. In cases where this can be reasonably
assumed, the real parts of the potential can be obtained

by a double-folding procedure. An attractive feature of
analyzing data in this way is that the potentials derived

from data obtained with different projectiles are directly
connected in an unambiguous way if a reasonable spatial
wave function is available for each projectile. Such

analyses will constitute a good test of the ideas pre-
sented here.
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