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Whenever a circularly polarized laser beam propagates along an axis of threefold symmetry in a piezo-
electric crystal:, the second-harmonic polarization is circularly polarized in the opposite sense. Rabin and
Bey have discussed the theory of second-harmonic generation in crystals with natural optical activity.
We have observed this circular polarization and also the difference in coherence lengths for opposite senses
of circular polarization, with both fundamental and second-harmonic beams propagating along the t 111]
direction in single crystals of NaC103 and NaBr03, belonging to the cubic class 23, for which the proper
eigenmodes are circularly polarized waves. The nonlinear susceptibility of both NaC103 and NaBr03 has
been measured and compared with the nonlinear susceptibility of O,-quartz. The relative sign of the sus-
ceptibilities has been determined in second-harmonic interference experiments with the same laser beam
traversing two crystals in succession. The interesting questions of the sign of the nonlinear susceptibility,
piezoelectric constant, optical activity, and the absolute atomic conGguration of the antipodes are dis-
cussed. The question of conservation of angular momentum is resolved by taking into account the crystal-
line-Geld potential of threefold symmetry, which gives rise to a torque on the crystal lattice.

1. SYMMETRY CONSIDERATIONS FOR
HARMONIC GENERATION BY

CIRCULARLY POLARIZED LIGHT

HE symmetry properties of second-harmonic gen-
eration are described by a symmetric third-rank

nonlinear susceptibility tensor which has the same prop-
erties as the piezoelectric tensor. When sum or di6er-
ence frequencies are generated, the nonlinear susceptibil-
ity tensor may have antisymmetric parts in all pairs of
indices. Complete tabulations have been given by
Giordmaine' and Butcher. ' The third-harmonic gen-
eration is described by a fourth-rank tensor, which is
symmetric for permutation of three indices. Complete
expressions have been given by Maker et ul. ' When other
combination frequencies are considered in this order of
nonlinearity, the tensors may have antisymmetric parts
in those pairs of indices which correspond to distin-
guishable field components. When optical dispersion
may be ignored, the tensors must be symmetric for all
permutations of the indices, as stated by Kleinman. 4

With these general tensors, the components of the
harmonic polarization may be calculated for any state
of polarization of the incident laser beam. For elliptic
and circular polarization some of the fundamental field
components must be written as complex quantities.
The resulting nonlinear polarization will in general
create an elliptically polarized harmonic wave.

Consider, however, the case that the incident light
wave (or waves) is (are) circularly polarized and propa-
gating along a three-, four-, or sixfold axis of sym-

* Supported by the Signal Corps of the U. S. Army, the Of6ce
of Naval Research, and the U. S. Air Force.' J. A. Giordmaine, Phys. Rev. 138, A1599 (1965).

P. N. Butcher, Bulletin 200, Engineering Experiment Station,
Ohio State University, Columbus, 1965 (unpublished).' P. D. Maker, R W. Terhune, and C. M. Savage, in Proceedings
of the Third International Conference on QNantlm Ii/ectronics,
edited by P. Grivet and N. Bloembergen (Dunod Cie. , Paris,
1964), p. 1559.' D. A. Kleinman, Phys. Rev. 126, 1977 (1962).
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metry. The resulting harmonic (or combination fre-
quency) wave must either vanish or also be circularly
polarized around this direction, because the rotational
symmetry of the combined system, crystal and electro-
magnetic field, must be preserved. As will be shown ex-
plicitly in Sec. 4 of this paper, the change in angular
momentum of the electromagnetic Geld around an axis
of m-fold symmetry is either 0 or &mk.

This implies that the second-harmonic wave gener-
ated by a circularly polarized laser beam propagating
along a threefold axis is circularly polarized in the
opposite sense. This may be verified by explicit calcu-
lation from the nonlinear susceptibility tensors for the
[111$direction in the cubic classes 43m and 23, and for
the axis of symmetry in the trigonal piezoelectric classes
and the hexagonal classes.

When the circularly polarized light propagates along
a fourfoM axis, the second harmonic vanishes. The
third harmonic will be circularly polarized in the op-
posite sense in this case. This may again be verified by
explicit calculation for light propagating along $100j
directions in cubic crystals with a fourfold axis, and in
tetragonal classes. The third harmonic must vanish
when the fundamental light is circularly polarized
around a three- or sixfold axis, or in Quids.

The extension of these considerations to other com-
bination frequencies is straightforward. If, for example,
an incident light wave col is left circularly polarized and
an incident light wave at co»or& is right circularly
polarized around a trigonal axis, only a left circularly
polarized wave at the difference frequency ~2—co& can
be generated.

The geometries in which only circularly polarized
light waves occur are of particular importance in the
case of crystals with natural optical activity. In the
cubic crystals of the class 23, the proper zero-order
polarization modes for light propagating in any direc-
tion are the two circularly polarized modes, which
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FIG. 1. Experimental arrangement for creating circularly polarized laser light and analyzing and detecting circularly polarized sec-
ond-harmonic light. LA, Gian-Kappa polarizer; B, beam splitter (35/~ reflectance mirror); C, quartz —,lj. plate; D, optically active crys-
tal; E, Fresnel rhomb; F», Corning filter CS 2—64; F~, CuSO4 cell; F3, 347 mp, interference filter; 0, EMI 9634 photomultiplier; H,
reference quartz platelet; I, EMI 6255B photomultiplier; J, Telrtronix type 555 dual-beam oscilloscope. j

propagate with different velocities. This difference is of
course proportional to the specific optical activity. When
the nonlinear susceptibility for second-harmonic gen-
eration in crystals of this class is to be determined, two
different coherence lengths will occur, in general, in the
formula for the second-harmonic intensity through a
plane parallel slab,

2(0 Ps+(2or) —rs+(ro)]
(»)

For arbitrary geonietries the incident wave must be de-

composed into circularly polarized modes, and the re-
sulting second-harmonic waves must be recombined to
a wave whose polarization and intensity is a rather in-

convenient function of the thickness of the slab. Ex-
perimental data which can be quantitatively interpreted
should, therefore, be taken preferably with a circularly
polarized laser beam propagating along the L»»1) di-

rection. In that case, the emerging second-harmonic
beam is always circularly polarized in the opposite
direction and the intensity variation is described by a
single coherence length.

In Sec. 2 of this paper the experimental arrangement
is described which allows the determination of the mag-
nitude of the nonlinear susceptibilities of NaC103 and
NaBr03 crystals which both have 23 symmetry. The
relative sign can be determined from interference experi-
ments which are described in Sec. 3.

If the light is propagating along the trigonal axis in

o,-quartz, the same considerations apply. In fact, the
theoretical discussion of Rabin and Bey' applies ex-

plicitly to this geometry. We have veri6ed their predic-
tions experimentally. For propagation in directions
which make an angle with the optic axis, the proper
eigenmodes are, or course, essentially linearly polarized,
although strictly speaking they would have some ellip-

ticity. The latter effect is small and experimentally
unobservable so that the previous determinations of the

' H. Rabin and P. P. Bey, Phys. Rev. 156, 1010 (1967).

optical nonlinearity in o,-quartz with linearly polarized
light are, of course, correct.

In the elementary scattering process, in which two

right circularly polarized quanta at the fundamental.
frequency are transformed into one left circularly
polarized quantum at the second-harmonic frequency,
the angular momentum of the electromagnetic fields

changes by three units, 3A. Since the crystal is non-

absorbing and its electronic wave functions are un-

changed, this raises the question of conservation of
angular momentum. In the last section of this paper a
discussion of this question is presented, which supple-
ments some previous remarks. '

2. SECOND-HARMONIC GENERATION
EXPERIMENT IN NaC103 AND NaBr03

A. Preparation of Samples

All dextrorotatory crystals of NaC103 and NaBr03
were grown from water solution by standard rocking
techniques. ' Optical polishing was done on a nonwoven

polishing cloth with kerosene lubricant and 0.3-p, alumi-

num oxide abrasive. A hard wax lap could not be used
because of the difficulty in ending a suitable lubricant
that would not simultaneously dissolve either the wax
or the crystal. Flatness of individual faces was typically
0.5—1 p, over an area of a quarter-inch square. Paral-
lelism of the two platelet faces was typically 2—6 p over
the same area as measured with an air gauge. The most
useful measurement of the quality of the polishing was

the experimental ratio of peak second harmonic to
minimum second harmonic. At best this ratio was from
10:1 to 20:1, although quite often it was less. A levoro-

tatory sample was cut from the same crystal used by
Collins. 8

' N. Bloembergen, Technical Report No. 544, Harvard Univer-
sity, 1967 (unpublished}; J. Phys. (Paris} (to be published).

~ A. N. Holden and P. Singer, Crystals aed Crystal Gromeg
t,'Doubleday, New York, 1960).

8 F. A. Collins and N. Bloembergen, J. Chem. Phys. 40, 3479
(1964).
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Pro. 2. Circularly polarized second-harmonic light intensity
(SHI) in a 5.2-mm-thick NaC103 platelet. versus angle between
the L111j normal and the laser axis, for right and left circularly
polarized laser light,

B. Experimental Arrangement

The beam of a pulsed ruby laser was given a circular
polarization by means of a Gian-Kappa polarizer and
a 4) compensated quartz plate. The polarization of both
the fundamental and harmonic beam emerging from the
sample could be checked by means of a Fresnel rhomb
and Gian-Kappa prism as analyzer. The experimental
arrangement, which is fairly standard in all other re-

spects, is shown in Fig. 1. Each pulse of the Q-switched
ruby laser was monitored by means of a 35% reflectance
dielectric-coated mirror as a beam splitter and a quartz
sample as a reference for second-harmonic generation.
A typical pulse had an energy content of 0.1 J and a
duration of 3)&10 ' sec. The diameter of the beam
passing through the samples was 2 rnm. CuS04 solutions
and interference filters to eliminate the fundamental
light preceded photomultipliers. The traces of the
second-harmonic pulses were displayed simultaneously
on a Tektronix 555 dual-beam oscilloscope.

When the light beams were within 1 of the [111]
crystallographic direction, it was verified that the
second-harmonic polarization was circularly polarized
in the opposite sense from the fundamental. The ob-
served ratio of the major and minor polarization axis was
1:0.97.

D. Magnitude of Nonlinear Susceptibility

If the real amplitude of a circularly polarized wave
propagating along the L1111 direction is As, the com-
ponents of the field with respect to the cubic axes are

MLQ 2K„g

3—

ZL40g« - O, 29sr/2

64ggAs = 031 m/2

Ph4+

V)I-
Z

2—
K
fL
I—

0

in NaC103. For a platelet approximately a thousand
coherence-lengths thick, the dMerence in the phase
angle for the two polarization cases is approximately
~x. This result is shown in Fig. 2, where a NaC103
platelet, 5 mm thick, was turned from the laser axis for
the two cases of laser circular polarization.

Similar results were obtained for a NaBr03 crystal as
shown in Fig. 3. If linearly polarized light is used, the
observed second-harmonic intensity varies as the sum
of the curves for the two circular polarizations. This is
verified by the experimental data in Fig. 4. Clearly such
curves are less suitable for a quantitative determination
of the nonlinear susceptibility.

An O,-quartz crystal was cut into a platelet with the
optic axis in the normal direction. The circularly polar-
ized nature of the second harmonic was again verified in
this case and its magnitude allowed a simple comparison
of the nonlinearities of NaC103 and NaHr03 with the
known nonlinear constant in quartz.

C. Coherence Lengths

The transmitted second-harmonic light (SHI) gener-
ated in a plane parallel platelet goes as

I(2c0) sin'L(L/L, .s+)-',s j,
where I.is the optical path length in the crystal. For the
two opposite circular polarizations of the laser beam the

O). I I I t I I I

0 5' 10o

ANGLE BETWEEN [III] NORMAL AND LASER BEAM

Pro. 3. Circularly polarized SHI in a 1.8-mm-thick NaBr03
platelet versus angle between the $111)normal and the laser axis
for right and left circularly polarized laser light.
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crystal can be individually turned around an axis per-
pendicular to the laser beam to vary its optical path
length. Suppose that the first crystal is dextrorotatory
NaC103 so adjusted as to give a maximum harmonic
generation according to a curve in Fig. 2. Now another
dextrorotatory NaC103 platelet is placed in the laser
beam in the evacuated box, in exactly the same crystal-
lographic orientation. This is of course entirely equiva-
lent, except for Fresnel refl.ections, to making the first
crystal thicker. As a result, the second-harmonic inten-
sity with both crystals in the box must be lower. In fact,
when the second crystal is individually adjusted to give
by itself alone a maximum second-harmonic intensity,

5.0

FrG. 5. Experimental arrangement for creating interference of
circularly polarized SHI in NaC103 and NaBr03. The air pressure
in the path between the crystals can be varied.
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bilities reported here. It should be pointed out that the
absolute value of the nonlinearity could also have been
obtained simply by using a wedge-shaped sample. "In
this case no particular attention has to be paid to the
nature of the polarization or the existence of two co-
herence lengths. The observed output corresponds to the
average of the curves displayed in Figs. 2 and 3. Wedge-
shaped samples would, however, not permit the inter-
ference experiments described in the following section,
nor the determination of the relative sign of the
nonlinearity.

3. INTERFERENCE EXPERIMENTS

When second-harmonic radiation is generated by the
same laser beam in two consecutive samples, a definite
phase relationship exists between the two sources of
harmonic radiation. Such interference experiments have
been carried out successfully" to determine the phase of
the complex nonlinear susceptibility in absorbing
media. Even in nonabsorbing media, where X is real,
an ambiguity in the sign still exists. It is physically
clear that two piezoelectric antipodes, i.e., two crystals
which are inversion images of each other, will have op-
posite signs in all elements of the third-rank tensor
property. In the same manner a NaC103 with left-
handed optical activity will have an opposite sign of the
susceptibility from the right-handed optical antipode.
It is a priori not determined whether left-handed
NaBr03 or left-handed o,-quartz will have the same sign
as left-handed NaC103, or the opposite.

The experimental arrangement for the interference
effects between two samples is shown in Fig. 5. The two
crystal platelets are mounted in a vacuum box. Each

» A. Savage, J. Appl. Phys. 36, 1496 (1965)."R.K. Chang, J. Ducuing, and N. Bloembergen, Phys. Rev.
Letters 15, 6 {I965).
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FIG. 6. Second-harmonic interference intensity from two
dextrorotatory NaC103 (111)crystals versus the air pressure.

the two crystals together will give almost zero intensity.
A slight harmonic signal may still be expected, because
the intensity of the laser beam in the second crystal will

be slightly lower due to Fresnel reQection and other
possible optical losses. When the air is admitted into the
vacuum box, the dispersion of the air between the two
crystals will cause a phase variation between the har-
monic fields and the second-harmonic amplitude from
the two platelets may be twice as high, or the intensity
four times as high, as that of a single platelet. This inter-
ference effect is shown in Fig. 6. Sharp zeros and four
times individual crystal peak intensities are not ob-
served because of poor ratios of peak second-harmonic
intensity to minimum second-harmonic intensity in the
individual crystals.

There is another way to create a phase difference be-
tween the two NaC103 crystals. In this method the two
crystal plates are kept in vacuum and parallel to each
other, but the second NaC103 crystal is rotated around
its own normal, i.e., the

I 111( direction in .which the
laser beam propagates. As remarked in the preceding
section, the rotating harmonic polarization and the
rotating laser field vector must cross the (110) plane
at the same time. As this plane is turned, a phase shift
between the harmonic source and fundamental field is
induced. The threefold nature of the axis, as well as the
oppositely rotating vectors at circular frequencies co

and 2', respectively, show immediately that the result-
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ing interference pattern as a function of the angle of
rotation around L111jhas a period of 120', in agreement
with the experimental result shown in Fig. 7.

Still another possibility to cause a relative phase shift
of x in the harmonic 6eld of the second crystal is to
turn this crystal 180 around an axis normal to the $111j
direction. This Qip-over of the second crystal changes
second-harmonic interference maxima to minima and
vice versa. If the turning is done around the L110) di-
rection, the mathematical transformation is described
by x —+ —y, y —+ —x, and z —& —z. Although this turn-
ing does not change the "handedness" of the crystal, it
clearly changes the sign of the piezoelectric voltage with
respect to a laboratory frame. If a compression along
the t 111)direction first caused the "front" face of the
crystal to be positive, after the turning the back face
will be positive. In the same manner second-harmonic
polarization is Ripped with respect to the laboratory
frame.

z.osw
V)I-

I I

DEXTRO-DEXTRO

Oz
QJ

I O

tij
. I—.

A. Sign of Odd-Rank Tensors and Absolute Atomic

Configuration of Optical Antipodes

In principle, the two dextrorotatory crystals may be
aligned with their cubic axes parallel to each other by

It was indeed veri6ed that two platelets of NaC103,
which are crystallographic antipodes, have indeed the
opposite sign of X,„,as shown in Fig. 8. The piezoelectric
constants have, of course, the opposite sign also, and
when the cubic axes of the two crystals are parallel in
space, the piezoelectric voltages under compression are
opposite.

Bijvoet and collaborators'4 have been able to deter-
mine the absolute atomic configuration belonging to
each antipode by the technique of anomalous x-ray
scattering. If the x-ray scattering factor of an atom be-
comes complex, the hkl and hA;t diffraction spots may
have a different intensity.

They discovered that a NaBr03 crystal with the same
absolute atomic con6guration A, shown in Fig. 8, as
a NaC103 crystal has the opposite sense of natural
optical activity. This is in agreement with an ancient
observation that right-rotating NaBr03 grows epitaxi-
ally on left-rotating NaC103. %e have verified that such
crystals have the same sign of the piezoelectric voltage.
In other words, the same absolute configurations of
NaBr03 and NaC10, have the same sign of the piezo-
electric constant, in agreement with a simple mechanical
ionic model for the piezoelectric effect described by
Mason.

All of the above orientation factors are schematically
displayed in Fig. 9. Optical rotary direction is measured
with the standard convention"; i.e., a dextrorotatory
crystal rotates the polarization clockwise when viewed
looking toward the light source. For dextrorotatory
NaC103 Collins' and Mason" have shown that the
positive (111) face develops a positive voltage under
the inhuence of a tensile stress, which is counted as posi-
tive. A piezoelectric voltage measurement plus a back
reQection x-ray Laue photograph allowed an unambigu-
ous orientation of the NaC103 crystal. Since Bijvoet 4

0 I I I I I

400 80 120
ANGLE OF ROTATION AROUND [III) AXIS

I

160

FIG. 7. Second-harmonic interference intensity from a pair of
two dextrorotatory NaCIO& (111) crystals and a pair of one
dextrorotatory and one levorotatory NaCIO& (111)crystals versus
relative rotation around the L111$ axis.

Na Q

standard x-ray techniques. The distinction between the
"front" (111)and "back" (111)orientation should show
as a minor asymmetry in the intensity of x-ray diffrac-
tion spots. In practice, it is preferable to determine the
orientation of the (111)platelets by a Laue back scatter
technique and by paying attention only to the gross
symmetry of the pattern.

The question of the "front" or "back" orientation is
decided separately by measuring the sign of the piezo-
electric voltage, when the platelets are compressed.

All sign questions have to be reversed once more, if the
second crystal has the opposite sense of optical activity.

FIG. 8. Crystal structure A of dextrorotatory NaC103 and
levorotatory NaBr03, taken from Refs. 8 and 14.

'4 G. Beurskens-Kerssen, J. Kroon, H. J. Endeman, J. van
Iaar, and J. M. Bijvoet, Crystallography and Crysta/ Perfection
(Academic Press, London, 1965), p. 225; G. Beurskens-Kerssen,
Academisch Proefschrift, Utrecht, j.963 (unpublished).

'sF. A. Ienkins and R. H. White, Frsrtdamentats of OPtics
(McGraw-Hill Book Co., New York, j.957).

r' W.
, P. Mason, Phys. Rev. 70&~529 (1946),
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Fro. 9. Schematic diagram of unambiguous orientation of
NaC103, NaBr03, and a-quartz crystals.

"Ql. G. Cady et al. , Proc. IRK 37, 1384 {1949)."A. De Vries, Nature 181, 1193 (1958).
'9 H. J. Kndeman, Academisch Proefschrift, Utrecht, 1965

(unpublished). See also Ref. 14,

has shown that dextrorotatory NaBrO& has the inverted
atomic structure of dextrorotatory NaC103, we assigned
the positive (111) face to that face which developed a
negative voltage under the inQuence of a positive tensile
stress. For the levorotatory n-quartz we followed the
IEEE convention": "On extension, the positive ends of
the a axes, and therefore of the X axes, become nega-
tively charged with right quartz, positively charged with
left quartz. " Absolute orientation of this crystal from
piezoelectric voltage measurements agreed with absolute
orientation from the natural faces. The absolute atomic
configuration of a-quartz was determined by de Vries. '

The question of the sign of the nonlinear susceptibility
for these crystals becomes, therefore, intriguing. The
result of a second-harmonic interference experiment
with a NaC103 and a NaBr03 platelet is shown in Fig.
10. The crystals have the same crystallographic orien-
tation, the opposite absolute atomic configuration, the
opposite sense of piezoelectric voltage, and the same
sense of optical activity. The interference curve is con-
sistent only with the same sign for the nonlinear
susceptibility.

The calculations of Endeman' have demonstrated
that the optical activity is a very sensitive function of
the lattice parameters describing the location of the
oxygen triangles. In particular, a small variation in the
azimuthal angle, i.e., a small rotation of the oxygen tri-
angles around the $111j directions, may change the sign

of the optical activity. This is the result of a detailed
calculation which involves the dipole Gelds produced by
the induced dipoles at each lattice site on other lattice
sites. A general formulation of the local-field problem
in second-harmonic generation has been given previ-
ously. '0 One may expect the nonlinear susceptibility
also to be a sensitive function of the ionic positions.
Since the odd-rank nonlinear polarizabilities of free
centrosymmetric ions vanish, the calculation must start
from orbitals which lack a well-deGned parity due to the
position of neighboring atoms, Since the nonlinear
polarizabilities of such complexes are not known, a nu-

merical solution of the local-field problem is not at-
tempted here. An oversimpliGed starting point for such
a calculation would be to consider the nonlinearity to
reside exclusively in the 03 triangles and represent these
as a point in its center of gravity with a nonlinear
polarizability. Such schematic models, however, can
only be expected to give the order of magnitude, which

is already known from Miller's rule. The correct nu-

merical value and the correct sign require a more de-
tailed analysis of electronic structure and local-Geld
configurations. Considerable variations induced by small
changes in the structure parameters may be expected.

We have also related the sign of the nonlinear sus-

ceptibility of O,-quartz to the sign in NaC103 by the in-
terference experiment shown in Fig. ii. The absolute
configuration of O.-quartz and its relation to the sign of
the piezoelectric e6ect' "were used to determine the
orientation of the quartz sample. All data concerning
the sign of the third-rank tensors and the optical activity
are summarized in Table II.
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FIG. 10. Second-harmonic interference intensity from one dex-
trorotatory NaC103 (TTT) crystal and one dextrorotatory NaBrO&
(111)crystal versus air pressure.

~0 J. A. Armstrong, ¹ Bloembergen, J. Ducuing, and P. S.
Pershan, Phys. Re v. 127, 1918 (1962) (see especially the
Appendix).

4. CONSERVATION OF ANGULAR MOMENTUM
IN THE GENERATION OF CIRCULARLY

POLARIZED HARMONIC LIGHT QUANTA

Since in each elementary scattering process two right
(left) circularly polarized fundamental quanta are anni-
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Fig. 11. Second-harmonic interference intensity from a dex-
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hilated and one left (right) circularly polarized quantum
is created, the angular momentum of the electromag-
netic field" is changed in the experiments described in
this paper. It has been briefly shown elsewhere' that
total angular momentum is conserved in this process
because the light fields exert a torque on the crystalline
lattice. In this section, we shall expand the previous dis-
cussion, which was based on the explicit introduction of
the crystalline-field potential on electronic orbitals of
localized ions, and we shall also give an alternate de-
scription in terms of Bloch wave functions.

V„=Q A, o&io+ Z A, ys&t+s+
l=2 l=3

where Yl is the normalized spherical harmonic func-
tion with the threefold axis as polar axis, and Bl,~3
=Bl,+3*.There may also be terms in I l+', etc. , whose
presence would not alter the following argument.

The azimuthal variation of I'l around this axis is
given by expf&3i($, +Pi,)J Here $., is the azimuth
angle of the electron position with respect to the crystal-
lographic x axis, and gr, determines the position of the
x axis with respect to a fixed laboratory frame, in which
the crystal is allowed to rotate. In most problems the
coordinate of the whole lattice PI. is suppressed, but it
is important in the discussion of the conservation of
angular momentum.

Let P, be the ground-state orbital wave function of
a valence electron in the ion. In a nonmagnetic material

2' A. Messiah, Qgantgm Mechanics t'North-Holland Publishing
Co., Amsterdam, 1962), Vol. II, Chap. 23.

A. Ionic Model with Trigonal Crystal Field.

Consider an ion subjected to a crystal field of three-
fold symmetry around the a axis and lacking inversion
symmetry. The crystal-field potential may be expanded
as follows:

this wave function may be chosen as real, because V„ is
real, and it should also exhibit the threefold symmetry:

~g)=go= Z «,ol'ro+Z «,ysVt+'+
l 0 l 3

y (e'~ c*y,+'I g')a, (~)a„((a)ap(2') . (8)

The final state
I
g') must be identical to the nondegen-

erate electronic ground state Ig). Here ~N) and ~N')

are virtual intermediate excited states. It is readily seen
that a spherical harmonic I'l in the ground-state wave-
function expansion is carried over into a term Fl
with m'=res+3 and l'= l+1 or t'= l+3. The third-order
matrix elements will not vanish if, and only if, the ex-
pansion for t g) contains both even and odd t, and con-
tains terms diBering by three units of the azimuthal
quantum number. The first condition is met, because
the crystalline-Geld potential lacks inversion symmetry
and contains terms with Bl with odd l. The second con-
dition is met because the axis has threefold symmetry.

TABLE II. Sign of odd-rank tensor elements in
piezoelectric optically active crystals.

Optical Nonlinear Piezoelectric
Crystal Absolute configuration activity susceptibility constant

a-quartz right-handed spirala levo
NaC10s A& dextro
NaBrOs inverted A dextro

a See Ref. 18.
b The sign in levorotatory quartz is arbitrarily taken as positive, Only the

relative signs in this column are accessible to experimental determination at
present. The absolute sign of the dc electro-optic effect may be determined
by applying a dc electric field of known direction to an absolute configura-
tion of known orientation. The optical nonlinearity may then be followed
as a function of frequency through the infrared dispersion region, as has
been done for example in GaP [W. L. Faust and C. H. Henry, Phys. Rev.
Letters 17, 1265 (1966)l. When the absolute sign of the nonlinearity of one
crystal has thus been determined in the optical region, the sign in other crys-
tals may be compared with it as described here. The outcome of such an ex-
periment would decide whether all signs of the nonlinear susceptibility in
this table should be reversed.

o See Ref. 17. In this reference "right" and "left" refer to the atomic ar-
rangement or the appearance of natural crystal faces and not to optical
activity. We have used Mason's results, as quoted in American Institute of
Physics Handbook I (McGraw-H111 Book Co., Inc. , New York, 1963), 2nd
ed. , pp. 9-97 and 98j, to unambiguously orient our NaC10s and NaBrGs
crystals, and we have assumed that his measurements were made in ac-
cordance with the definitions in Ref. 17.

~ Defined by Fig. 8,

The electric dipole interaction describing the interaction
with a circularly polarized light wave propagating in
the same s direction may be written in the form

—er E, , =Ca„tF '+C*a F +'

where a„t and u, are the annihilation and creation op-
erators for a right circularly polarized quantum and C is
a c number, containing the appropriate numerical con-
stants. For a left circularly polarized quantum the
operator a,t is replaced by a& and a„by aP. From here
on, we shall assume that the fundamental Geld is right
circularly polarized and the harmonic field left circu-
larly polarized. The harmonic production is described
by third-order perturbation theory involving matrix ele-
ments of the form
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Note that the light wave interacts only with the elec-
trons and the spherical harmonics in Eq. (7) have the
azimuthal dependence exp(&i&,). The crystal-field de-
pendence in Eq. (5) which is responsible for the wave
functions (6) has the angular dependence exp&i(P,
+Pi,), if the lattice position coordinate is explicitly re-
tained. The final state

~

g') differs from the initial state
~ g) by a factor exp(3igr) T, .his implies that the crystal
lattice as a whole has changed its angular momentum by
an amount

(
8

PL,"e "~' —~h Pre+"& )Bgz,

Through the intermediary of the crystalline potential
the circularly polarized harmonic generation exerts a
torque on the lattice, so that total angular momentum is
conserved.

B. Rotational Doppler Shift

The rotational kinetic energy of the lattice associated
with this angular momentum is, of course, negligible
due to the large moment of inertia 8' of the lattice. If the
lattice is initially at rest, the rotational velocity after
one second-harmonic quantum has been created would
be 6~=34/8 and the associated kinetic energy would be
28Aco'= 9A'/2d. In principle, the emitted second-
harmonic quantum would be shifted down in energy, but
this is unobservable. In practice, the suspension of the
crystal would compensate for the torque exerted by the
light 6elds. For crystal plus suspension 8 —+ ~.

If, however, the crystal is freely rotating and has
initially an appreciable angular velocity coz„ the change
in kinetic energy would be

(10)

The circularly polarized harmonic light would experi-
ence a rotational Doppler shift A~~ equal to three
times the rotational velocity of the crystal. This
Doppler shift is toward higher frequencies when the
lattice is spinning in a direction opposite to the sense of
precession of the fundamental circulation. This effect
could also be derived from a simple kinematic considera-
tion in a reference frame where the crystal is at rest.

C. Higher Harmonics; Axes of Fourfold
and Sixfold Symmetry

These considerations may readily be extended to
axes of fourfold or sixfold symmetry and to situations
involving higher-harmonic or other combination fre-
quencies. For a circularly polarized fundamental light

beam propagating along a fourfold axis, no second har-
monic can be created. The third-order perturbation by
the EM 6elds could only connect states which diGer in
azimuthal quantum number by Am= &I (if the har-
monic has the same sense of circulation as the funda-
mental) or Am=&3, while the crystalline-field poten-
tial only mixes states with Am=0 or hm= &4.

The third harmonic may, however, be created in this
case with a circulation in the opposite sense from the
fundamental polarization. If two beams at co~ and ~2
are incident with the same sense of circular polariza-
tion, it is possible to generate the combination frequen-
cies 2~i+~2 and 2~2+coi, with the opposite circulation,
because these optical processes correspond to Am= +4
transitions. Quanta at 2'&—&u2 and 2a» —~& may be
created with the same sense of circulation, since this
corresponds to 6m=0 transitions.

If the beams at co~ and co2 have opposite circulation,
then 2co&+co& may be created with the same sense of
polarization as cubi and 2~2+coi with the same sense as
co2. This corresponds to des=0 transitions. Circularly
polarized quanta at 2~~—co2 should have the same sense
as co~ in this case, corresponding to a Ans= &4 transi-
tion. Similarly, quanta at 2co2—~& would have the same
circulation as co~. It is also clear that processes involving
four circularly polarized quanta cannot occur for propa-
gation along a threefold axis. The intensity for the
third-harmonic production in quartz, discussed in Ref.
5, vanishes.

The considerations for second-harmonic generation
along a sixfold axis, as may occur in the piezoelectric
classes 6 and 6m2, are similar to those for the trigonal
classes 3 and 3', respectively. The unit cell with a six-
fold axis of rotation-inversion will contain two ions on
sites with trigonal symmetry which are related to each
other by the inversion operation. The second-harmonic
polarization created by each ion would be 180 out of
phase because the two sites have equal nonlinear polari-
zabilities with opposite sign. There is, however, another
180' phase shift, because the trigonal Geld at one site is
shifted by an azimuthal angle of 60 with respect to the
other. This effect is identical to that represented by the
experimental data in Fig. 7. Thus, the second-harmonic
polarizations of the two sites in the hexagonal unit cell
add up in phase.

In the case of 6 or 3 symmetry, there is no plane of
symmetry through which the rotating fundamental 6eld
vector and the counter-rotating second-harmonic polari-
zation must pass at the same time. The second-harmonic
polarization produced by a fundamental field circularly
polarized around the axis of symmetry is described as
follows' ':

E= (X+ig)Ae *&e '"'+c.c. ,

P(2(v) =2(Xgg, iX„„„)(2 ig)A'e "&e ""'+c.—c. --
The ratio of the two independent elements of the non-
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linear tensor (X„,/X»„) determines the orienta, tion of
the plane of crossing of the two counter-rotating
vectors.

In isotropic Quids any direction of propagation is an
axis of in6nitesimal symmetry. Only ~@2=0 transitions
are allowed. Circularly polarized light cannot produce
third harmonics, while it may do so in cubic crystals
propagating along the cubic axis.

If the light propagates along an arbitrary direction
K in the crystal, the crystalline-field potentia12 may be
expanded in spherical harmonics with this direction K
as polar axis. The transformation formulas for the har-
monics will in general allow all possible m values to
occur, F~ ~"&. There are, therefore, no clearcut Am

selection rules in this case. The resulting harmonic and
combination frequencies propagating along K will in
general have elliptical polarization. It should be clear
from the foregoing argument that the crystalline lattice,
through the intermediary of the crystalline potential,
will pick up whatever angular momentum is lost by the
electromagnetic fields.

D. Polarization Selection Rules in a Band Model

The question of dm selection rules may also be dis-
cussed in terms of band theory. The nonlocalized wave
functions of the completely 6lled valence band are of the
Bloch type N„k(r) exp(ik r). The index 22 denotes the
valence band. The light propagates with a wave vector
K= ~E~z in the direction of a threefold axis of sym-
metry. Denoting the rotation operation around this
axis by R2 (where R2' ——I), one may consider the three
degenerate electron states which form a star in k space"

(r) —I (r) ei/zzzei (kl r)

(R -lr) —I R k/(r)ei)zzzei(R2kl) r

k(R r) —
2i R z (r)eikzzei(R2 kl) r

The primes are simply a reminder that the u's obtained
by the symmetry transformation may differ by a phase
factor.

The following linear orthonormal combinations are
the appropriate zero-order wave functions in a crystal
with optical activity. They are also the appropriate
starting point for a perturbation by circularly polarized
light waves,

P-,k2=3-'/234-, k(r)+4-, k(R2r)+f. ;(R2-")1,
'=3 '"t:4-k()+ ""V (R )

+e 2zzi /eg, (R —lr)) (12)-
—1 3-1/2' (r)+e 2zzi/2P (R r—)

+e)-2s'i/2P (R —lr) j
The perturbation by a circularly polarized light wave

will connect the state p„k(r) to a conduction-band state

"M. Tinkham, Gronp Theory and Qiianiicm Mechanics (Mc-
Graw-Hill Book Co., New York, 1964), p. 279 ff.

,k+x(r). The k star in the valence band will be con-
nected to the k star in the conduction band:

k-,k+K(r) =~- .k+x(r) e""

(R —lr) —2i, k (R —lr)ei(/zz+[x[)zeiR2k2 r (13)

)r(R2r) =I ~ k x(R2r)e'&kz+)x~)ze'R' 'k2'

Since the interaction Hamiltonian with a circularly
polarized light wave is invariant for the symmetry
operation R3, the matrix element connecting, the respec-
tive members of the two stars must be equal, except for
a phase factor. In the electric dipole approximation the
interaction may be written again in the form of Eq. (7).
The operation R2 carries p occurring in the spherical
harmonic I'l+' into p+22r. This symmetry operation
transforms the matrix element according to

2i, k K*(R2r)t."a&ei~i—ieg k(R2r)/e'er

+2m'i/3 u, %+K+ r Cgfgicot —i' r d.3y

The phase factors between corresponding matrix ele-
ments of the two k stars in the 22 and 22' bands are given

by e px(+- i22)2rIf ne. w linear combinations p„. k+&',
p„.2+x+', and ))t „,2+K ' are formed from Eq. (13) in the
same way, as was done for the valence band in Eqs.
(11) and (12), it is seen that the interaction with a cir-
cularly polarized wave connects f„,k2 with p„k+x+',
pn, k' with p„zk+z ', a, nd f„,k ' with f„.,k+z'. We may.
say that 62)2=+1 transitions occur between the two k
stars, if a right circularly polarized quantum is anni-
hilated or a left circular quantum is created. Conversely
we have hm= —1 transitions for the opposite senses of
polarization. Similar k stars may be defined in a second
conduction band n". The annihilation of two right circu-
larly polarized laser quanta and the creation of one left
circularly polarized harmonic quantum will lead by
standard third-order perturbation theory back to the
original electronic state in the valence band. Thus the
same hm selection rules also follow from a band model
with nonlocalized electron wave functions. These band
considerations can obviously be extended to third-
harmonic generation circularly polarized around a four-
fold axes and other cases.

The conservation of angular momentum is not clear
in this description, because no azimuthal coordinate for
the lattice was introduced. The situation is similar to
the description of "umklapp processes" in the reduced
zone scheme. The lattice takes up the balance in trans-
lational momentum, in units of A times a reciprocal lat-
tice vector. In a similar manner the lattice here takes
up angular momentum in units of 3A. The three-pronged
stars in k space correspond to "reduced rotational
zones. "



H. J. SIMON AND N. BI.OEM BERt EN

S. CONCLUSION

The magnitude of the optical nonlinearity, responsible
for second-harmonic generation, has been determined in
the optically active crystals NaC103 and Na3r03. Al-
though the crystals have nearly identical structure, the
optical nonlinearity does not obey Miller s rule, indi-
cating its sensitive dependence on local-Geld configura-
tions. The sign of the nonlinearity has been related to
the absolute atomic configuration. It is naturally op-
posite for optical antipodes of the same crystal. The
sign in NaBr03 is opposite to that in NaC103 for the
same configuration, again indicating sensitivity to local-

Geld eGects. Second-harmonic interference eGects with
circularly polarized beams also verify the existence of
various symmetry properties and their relation to the
question of conservation of angular momentum.
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Phonon-Assisted Tunneling in Bismuth Tunnel
Junctions, L. Esxzr, L. L. CHwNG, P. J. STrr.Es,
D. F. 0 KINE, AND NATHAN WIsER [Phys. Rev.
167, 637 (1968)$. The following corrections and
note added in proof did not appear in the published
article: Bi-Al-203-Au and 5&10 ' cm' should be
corrected to read Bi-A1208-Au and 5X10 4 cm',
respectively. All MeV in the manuscript should
read meV (millielectron volt). Page 639, left
column, 3rd line from top, sentence "This is prob-
ablv due to the larger number of single-crystal
units. " should be deleted.

Note added in proof. J. J. Hauser and L. R.
Testardi recently published tunneling on bismuth
[Phys. Rev. Letters 20, 12 (1968)j, where they
failed to see fine structure in the low-energy range,
as reported in Ref. 1 and also here. They emphasized
that tunnel junctions should be judged from a
superconducting criterion and apparentlyattributed
the disagreement between their results and ours to
their proper tunneling behavior.

If Pb is used instead of Au as a counterelectrode
in our junctions, we always observe the super-
conducting energy gap of Pb and its disappearance
with applied magnetic fields. The main structure
described here, however, does not change with in-
crease in magnetic fields up to 90 kOe. Thus, our

junctions are comparable according to their
criterion.

Therefore, we believe that the difference comes
mainly from the quality of bismuth. We used bulk
single-crystal bismuth while they always deposited
a bismuth film on an oxidized metal stripe for
tunneling experiments, which does not result in
decent single-crystal bismuth. (As they reported,
one can obtain reasonably good single crystals by
depositing bismuth directly on NaC1 or mica, which
does not appear to be relevant to their tunneling
results. ) We think that a certain ratio of phonon-
assisted tunneling to direct tunneling is required to
see the band-edge eHect in the low-energy range and
this cannot be attained with such bismuth 6lms.
Our polycrystalline junction E-42 (Fig. 1) is indeed
in good agreement with their results.

Investigation of Energy-Band Structures and Elec-
tronic Properties of PbS and PbSe, SoHR~B R~Brr
[Phys. Rev. 167, 801 (1968)j. In Table XII on
page 807 the label "Theory" of column 2 should be
deleted, and the labels "Experiment" and "Theory"
of columns 3, 4 and 5, 6 should be interchanged.
In Table XIII on p. 807 the label ~gi~ applies to
both columns 4 and 5, and the label ~gioo~ applies
to columns 6, 7, and 8.


