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Possible Resonance in Positron-Hydrogen Scattering
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The positron-hydrogen system is considered, with the view to determining whether a scattering resonance
below the positronium threshold is likely to occur, as has been suggested by Bransden and Jundi. The likeliest
mechanism for producing such a resonance would be the existence of a virtual bound state in the positronium-
proton channel, brought about by the large dipole polarizability and mass of the positronium atom. A modi-
fication of Holpien s technique enables one to reject spurious solutions without the use of the projection-
operator technique. A nonvariational adiabatic calculation seems to indicate that a resonance does exist,
lying at 0.1 eV below the threshold. When, however, a variational treatment is employed, certain essential
nonadiabatic terms appear. The resultant reduction in attraction serves to eliminate the apparent resonance.
It is concluded that the previously reported resonance is probably an artifact.

I. INTRODUCTION

HE positron-hydrogen system above the threshold
for positronium formation (6.8 eV) has recently

been examined by Bransden and Jundi. ' With the aid

of the M-matrix method' they have extrapolated their
results below the threshold, and have presented evidence
that a resonance occurs in the e+-H elastic channel.
Their estimate of the position of this resonance corre-

sponds to a state of the positronium-proton system,
bound by about 0.02 eV (1.6)&10 ' Ry). The present
work is intended to examine the evidence for the
existence of such a resonance.

The simplest method of locating such a resonance

would be the projection-operator technique, ' which has

been very satisfactory in 6nding e -H resonances below

degenerate thresholds. 4 This technique e6ectively
decouples the open and closed channel parts of the
scattering wave function, and reduces the problem of
resonances to that of bound states. The most likely

physical mechanism which could produce binding is the

electric polarization of the positronium atom in its
ground state by the proton. Thus a wave function in-

cluding this polarizability will be the basis of the

present work.
If we construct an appropriate scattering trial func-

tion f including polarizability, the projection-operator

prescription for computing the resonant energies is as

follows:

positron coordinate, and the trial function has the form

P(r,x) =f(x)Pn(r)+ C (x,r),
one can write the closed-channel part of ip as

(1a)

Qf=f(r, x)—Qn(r) d'r'pn(r')p(r', x), (1b)

Q$=4(x,r) —QH(r) d r'QH(r')C(x, r') . (1c)

If, for example, 4 were a close-coupling expansion in
excited states of the target, then QP=C. We wish,
however, to write 4 in terms of the positronium atom
in the field of a proton, so the second term in Eq. (1c)
does not necessarily vanish.

Holgien has used a simplification of the projection-
operator method in searching for electron-atom resp-
nances, and we will here apply a form of his approach
to the positron problem. To do this we first neglect the
second term in Eq. (1c), and use 4 itself for the energy
calculation. Some of the resulting energies will corre-
spond to functions C for which the integral in Eq. (1c)
is very small; i.e., for which the projection onto the
hydrogen ground state is very small. We follow Holglien

in considering such states to be genuine resonances,
although the energies thus obtained have no necessary
upper bound character.

(1) Construct a projection operator Q which removes

the hydrogen ground-state component from f, and

(2) Carry out a Rayleigh-Ritz variational energy

calculation using PP as the trial function.

Using the simple form Q=1—~H)(H~, where ~H)

represents the hydrogen ground state PH(r), x is the

' B. H. Bransden and Z. Jundi, Proc. Phys. Soc. (I.ondon) 92,
880 (1967).

~ See, for instance, K. Smith, in Autoionisution, edited by A.
Temkin (Mono Book Corp. , Baltimore, Md. , 1966).

3 H. Feshbach, Ann. Phys. (N. Y.) 5, 357 (1958).
4 T. F. O' Malley and S. Geltman, Phys. Rev. 137, A1344 (1965);

A. Temkin and J. F. Walker, Phys. Rev. 140, A1520 (1965).
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II. SCATTERING WAVE FUNCTION

Let us consider the motion of a positronium atom
(Ps) in the field of a fixed proton (p). We will use a trial
function of the following form

4= [X(R)+F(R)G(R,f,cose)]g(f ), (2)

where P(f) = (8~) &e &r is the positronium ground-state
wave function, while R= -', [x+r], r.=x r, and-
costt=(R ()/Rf The functi. ons x and F will be deter-

~ E. Holgien, Proc. Phys. Soc. (London) 71, 357 (1958);and A.
Temkin, in Autoionisution, edited by A. Temkin (Mono Book
Corp. , Baltimore, Md. , 1966).
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&r= —2[Vr2+(1/f)] [&r+2]&(f)=o

1
V=2 — = P v(R, f)P,(cost).

I
R+-', (I I

R—-', (I

The first-order (in V) adiabatic form for G is obtained
by solving the equation6

[G,Pr]$= VP, (4)

and since by symmetry only odd multipoles are retained
in the expansion for the potential, it is a good approxi-
mation to keep only the dipole [1=1] term. Then,
G=g(R f)Pi(cose) and Eq. (4) becomes

d'g 2 dg 2
+ —1 ,

—g=f—
V

(5)

where f= —1/R' for i &2R and f= —8R/i2 for f )2R.
The properly continuous, regular solution of Eq. (5)
with continuous 6rst derivative is found to be

1
g(f &2R) = B+-'.f']

8E'
1 2 2 ( 2 2i—-,'e '"I 1+— —er—

I
1+—+—

I

R i-2 ( f f.2j

mined later, while 6 is to represent the adiabatic
distortion of the positronium atom.

The Hamiltonian can be written in atomic units, with
energies in rydbergs as

H=Hr+ V——,'VgP (3)
where

—-', U"+ [Vp—e]U= 0 (9b)

outward from the origin in the usual way. The result
for e= 0 is plotted in Fig. 1, and one sees that two bound
states occur. The more compact of these is'spurious,
and results from the omission of the second term in
Eq. (1c), but the state giving the second node may
represent the resonance found in Ref. (1). The eigen-
values are then obtained numerically from Eq. (9b), by
integrating outward from the origin and inward from
the asymptotic region. Continuity of the logarithmic
derivative determines e. The lower eigenvalue is e= —0.6
Ry; this energy is close to that of the 1S state of hydro-
gen, and the corresponding eigenfunction peaks at
R= 1.5, so this clearly is one of the spurious states which

A bound sts, te in the Ps-p channel would occur if a
normalizable solution of Eq. (7) can be found with a &0,
and it would represent a resonance in the elastic e+-H
channel near a positron energy 2+&. Since (G)=0,
Eq. (7) can be written explicitly as

[—-', V~'+ V~]x= ex,

where V2—= (GV) is the adiabatic dipole potential, listed
in Table I. Before solving the eigenvalue problem of
Eq. (9), one can check whether any bound states exist
by solving the S-wave, zero-energy [&=0] scattering
problem. The number of nodes in the radial wave
function will give the number of bound states. This
radial function U=EX is obtained by numerically
integrating the equation

R 1 1
g(i )2R) = ———+— (6)
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III. ADIABATIC NONVAMATIONAL METHOD

Our 6rst evaluation of X and Ii will be nonvariational
and resembles the polarized-orbital method7 used
previously for positron-hydrogen scattering. We
assume that F=x in Eq. (2) and require x to satisfy the
equation

(7)

where E=——',+e, and the bracket is defined as

u(R) 5

(q(R, ()&—= d'f 4(t )q(R, ()4(i) 5 10

6 A. Dalgarno and J. T. Lewis, Proc. Roy. Soc. (London) A233,
70 (1955).' A. Temkin and J. C. Lamkin, Phys. Rev. 121, 788 (1961).' R. J. Drachman, Phys. Rev. 138, ,A1582 (1965).

Fro. 1. Radial wave functions U= Rx, for &=0. Curve A is non-
variational and shows two nodes, while curve B is variational and
has only one. The functions are normalized to unit slope asymp-
totically, with R measured in atomic units.



R&CHARD J. DRACHMAN

e+-H(OPEN) CHANNEL Ps-p (CLOSED) CHANNEL
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Eq. (7) is replaced by the following two equations:

&I:&—&jLX+FZ)=0

&GL~-ZL +FG»=0,

whose solution corresponds to solving the Schrodinger
equation in the restricted subspace spanned by the
orthogonal vectors p and ~.Explicitly, these result in
the following system of dBerential equations":

Lsr |7gs+cjX—VsF=0

E(-',V'ps+ e)+Vs—W—VN F—VsX=0, (11)
dR

where
dg

Ã~ (G'), W=——s(GVR'G), Vs =—rs, Vs=—(GV) .
dR

Fxo. 2. Energy-level diagram for the e+-e=p system. The two
bound states found in the nonvariational method are shown: A is
the spurious level, and B represents the resonance found below the
I's threshold. The diagonal hatching indicates the scattering con-
tinua. The terminology "open" or "dosed" channel is meaningful
only below E=—-',.

would have been eliminated by the Q-operator tech-
nique. The second eigenvalue is ~= —7.5X j.0 ' Ry, and
represents a resonance lying 0.1 eV below the positronium
threshold. ' In Fig. 2 the low-lying e -r-p states are
shown on a level diagram in order to clarify the situa-
tion. The two bound states just discussed are in the
closed channel below the ground state of positronium
LPs(1S)+P$. The spurious state is seen to be in. the
vicinity of the ground state of hydrogen LH(1S)+s+],
while the second state corresponds to a resonance in the
open channel. In Sec. V we will discuss the relation be-
tween this resonance and that found in Ref. i.

IV. VARIATIOHAL METHOD

The assumptions made in Sec. III Lthat F=X and
that Eq. P) holdsj depend on the ability of the posi-
tronium atom to adjust adiabatically to the polarization
induced by the electric 6eld of the proton. "This in turn
depends roughly on the smallness of the velocity of the
positronium center-of-mass. The very tightly bound
(spurious) lower state probably has too much kinetic

energy to satisfy the adiabatic conditions, but the
resonance state may satisfy them.

The variational method relaxes the above condition
on F and determines both functions by free variation.

9 An approximate form of t/'&, derived by A. Temkin LPhys. Rev-
116, 358 (1959}and used in Ref. 'ljwas also tried here and gave
~= —0.48 Ry and e= —2.5X10 ' Ry. The second eigenvalue gives
an apparent resonance at 0.03 eV below threshold, in good agree-
ment with Ref. j.. This form of Vg involves a step function in
g(Eg), which is unsatisfactory for our later variational work.

'o M. H. Mittlemgq ggd K. M. Watson, Phys. Rev. ID, 198
(1959).

I These functions were evaluated numerically and are
given in Table 1.$ Except for R-+ ~, the relation F=X
does not satisfy Kq. (11).Interesting features of Eq. (11)
are the short-range potential 8" and the velocity-
dependent term involving V~.

Letting X=X-'U and F=E 'g one can write the
S-wave, s= 0 form of Eq. (11) as follows:

&UI/ y g

—s,Sg"—Vying'+LVs —W+ VN/Rjg= VsU.

These equations resemble those of a two-state close-

coupling calculation, and to treat them similar tech-
niques are used. " Two linearly independent regular
solutions of Kq. (12) exist for small R; their leading
t|:rms are

g~=&.

Each of these solutions is integrated numerically from
the origin out to a convenient intermediate point 8, at
which point a linear combination

U&(R) =A Ur(R)+BUs(R) (14)

with undetermined coeS.cients represents the numerical

value of U. A similar combination is formed for g. Three
linearly independent regular solutions of Kq. (12) exist

for large R. To 6nd them, we use the asymptotic forms

of the potentials given in Table I. Equation (12)
becomes

—U"= —36E. 4g

—;g"—2R-rg' —(1S/43)g= —(1S/43) U,

where terms of order E.—' were neglected in the second

~~ These equations resemble those introduced by R. Damburg
and E. Karule t Proc. Phys. Soc. (London) 90, 637 (1967)g.

'~ P. J. Burke and K. Smith, Rev. Mod. Phys. 34, 458 (1962).
(See especially pp. 4/'/-4/9)
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TABLE I. Potentials needed for the numerical solution
of the scattering problem {in Rydbergs).

E
(a.u.)

scattering of positrons on hydrogen above the threshold
for positronium formation, using a polarized orbital
type of wave function in both e+-H and Ps-p channels.
In our notation

0
0.2
0.4
0.6
0.8
1.0
1.5
2.0
2.5
3.0
4.0
5.0
7.5

10.0g~ CO

0
0.282
0.745
1.108
1.306
1.358
1.135
0.785
0.504
0.316
0.127
5.60(—2)
1.14(—2)
3.60(—3)

36R 4

0
0.198
0.661
1.173
1.586
1.842
1.873
1.469
1.026
0.680
0.291
0.132
2 71(—2)
8.60(—3)
~868 4

0—0.920—1.300—1.197—0.845—0.436
+0.276

0.464
0.403
0.288
0.121
4.92(—2)
7.21(—3)
172(-3)

1728 ~

0
0.801

2.613
2.752
2.536
1.521
0.729
0.314
0.128
1.97(—2)
2.90(—3)
2.32(—5)
1.76(—7)

exponential

P=x,(x)[1+Gn(x, r)]gn(r)
+X2(R)[1+Gp (8R, ()]pp (f) . (19)

If the Schrodinger equation $H E]$—=0 is projected
onto &H(r) and Pp, (i) in turn, the coupled equations
used in Ref. 1 are obtained [their Eq. (16)].These are
as follows:

[&.'+&P—Vi(x) —V»(x)]xi(x)

d'r H r —V' '—ky' V r,

line. The three solutions required for large R are

U4=1 —6/R', g4 ——U4,

U4 ——R—18/R, g4
——U4 43/9R, —

U4 ——0, g4 ——e t ~[1+PR+~(PR)'] (P'=36/43).
(16)

+ [1+Gp (R ()]O'P (f)x (R)

[g~4+42 2Vmp4(R)]xm(R)

Pg,.(f)[—V, —k, +2V(R,()]
X [1+GH(x,r)]PH(r)X4(x) =0, (20)

(Solutions 3 and 4 contain the erst two terms of a series
in inverse powers of R.) Each of these solutions is
integrated numerically inward from an asymptotic
point R4 (=20 in the present work) to the intermediate
point 8 where the linear combination

U&(R) =CU4(B)+U4(R)+DU4(R) (17)

represents the numerical value of U, and similarly for g.
(The coeKcient of U4 is taken equal to unity, and U
has the conventional normalization to unit slope at
R-+ ~.) Four equations represent the matching condi-
tions at R=B:

U&= U), g&=g&, U&'= U)' g&'=g&'. (1g)

These determine the four constants A, 8, C, D through
a set of four linear algebraic equations. The function
U(R) thus obtained is plotted on Fig. 1. This is the
principal result of the present work: The node repre-
senting the spurious state occurs at larger E. than for
the nonvariational case, and this decrease in effective
attraction is sufhcient to destroy the second node. "The
variational treatment thus does not give any indication
of a resonance below the Ps threshold. The radically
different behavior produced by the inclusion of the non™
adiabatic terms leads us to conclude that the resonance
found in Ref. 1 is probably spurious.

V. DISCUSSION AND CONCLUSIONS

To explain the relation between the present work and
that of Ref. 1, let us recall that the latter considered the

"Nonadiabatic eA'ects are more important here than they are
for e+-H scattering (Ref. 8) just because of the very large polariza-
bility of the Ps atom.

where the second-order potentials are the adiabatic
polarization potentials of hydrogen [including several
multipoles] and positronium [dipole distortion only),
and where

V(r, x) =2[(1/x) —(1/
~
x—r

~ )], (21)

and V(R, () is given in Eq. (3). [A further neglect of all
terms in GH, Gp, on the right-hand side of Eq. (20) does
not concern us here. ] If Eq. (20) is now solved, the
eigenphases or reaction matrix satisfy a minimum
principle, but only if certain nonadiabatic terms are
added. These are complicated and involve cross-channel
couplings, but for the diagonal Ps term the form is

d'Rx2(R) -2N(&14'+k22)+W+ V-p xp(R), (22)—
dE

where N, W, V~ were de6ned in Eq. (11), and a similar
correction term appears in the diagonal B term. The
authors of Ref. 1 emphasize that, since they have
omitted the nonadiabatic correction terms their results
cannot be considered quantitative. We have here
attempted, by including terms of this type in an optimal
variational calculation, to indicate that the most likely
result of the quantitative extension of the work of
Ref. 1 would be the disappearance of the resonance.

Recently, another above-threshold calculation has
been reported, "which does not obtain the resonance
discussed in Ref. 1. The method is very similar to that
of Ref. 1, including both ground-state hydrogen and Ps
as well as adiabatic polarization potentials. A unique
coordinate system, introduced into the Ps-p channel to

"M. F. Fels and M. H. Mittleman, Phys. Rev. 163, 129 (1967).
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simplify the form of the coupled equations, also provides
a spurious centrifugal potential. It seems that this extra
potential serves inadvertently to simulate the effect of
the nonadiabatic terms we have discussed above, and
hence to eliminate the resonance.

An interesting question may be raised now concerning
the Ps-He+ channel in e+-He scattering. This system is
the same as Ps-P at large distances, but its additional
Van der Waals attraction might be just enough to
produce the resonance. The cross section near threshold
for e+-He scattering has been measured, "although the

~ S. Marder, V. W. Hughes, C. S. Wu, and W. Bennett, Phys.
Rev. 103, 1258 (1956);W. B.Teutsch and V. W. Hughes, iNd. 103,

analysis of the experiment is not straightforward. It is
possible that a resonance near threshold is needed to
bring about agreement between experiment" and
theory. '6
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Measurement of High-Energy Charge-Transfer Cross Sections for
Incident Protons and Atomic Hydrogen in Various Gases*

L. H. TQBUREN)f M. Y. NAKAI, ) AND R. A. LANGLEY

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
(Received 8 February 1968)

Measurements of electron-capture cross sections o-io and electron-loss cross sections 0.0i for protons and
atomic hydrogen in H2, He, Ar, Kr, N&, 02, CO, CO&, H20, CH4, C2H4, C2H6, and C4Hio are reported and
compared with published theoretical estimates and experimental results. The energy range was 100 to 2500
keV. The results are presented in graphical form. By applying the additive rule, the cross sections o&o and
0 pi are estimated for hydrogen particles in carbon.

I. INTRODUCTION

SUMMARY of experimental results of charge-

~ ~

transfer processes prior to 1958, for incident-

particle energies less than 1.0 MeV, has been published

by Allison. ' A paper by Welsh et al. ' reviews some

of the charge-transfer results subsequent to 1958.
Measurements by Welsh et al. ,

' Williams, ' and Schryber'
have extended the energy range for the various cross
sections up to 13.8 MeV for the target gases H~, He,
Ar, and N2.

Reviews of various theoretical formulations used in

calculating charge-transfer cross sections have been

presented by Bates and McCarroll, ' Bates, ' Dalgarno, 7

*Research sponsored by the U. S. Atomic Energy Commission
under contract with the Union Carbide Corporation.

t Present address: Battelle Northwest, Richland, Wash. The
results presented here were included in a thesis submitted by L.
H. Toburen to the faculty of Vanderbilt University in partial
fulfillment of the requirements for the degree of Doctor of
Philosophy.

f Present address: Osaka Laboratory, Atomic Energy Research
Institute, 508 Mii, Neyagawa-City, Osaka, Japan.

~ S. K. Allison, Rev. Mod. Phys. 30, 1137 (1958).
2 L. M. Welsh, K. H. Berkner, S. N. Kaplan, and R. V. Pyle,

Phys. Rev. 158, 85 (1967).
3 J. F. Williams, Phys. Rev. 157, 97 (1967).
4 U. Schryber, Helv. Phys. Acta 39, 562 (1966).' D. R. Bates and R. McCarroll, Advan. Phys. 11, 39 (1962).

D. R. Bates, in Atomic and Molecular Processes, edited by D. R.
Bates (Academic Press Inc. , New York, 1962), p. 549.

7 A. Dalgarno, in Atomic and M olecular Processes, edited by M. R.

and Bates and Williams. Of particular interest to the
present experiment are recent papers in which electron-
capture cross sections have been calculated for protons
on X, 0, Ar, and Kr targets. Mapleton' "has calcu-
lated cross sections for the capture of 2P electrons from
atomic nitrogen and oxygen by means of the erst Born
approximation. He has also extended the erst Born
calculation to include capture from inner electron
shells. "A first Born approximation has been applied by
Nikolaev" to calculate the cross section for electron
capture by protons in hydrogen, helium, lithium, nitro-
gen, neon, argon, and krypton. This calculation includes
contributions to the cross section from inner electron
shells of the target atom. Bates and Mapleton" have
used a classical approach to calculate the electron-
capture cross sections as a function of the atomic pa-
rameters of the target. This classical approach does not
include the possibility of electron capture from inner

C. McDowell {North-Holland Publishing Co., Amsterdam, 1964),
p. 609.' D. R. Bates and A. Williams, Proc. Phys. Soc. {London) A70,
306 (1957).

9 R. A. Mapleton, Phys. Rev. 130, 1829 (1963).' R. A. Mapleton, Proc. Phys. Soc. (London) 85, 1109 (1965).
"R.A. Mapleton, Phys. Rev. 145, 25 (1966).
"V. S. Nikolaev, Zh. Eksperim. i Teor. Fiz. 51, 1263 (1966)

LEnglish transi. : Soviet Phys. —JETP 24, 847 (1967)7."D. R. Bates and R. A. Mapleton, Proc. Phys. Soc. (London)
87, 657 (1966).


