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A theoretical treatment of the optical eRect known as gyrotropic or nonreciprocal birefringence is pre-
sented. By suitably renormalizing the electric dipole moment tensor, it is shown, for the case of lossless
media, that 10 of the 18 independent quantities in the gyrotropic-birefringence tensor have their origin in
electric quadrupole eRects. The other eight are shown to be related to the magnetoelectric eRect. The general
results are applied to the materials Crag and MnTi03. The propagation af a plane wave along one of the
crystalline axes of Cr203 is then considered. It is shown that the gyrotropic birefringence exhibits itself as a
rotation of the principal optic axes, together with a change in the velocity of propagation of the wave in the
medium. Next, the modiGed boundary conditions corresponding to the renormalized Geld vectors are given,
and the case of a plane wave normally incident on a gyrotropically birefringent medium is discussed. It is
noted that the Geld relations at a boundary will be modiGed even when the quadrupole contribution vanishes
and the magnetoelectric tensor is isotropic, a case in which there is no gyrotropic birefringence in the medium
itself. Foinally, a quantum-mechanical calculation of the gyrotropic-birefringence tensor at O'K is given. The

expressin obtained is applied to the case of Cr&03, and the electric quadrupole and magnetoelectric con-
tributions are separated. It is roughly estimated that, at optical frequencies, the electric-quadrupole-
induced rotation of the principal optic axes of Cr~O~ is of the order of 10 rad, and the magnetoelectric-
induced shift is two orders of magnitude less.

I. DTTRODUCTIOÃ

HE possible existence of an additional optical
eGect, called gyrotropic or nonreciprocal bire-

fringence, was erst pointed out by Brown et el. ' They
showed that such an effect would appear in the form of
a polar c tensor' (i.e., one that reverses sign under both
space and time inversion) of rank 3. For the case of a
lossless medium, this tensor also possesses intrinsic
symmetry in that it is symmetric upon permutation of
its 6rst two indices. Property tensors having these
properties may be found in 56 of the magnetic crystal
classes. ' '

In Sec. II, we present a phenomenological theory of
gryotropic birefringence. Since the magnetic classes in
which gyrotropic birefringence is allowed are among
those in which the magnetoelectric eGect may occur, 4

the constitutative relations between the complex
amplitudes of the 6elds are written so as to incorporate
both these effects simultaneously. This is most con-
veniently done by combining all induced eGects in a
suitably renormalized electric dipole moment. ' For the
case of lossless media, it is shown that the gyrotropic
birefringence property tensor has 18 linearly indepen-
dent components before crystalline symmetry con-
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siderations are introduced. We then show that a physical
basis for these 18 independent quantities may be found
in electric quadrupole and magnetoelectric sects, with
the former contributing 10 independent quantities
and the latter eight. In particular, we consider the
materials Cr203 and. MnTi03, in which an experimental
observation of gyrotropic birefringence may be pos-
sible. ' Finally, the closely related effect of natural
optical activity' is discussed and correlated with the
point of view presented here.

In Sec. III, we brieQy consider wave propagation in
a medium exhibiting gyrotropic birefringence. The prop-
agation of plane waves along one of the crystalline axes
of Cr203 is analyzed and it is shown that the gyrotropic
birefringence appears as a shift in the principal optic
axes, together with a change in the velocity of propa-
gation.

In. Sec. IV, the boundary conditions on the renormal-
ized Geld vectors of Sec. II are derived. We then go on
to consider a plane wave normally incident on a gyro-
tropically birefringent medium such as Cr203. It is
noted that the fteld relations at a boundary will be
modiied even in the case of an isotropic magneto-
electric tensor, a case wherein the tensor does not lead
to any gyrotropic birefringence in the medium itself.

In Sec. V, we present a quantum-mechanical deri-
vation of the gyrotropic birefringence tensor at 0 K..
This is done by applying an electromagnetic wave to
the crystal and calculating the expectation value of the
current-density operator. The term linear in the wave
vector is extracted and a transformation to localized
(Wannier) functions is carried out. The general ex-
pression obtained is applied to the case of Cr203 and
the electric quadrupole and magnetoelectric contribu-
tions discussed in Sec.II are separated. A rough estimate
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IL PHENOMENOLOGICAL THEORY, SYMMETRY
CONSIDERATIONS, AND CONNECTION KITH

MAGNETOELECTRIC EFFECT

The usual description of the optical properties of
materials is obtained by using Maxwell's equations and
taking the constitutive relations between the complex
amplitudes of the Gelds in the form' ~

D;= e;j(o),k)E;,

8'=B.-
(1a)

(1b)

where E;, D;, H;, and 8; are the electric Geld, electric
displacement, magnetic Geld, and magnetic induction,
respectively. The indices refer to Cartesian coordinates
and summation over repeated indices is understood.
The natural optical activity y;;& is then found by ex-
panding e,j(o),k) to 6rst order in k; thus

e;;(o),k) = e;;(o))+iy,,i((d)ki+ . (2)

Fquation (1) is usually derived for the case of a non-

magnetic homogeneous material. 7 The excitation is
assumed to be weak. ; thus the response function is taken
as linear in the excitation. That is,

D;(r, r) /dr' dr' r=;;(r,r; r', r')S;(r', r'), (dr)

(3b)

That the t' integration runs only from —~ to t follows

from the causality principle. Also, because the properties
of the material are time-invariant, the kernel can
depend only on the time difference T=t—t'. For the
case of a spatially homogeneous medium the kernel
can in addition, depend only the difference p=r —r'.
Taking E,(r', 1')=E; exp[i(k r' —(dj')] and D;(r, /) =D;
Xexp[i(k r—o)t)], Eq. (1) follows directly, with

e;d((o, k) = d7 dye;; ry exp y
—or~ . 4

We now wish to extend the above formulation to the
case of magnetic materials and, in particular, to ordered
magnetic solids, i.e., crystals. The outstanding charac-
teristic or crystalline structures is that they are not
spatially homogeneous, but are invariant only under a
group of Gnite translation vectors. For this case trans-
forming Eq. (3a) yieldsr

D, (o),k) =g e@(o),k,K)Ej(o), k+2s.K),

' V. M. Agranovich and V. L. Ginzburg, Usp. Fiz. Nay 76,
643 (1962) /English transl. : Soviet Phys. —Uspekhi 5, 323

of the shift in the principal optic axes in Cr~03 at optical
wavelengths due to gyrotropic birefringence is given.

In Sec. VI, we discuss and summarize our results
for gyrotropic or nonreciprocal birefringence.

where K is an arbitrary reciprocal-lattice vector. To
arrive at Eq. (1a), it is necessary to neglect all terms in
the K summation except the term K=O. At optical
frequencies or lower, where k«K, such a procedure is
justifiedr and we shall thus ignore all KWO terms in
Eq. (5).

We now wish to take account of the fact that the
crystals under consideration are magnetic, that is, that
they are not invariant with respect to the operation of
time reversal. For this case, and again neglecting all
terms except the one in which K=0, Eq. (1) is general-
ized to

D, = e;, ((d, k)E,+rr,, ((o,k)II, ,

&;=p;;(o),k)E;+jd;, (o),k)II, .

(6a)

(6b)

Te,=e;,
Td'= d (Sb)

Th, = —h, , Ih,-=h, , (Sc)

Tb, = —b;, Ib;=b;. (Sd)

Inspection of Eq. (7) shows that the time-reversal
operator, which takes t into —t, takes E; into E;*and
k into —k in the transformed system. Similarly, the
space-inversion operator, which takes r into —r, takes
E; into E; and k into —k i—n the transformed system.
Similar considerations apply to the other Geld vectors.
Looking at Eq. (6), we see that we must have

Te' (o)») = e'd*(o), —k), Ie;d(o), k) = e;d(oI),
—k), (9a)

To(ij((r)&k) = (rij ((r)&
—k)s INij((r)&k) = —o(ij((r) —k) (9b)

TPdd(o)rk) = Pij*(o), —k)—, IP;;(o),k) = p, (~, —k), (—9c)"

Tjd;, (o),k)=jd;d*(o), —k), Ijd;, (o),k)=jd'd. (o), —k). (9d)

For the case of insulating materials, Maxwell's equations
may be written as

«amE&&m= —~B;, (10a)

«i(Mili~ =o)Di, (10b)

where c is the velocity of light and e;& is the unit
antisymmetric tensor of rank three.

(1962)j; V. L. Ginzburg, A. A. Rukhadze, and V. P. Silin, J. Phys.
Chem. Solids 23, 85 (1962).

It should be noted that the e;, of Eq. (6) is jsoj the same
as the e;j of Eq. (1). This point has been discussed by
Condon' and we shall touch upon it briefly at the end of
this section.

It will be useful to derive the transformation proper-
ties of the property tensors in Eq. (6) for later refer-
ence. This may be done by considering the physical
Gelds, which are given by

e;=-', {Ejexp[i(k r+(0t)]+Ej*exp[—i(k r+o)j)]), (j)
and similarly for d;, h;, and b;. Under the operations of
time reversal T and space inversion I we must have'
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I' = (D Z—)/4~

M =(8—H )/47r

(11a)

(11b)

we combine them by suitably renormalizing P;. The
required relation is'7

S' =I',+ (c/~)e, ,~ik (12)

A renormaliza, tion such as that of Eq. (12) is always
possible in a continuous medium. It does, however,
lead to changes in the conditions on the field vectors
at boundaries between continuous media. We shall
defer the question of boundary effects to Sec. IV.

Using Eqs. (11) and (12), Maxwell's equations,
(10a) and (10b), become

It is now convenient to combine all induced effects
in the material in a renormalized electric dipole moment
P,'. That is, instead of separating the induced currents
into two parts, I'; and ce;i~ikm, where

k dependence is not of interest. Let us put

Inspection of Eq. (6) shows that the only difference
between the tensors k,j and c;; is that they relate D to
E when H= 0 or B=0, respectively. We expand
~;;(k~,k) to first order in k as in Eq. (2) and now wish to
find that part of D' that is linearly proportional to k.
Writing the part of D' linear in k as o.;; k, we have

&ijm =Vijm+ (c/&&) (4km&ji +&j im&ik)pki & (19)

where the property tensors in Eq. (19) and henceforth
are dependent only on ~. We now separate 0-;; into its
real and imaginary parts, obtaining

0 ijm 7 ijm (C/~)f(&ikm& jl &jlmri ik)P kl

(&ikm& jl+ &jim& ik)p kij y (20a)

ijm 7 ijm (C/&)D&ikm& jl+&jlm& ik)P ki

+ (&ikmCi j i &j imCi ik) p kij ) (20b)

where

&&ilm~l~m = ~i r

C&ilm+l ~m +Di )

D,'= E;+47rI'

8'=a''.
Thus, in renormalized form, Eq. (6a) becomes

(13a)

(13b)

(14a)

(14b)

where o,; =0';, +ia";;, etc. It is Eq. (20b) that is of
principal interest. Consulting Eqs. (2) and (9), we see
that the property tensor a";; is a polar c tensor; that
is, it is transformed into its negative when acted upon
by either the time reversal or space-inversion operator.

It is thus the nonreciprocal or gyrotropic birefringence
tensor of the medium. ' Using Eq. (17b), we may rewrite
Eq. (20b) as

Di = &&ij &ikpkiPij+ (C/~) (&ik&jim+Pij&ikm) pkikm
—(c/co)'(8, i

—p, i) e;,keij„kkk jEj=A;,E;. (15)
where

ijm r ijm (C/i0)(&ilm~ j l+ &jlmoi il) p (21)

Here p;, = (ji );; and 8;; is the Kroneker delta.
We shall restrict our attention to media that are

lossless in the frequency ranges of interest (these will

be low frequencies and those in the optical range).
For this case, we require that' '

(16)

from which it follows that

r

Pij =Pji r

~v=Pi' ~

(17a)

(17b)

(17c)

Equations (17a) and (17b) express well-known restric-
tions' on the elements of the permitivity and perme-
ability tensors in lossless media while Kq. (17c) connects
the two generalized magnetoelectric-effect tensors of
Eq. (6). Replacing P;; by ci;;* in Eq. (6b), we see that
the real part of n;j is the usual magnetoelectric tensor. 4

The meaning of the imaginary part of n;j will be made
clear further on when the ordinary optical activity is
discussed.

Let us now examine the tensor A;, in more detail.
Since the effect of interest, gyrotropic or nonreciprocal
birefringence, will be expressed by terms in 2;j that are
linear in k, the term in 2;j with the explicit quadratic

// //o' ij=n iI p» —n iI p Ij. (22)

-/ ~ -/~ijm= &amo' jr' &jism& a (24)

in such a way as to form only eight linearly independent
quantities; that is, Eq. (24) introduces the additional
restraint that

~v ~v =o- (25)

We must now examine the property tensor p";,& in
order to determine the number of independent com-
ponents it contains. Since, in Eq. (6), we have written
separately the contributions to D and B from E and H,
respectively, we can consider there the case B= 0, EW0.
Note that once we renormalize Eq. (6) using Maxwell's

From Eq. (9), we see, in the notation of Birss, ' that
n';~ is an axial c tensor, n";I, is an axial i tensor, p'» is
a polar i tensor and p"» is a polar c tensor. Thus A 'j
is an axial t, tensor.

From Eq. (17) it follows that

(23)

Thus the maximum number of independent components
of o";; is reduced from 27 to 18. The property tensor
incorporating the magnetoelectric eGect, 6';;, is not
restricted by Eqs. (17c) and (22) and thus has nine inde-
pendent components, which are combined in the tensor
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/I If
ijk p ijIJ: ) (26)

where I' is any permutation of the indices i, j, k. Thus
intrinsic symmetry reduces the number of independent
components of y";jl, from 27 to 10.

Now, using Eqs. (21) and (26), we have

equation, this is no longer possible. For the case 8=0,
we find that the tensor e;, relates D to E and is thus the
true permitivity tensor of the medium. Upon expanding
0;; in Ir, we obtain successively the dipole, quadrupole,
etc., contributions to the electric polarization of the
medium. We thus conclude that y";;I, is an electric
quadrupole tensor and, from this and Eq. (17), it
follows that it has an intrinsic symmetry

Thus one of the two independent 0-",.j elements may
be ascribed entirely to electric quadrupole interactions
and the second to causes related to those of the magneto-
electric effect.

A second interesting material is MnTi03, which
belongs to the magnetic point group 3'.' For this case,
the number of independent elements of 0";; is reduced
from 18 to six.' The electric quadrupole tensor will have
four independent elements and the magnetoelectric
tensor will have three. As in the case of 3'm', both
o,";j and p,";j are null tensors for the 3' crystal class.
The nonzero nonreciprocal birefringence components
are now given by

I/ 11 /I 11 /1
111 tT 122 0 212 0 221 P 111

ft // /I /I I/ I/
111 P 111 ) & 222 P 222 ) 0 883 P 338 )

If I/ // / I/ I/ «I
121 Jr 211 7 112 ~OO3 13 I Jr 112 7 112+2ltOO2 13 I

11 /I I/ f I/ 11 A «/
181 Jr 811 r 118+)Oi2 12 y

Jr 113 r 118 2) Ol2 12 p

/1 ft tf /
122 & 212 r 221+~0l8 23 Jr 221 r 221 2) 008 28

I/ /I // /I I/
222 0 121 0 211 0 112 P 222

If 11383=+ 883)
If I/ ff I/

182 0 312 & 231 0 821

—~0(J2 83/JJ 88 J2 ll/JJ 11) p

(29)

If0 183=
//

282 =
818 r 331 ) Ol2 32 p

Jr 381 7 381+2~0c8 32 p

( )
322 r 228 ~0c8 21 JT 223 r 228+ 2) 008 21

I/ 11 II /I 11 )r I I I
131 0 311 0 232 tT 322 P 113 ~Q& 12/P 11)

//
113 JT 228 r 113+2~012 12/jl 11 ~

II I / 11 «/ /I f/ n -/
283 0 823 r 332+~012 81 y

JT 382 7 832 2Jtoi3 81 p

/I /I 11 r /-I -I
128 JT 218 r 123M Jt01c2 11 J2 22) p

ff /I ff i I'-I -I
182 Jr 812 r 123+)10(J2 83 i8 11) p

231 0 321 r 123+~0(08 22 i2 38)

Where XO=XO/22r=C/OJ. ThuS a phySiCal baSiS far the
18 independent quantities in the general gyrotropic
birefringence tensor may be found in electric quadrupole
and magnetoelectric effects, with the former contribut-
ing 10 independent quantities and the latter eight. The
close connection between gyrotropic birefringence and
the magnetoelectric effect has been recognized by Birss
and Shrubsall. '

It is now of some interest to consider some materials
in which an experimental observation of gyrotropic
birefringence may be practical. For example, let us
erst consider Cr208 which has the magnetic point
group 3'm'. ' ' The symmetry of this point group reduces
the number of independent elements of a";j from $8
to two. 8 Additionally, we 6nd that the only nonzero
elements of the electric quadrupole tensor are y"»1
= —y"»2 and its permutations, while the only nonzero
elements of the magnetoelectric tensor are n'11=+'22 and
e'83. Both 0."g and p"ij are null tensors for this crystal
class. We thus know from Eq. (27) that the nonzero
elements of the nonreciprocal birefringence tensor are
given by

/I // I/ I/
111 0 122 & 212 0 221 P 111)

II It' /I //
132 & 812 & 231 & 321 (2g)

=)0(J2 33/JJ 33 & 11/jl 11) ~

8 R. R. Birss and R. G. Shrubsall, Phil. Mag. 15, 687 (196'7).
9 I. Dzyaloshinski) J. Phys. Chem. Solids 4, 241 (1958).

- I/ /I I t / II
0' ij=& ilp xjwo' ilp ej. (31)

From Eq. (9) and the discussion following Eq. (22), it
follows that a";j ls an axial i tensor.

From Eq. (17), it follows that
I / (32)

Thus the maximum number of independent components
of 0-';; is reduced from 27 to nine. This is a well-known
result. ' The tensor i2";; is not restricted by Eqs. (17c)
and (31) and thus has nine independent components.
On the other hand, the electric quadrupole tensor
p';;I, is required to be antisymmetric under permutation
of the indices i and j and symmetric under permutation
of the indices j and k. It is therefore a null tensor and
does not contribute to the optical activity tensor. 6

We thus 6nd that the entire optical activity tensor
comes from cg";;.

Of the six independent nonreciprocal birefringence
tensor components, three may be ascribed entirely to
electric quadrupole interactions, one entirely to the
magnetoelectric effect, and two to linear combinations
of electric quadrupole and rnagnetoelectric effects.

Although we have concentrated our attention on
gyrotropic birefringence in this section, it is useful to
note that the closely related natural optical activity'
may also be found by the procedure presented here. That
this is so can be seen by considering Eq. (20a). It fol-
lows from Eqs. (2) and (9) that the 0',; tensor given by
Eq. (20a) is a polar i tensor and is thus the optical-
activity tensor. ' We use Eq. (17) to rewrite (20a) as

& ijm=y ijna (c/oo)(&ilthi2 jl ojlm& il) y (30)

where
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Let us compare this result with the usual one derived
for the case of nonmagnetic materials having natural
optical activity. The optical activity as usually written
is' (~*.—p-vlv)E. = o (38a)

In the case of Cr203, y"„,= —y"»,——(c/co)p„y.
Combining Eqs. (36) and (37), we find that

~''l =(c/")4'jill . (33) [4,z+ pzzy/v pzz/—v']Ey+[(a„nzz—)/v]E, =0, (38b)
Ke thus have

«// «//
'4jlglm ('4lmn jl &alma il) ~

which yields

(34)

(35a)

(35b)

III. WAVE PROPAGATION

In this section we shall briefly consider the propaga-
tion of a plane wave in a medium exhibiting gyroscopic
birefringence. In order not to lose sight of the physical
results in a morass of algebra, we shall consider only
the case of Cr203. Thus the tensors e, p, and e are all
real and diagonal, with their xx and yy components
equal.

%e restrict our attention to waves travelling in the
x direction. In this case, Eq. (15) becomes

D,'= (~'„y".„k,)E, — (36a)

Dy'=[2' 7"»z z+(/ ) (1 pzz)3 y

+(c/(o)k.(a'„a'„)E„(36—b)

Dz =(c/co)kz(a zz n zz)Ey

+[2'*.+(c/")'k. '(1—p'**))E' (36c)

where by Trg we mean the sum of its main diagonal
elements.

Let us now briefly return to the question of the dif-
ference between ~;; of Eq. (1) and 4;, of Eq. (6). It is
clear that e;j cannot be the true permitivity tensor
since, if it were, its quadrupole component would
necessarily be zero and natural optical activity could
not exist. In fact, e;j is a renormalized tensor and thus
incorporates within itself the cx 'j or g'j tensor as well
as the true permitivity. The essential point is that
Maxwell's equations, (10a) and (10b), linearly relate
the various electric and magnetic fields. Thus, in the
constitutive relations of Eq. (6), it is always possible
to replace any 6eld vector by a linear combination of
field vectors. This reshu8ling of a set of linear equations
will not, of course, change any physical results. How-
ever, once we rewrite our constitutive relations so as
to relate new linear combinations of 6elds to each other,
it is no longer possible to consider the property tensors
appearing in these renornsali sed equations as purely
electric or magnetic in origin.

[(a- a--)/v jE.+['*. p--/v'jE*=o, (38c)

where v=co/ck, .
One nontrivial solution of Eq. (38) is, of course,

p„y/v= ~„, with E„=E,=O. This solution is, however,
of no physical interest because our initial assumption in
expanding e in a power series in k was that p.,y/v«4
in the frequency ranges of interest. We therefore take
E =0 and restrict our attention to transverse waves.
In order to obtain nontrivial solutions of Eq. (38), it is
necessary that e satisfy

2~ 2v4+" 2~v3 ["2+" 2+j' j' ~a2/v2
—yv+1=0. (39)

Here e,'= ~„p„, n, '= ~„p,» ha =0|„—n», and the
redundent index on p„and p„has been dropped. To
first order in 7 and hn2, the solutions of Eq. (39) are

»,3=+[1+2j'.pwca'/(~. '—~.2)+-'~/".j/N. (40)

v2, 4
——+[1+-2'j'.j',~a2/(e, 2—e.2)j/n, . (41)

One interesting point follows immediately from Eq.
(40); the magnitude of the velocity of propagation in a
gyrotropically birefringence medium changes when the
direction of propagation is reversed. This result may be
compared to that of Fuchs' in his study of wave
propagation in a magnetoelectric medium.

We now restrict our attention to waves traveling in
the +x direction and resolve the electric 6elds E„and
E, into components traveling at e& and m2. Equations
(38), (40), and (41) then require that

E,'/E„'= —~a[jr,n,/(e, 2—I,')j, (42a)

E '/E '= ~n[j"m /(e '—e ')$ (42b)

From Eq. (42), we see as expected that the gyrotropic
birefringence leads to a tilting of the principal optic
axes in the ys plane. Note that when the wave is
propagating in the x direction, the shift of the principal
optic axes is due entirely to 60. This can be seen clearly
if we set ha=0 in Eq. (38). We then find that while the
wave velocity e& is affected by p, Jj,'=Ij „'=0. Thus no
shift of the principal optic axes occurs in this case.
In order for y to also lead to a shift in the principal
optic axes, the direction of wave propagation must have
a component in the xy plane that is not along the x or y
axes.

Combining Eqs. (13) and (14b) gives

D '=0,
D„'= (c/(o)'k, 'E„,
D.'= (c/co)'k. 'E, .

(37a)

(37b)

(37c)

IV. BOUNDARY CONDITIONS

In this section we shall consider the conditions im-
posed on the electromagnetic 6eM at the boundary of a

~0 R. I'uchs, Phil. Nag. 11, 647 {1965).
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gyrotropically birefringence medium. We 6rst discuss
the changes in the usual boundary conditions caused by
the field renormalization of Sec. II and then go on to
consider the case of an incident plane wave.

Let us consider the conditions on the renormalized
field H' at a boundary. In the case of a boundary
between two media denoted by (1) and (2), the usual
boundary condition is

we generalize this time dependence slightly to e &'+'"&',

with the understanding that in the limit 8 —+ —0.
In the case of insulating materials, we set x=0-=0

and take medium 2 as the magnetoelectric one, dropping
the 2 index. In the lossless dielectric, D,'=Di and
Hi'= Hi.

With the above discussion in mind, Eqs. (44) and
(48) become

cnX (H~ —H,) =4m', (43) nX(H' —Hi) =4irnXM, (51a)

n (D2 Di)—=o, (45)

where o is the surface charge density. From Eqs. (11a),
(12), and (14a),

aD'/at= 89/Bt+4~cV XM . (46)

Upon integration, Eq. (46) becomes

where n is the positive normal to the boundary surface

5, drawn from (1) into (2), and x is the surface current
density. Using Eqs. (11b) and (14b), Eq. (43) becomes

cnX (H~' —Hi') =4ir(x+cnX (M2 —Mi) j, (44)

which is the required relation.
We now consider the condition on the renormalized

field D' at a boundary. In this case the usual boundary
condition is

n (9'—Di)= n V'XM. (51b)

B,~=E„~, Q p= —Et
Ilr Er Q r Er

(52a)

(52b)

These then are the conditions on the renormalized
fields at the boundary between a gyrotropically bire-
fringent medium and a lossless dielectric.

Let us now consider the effects occurring when a
normally incident wave impinges on a gyrotropically
birefringent medium. As in Sec. III, we restrict our
attention to Cr203 and waves traveling in the x direc-
tion. We take the external dielectric to be the vacuum
and denote the incident wave by p and the reQected
wave by r. We then have, in the vacuum,

9'= 9+4irc (qXM)dt. We have already solved, in Sec. III, the wave propa-
gation problem in Cr203. From Eqs. (13a) and (14b) we
see that

Combining Eqs. (45) and (47) gives E = —&H y, Ey=vH (53)

t Using Eqs. (40)—(42) and (53), we find, to first order in
n (92'—Di')=o+4mc Ln qX(M2 —Mi))dt. (48) nn, that

H'„= Ae[p,n,/(n, +n—,)5E„n,E„(54a)—
Equations (44) and (48) express the boundary con-

ditions on the renormalized field vectors H' and 9'.
We see that, in the renormalized representation,
appears a surface current

x'= cnX (M2—Mi),

H'. =n.E„+Z~Q,n, /(n, yn, ) tEt, . (54b)

Writing the magnetization M in Eq. (5].a) in terms
of E and H' and using Eq. (54), the pertinent boundary
conditions become

and a surface charge

t

o'=4irc Ln VX(M,—M,)]dt. (49b)

(50)

Note that x' and 0-' satisfy the continuity equation

4m%' x'+ Ba'/Bt =0;. .

with

E„'+E„"=p,n,E„(rE„—
E.'+E."=oE„+p,n,E„.
jV u

Ep Er

o = (a, n+n, n.) /( n, +n) .

(SSa)

(55b)

(55c)

(55d)

(56)

thus charge conservation is maintained in the renormal-
ized system.

Let us now consider specifically the boundary between
a magnetoelectric medium and a lossless isotropic
dielectric. We restrict ourselves to the case of plane
waves, in which case the time dependence of the field
vectors is given by e '"'. In order to include the bound-
ary condition at t= —~ required by Eqs. (48) or (49b),

One interesting solution of Eq. (55) is for the case
E.&=0. We then find that E,r is given, to Grst order in
ce, by

=2o/(1+ p*n.)(1+p.n*) (57)

Thus even when a =6, and there is no gyrotropic
birefringence, the isotropic magnetoelectric eGect will
show itself through E,", the rejected component of the
electric field.



THEORY OF GY ROT ROP I C B I REF R I N GEN CE 107i

A = —(c/ot) ReLsmpe*"e-'"']

according to the relation

e= —(1/c) 8A/itt.

(59)

(60)

The magnetic field associated with the plane wave is
then given by

V. QUANTUM-MECHANICAL TREATMENT AT O'K

In this section we formally calculate the elements of
the gryotropic birefringence tensor at 0 K. In general,
we shall follow the procedure of Agranovich and
Ginzburg" in their calculation of spatial dispersion. An
alternate approach is that of Condon. '

Consider a perfect crystal acted upon by a mono-
chromatic plane wave of frequency co and wave vector
k. The electric field vector is taken as

imp etk re ictt+-K ate itt re-ictt] (58)

and may be derived from the vector potential

Eq. (85) by the simple expedient of replacing the orbital
angular momentum operator I by I+2s.

We will thus work with the perturbation

Xi(t)= — P (Avvrv, +sr„A„).
28zc v

(64)

Let us write the complete set of eigenstates of the
unperturbed Hamiltonian as lq, rt). Since our system
has translational symmetry, these eigenstates will be
many-electron Bloch functions. The quantity q is the
wave vector associated with the Bloch function, and e
represents the other quantum numbers entering into the
specification of the state, including that specifying the
band to which the state belongs. The ground state of
the system, i.e., the state occupied by the system at
absolute zero, will be written lo) and will have q=o.

Using time-dependent perturbation theory to second
order, the expectation value of any operator E(r) is
found to be"

h= curlA. (61)
p) = (o le I o)

We take the 6eld strengths to be such that only terms
linear in A need be included in our Hamiltonian. Then
in the presence of the plane wave we have

e
—iut

q, n&0 It(ot„,q
—ot)

x=xp+xi(t), (62)

where 3C0 is the Hamiltonian of the unperturbed system
and Xi(t) is given by

Xi(t) =Q — LA v,harv, +vrv;2 „;j
2mc

ie
e'i p~ v ~v && (e/c) 4(rv)e i&~ v~virv p ~ (63)

mc

The quantities in Eq. (63) are as follows; e and trt are
the electron charge and mass, respectively; r~;, x~;, and

S~; are, respectively, the ith Cartesian components of
the position, mechanical momentum, and spin operators
of the 7th electron; $v(rv) expresses the radial depen-
dence of the spin-orbit term of the pth electron, e;,q is
the antisymmetric unit tensor, and summation over
repeated indices is understood. The y summation indi-

cates that the contributions of all electrons in the crystal
must be included.

It is straightforward to show that the spin-orbit
term in Eq. (63) contributes only to the magnetoelectric-

type terms in Eq. (19) and not to the electric quadrupole
effect. Since it has been shown" that this contribution
is negligible, we shall not consider it further here. We
shall also, at this point, discard the Zeeman term in

Eq. (63). The effect of this term will be reintroduced in

"V. M. Agranovich and V. L. Ginzburg, Usp. Fiz. Naut 77,
663 (1962) LEnglish transl. :Soviet Phys. —Uspekhi 5, 675 (1963)].' W. F. Brown, Jr. , R. Hornreich and S. Shtrikman, Phys. Rev.
168, 574 (1968).

x,(t) =-', Lx;e-*"t+x,+e*-t). (66)

In Eq. (65), trtcd„, q is the energy of the state
l q,rt) and

we have fixed the zero of energy by taking (Olxpl 0)=0.
Consider now the matrix element (rt,qlXt lo); we

wish to know for which values of q this matrix element
will be nonzero. These values may be found as follows:
Let T„be the operator that translates the lattice a dis-
tance vt and let vt be such a translation that

l T„,Xpj= 0.
Then

T„lit,q)=e*'q qln, q).

We also have, from the form of 3C~,

T„Xi-(T„)—'= e'q "Xi—.

It then follows that (n, qlxt lo)40 if and only if

vt (k—q]=2trl,

where / is an integer. This requires that

k-q= 2~b,

(67)

(68)

(69)

(70)

where b is any whole-number multiple of a reciprocal
lattice vector. As was pointed out in Sec. II, it is
generally possible to neglect those terms arising from
nonzero values of b. Thus, in conclusion, of the matrix
elements (rt, qlxt lo), only the eleinents (N, klxt lo)

"A. Messiah, Qttatttlm 3fechattt'cs (North-Holland Publishing
Co., Amsterdam, 1962).

+ 2 (OIJ" lq, ~&(~,qlxt+lo), (65)
q ~gp tt(pp q+ot)

where we write



1072 R. M. HORNREICH AND S. SHTRIKMAN

need be considered. Similarly, it may be shown that, of
the matrix elements (n,qIRr+IO), only the elements
(n, —kI3Cr+IO& need be considered.

We now take as F the current operator J(r). To the
same approximation as in Eq. (64), this operator may
be written as"

We shall choose the unit cell containing the c.m. of
our system; thus we also have k R«1, where R=E—'
Xg«r«. We now expand the operators and wave
functions in Eq. (75) in k, keeping only terms to first
order in k. To the same order of approximation we may
replace ~„,& by co„,0=co„. We now expand as follows":

J(r) =P I «r,b(r —r«)+8(r —r«)z-«),
7 2m

(71) e+'"'«—1aik r«, (77)

(n', oIk xxIo,n)
I k,n)~e'~ "IO', n)+ p I o,n')

mls n gn
where 8(u) is the Dirac delta function.

However, it will be more convenient to calculate
(J(sr,co)) than &J(r,to)). We therefore Fourier transform
Eq. (71), using

(n'Ik xxIo)
In' ), (78)

mQ n'~n
(1+ik R) In)+

8(r—r,) = e'"'t '«ld~
(2«r) s

(72)

to obtain
e

J(x)=P P~«e"'«ye"'««s ].
72m

'

where II=g ««s«and I n) =
I O,n). Considering one of the

matrix elements in Eq. (75) as an example, and using
Eqs. (77) and (78) gives

73
(OI«r«;e-'~'«+e '"'««r .Ik n) 2(OI«r«;In)

Now, using Eqs. (65) and (73) and the relation

(~'(k,~))—(~')o= ~' (~o) (74) mE

»(n' III; I n)(0 I «r„In')

n' —&n

where (J;)s is the current present in the absence of the
plane wave (due to permanent electric and/or magnetic
moments), we obtain for the complex conductivity
tensor

f
o;,(k,(o) = (ie'1V/mto) 8,,+

4msArs «, s, ~&s

+2i»(0 I «r«Q; I n) —ik (O I «r«'r«+ r««r' I n) (79)

To simplify Eq. (79), we make use of the commutation
relations between the operators appearing therein. As
before, the spin-orbit interaction terms may be ne-
glected. The following relations then hold:

X (0 I «r„;e "'«+e-'"'
«r«;

—
«I k,n)

X(n,kI«rs e'"'"+e'~'"«rs Io) and

(0I~„.
I n) = —imago„(0 Ir«;I n),

(OIII;In)= imcvr—0„&OIR, In),

(80a)

(80b)

1
(n, —kI«r;e '"'«+e '~'««r Io)

to+ots, -a

X (0 I
«r»e'" "+e'""«r»

I
—k, n), (75)

e;,(k,ro) =8;;+(4«ri/to) o.;;(k,&o) . (76)

Since the matrix elements at equivalent lattice sites are
equal, we need evaluate the matrix elements in Eq. (75)
only at sites comprising one unit cell. For sites within
this unit cell, we have k r«1 for k values of interest.

where E is the total number of electrons in the system
and b;; is the Kroneker delta. The complex dielectric
constant e;,(k,co) may be obtained directly from Eq.
(75) by means of the relation

(0I «r„;r«;+r«««r„I n) = —imto. (0Ir„r„In)
-A.;;,(OI t„,In&. (81)

Using Eqs. (80) and (81) in Eq. (79) gives

(OI«r«;e '"'«+e '"'««r«;In&= —2i mto( OrI;«In&
—m~-»(0Ir«'r«~ In&+i@»s'«s&ol i«s In&

+2i».(0 I
«r.' In&(n I » In) (82)

We shall be particularly interested in the case of Cr,o,,
where the symmetry element IT, where I is the space-
inversion and T the time-reversal operator, will belong
to the group of point operations that leave the system
macroscopically invariant. For this case (nIR, In)=0.

We now write out the expression for the part of s;;(k,ro)
that is linear in k, i.e., the part proportional to ik
Using Eqs. (75), (76), and (82), we obtain

2mie'kg' n
C(0 Ir«'In)(im~. (nI r»~s~ I o& @s ~s(n I

S—» I O)) (imago„&0 —
I
r p'«t In)+ As;gs(0 lb' In))mba' v, s, neo

x(nlrb» lo)3—
I ~-/(~+~-)g(&nI"'Io)(«lr»rs~ In)+ &s»(0

I ~s. In&)

—(im~-(nIr«'r«~l o&—&s'i.&nlrb«~ I o&)(o Ir» In&j (83)

~4 V. I. Cherepanov and V. S. Galishev, Fiz. Tverd. Tela 8, 1085 (1961) LEnglish transl. : Soviet Phys. —Solid State 3, 790 (1961)).
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Here 1Vi is the number of unit cells in the crystal and the p, 8 sums in Eq. (83) are over the electrons in one unit
cell. In fact, we may restrict these sums further to include only those electrons outside closed shells, i.e., only the
magnetic electrons on the cations.

We now wish to transform the Bloch function ~n) to linear sums of localized (Wannier) functions. These func-
tions, for the case of electrical insulators, may be identi6ed with a particular lattice site. We then have

l~)=(1Vo) "'Z I~.&, (84)

where 1V s is the number of cation sites and the o sum is over all such sites. The function
~
I,) is the true antisym-

metric Wannier function at lattice site 0. Note that all lattice sites in a given unit cell are nonequivalent insofar as
we consider only the translational symmetry of the lattice. Thus electrons excited at different sites within the unit
cell belong to different bands. Of course, it may be that some of these bands will turn out to be degenerate once the
rotational symmetry of the lattice is considered.

To the extent that we neglect contributions arising from cation-cation coupling (i.e., exchange), we may take
the state ~gs ) as an antisymmetrized sum of products of single-electron functions wherein only eigenfunctions of
electrons belonging to a particular cation site and its neighboring anions are included.

Since it appears" that there are no exchange contributions to at least the magnetoelectric e6ect in Cr203 at
O'K, this approximation does not seem unreasonable.

With the above in mind, it is clear that the matrix elements (0..
~
r„;~I.), (0,.

~
t~;~N. ) or (0,.

~
r„r» ~gs.) will be

zero unless o.= o' and the 7 electron is at the o site. Now, using Eq. (84), Eq. (83) becomes

gg2sie'1Vi')
&gjl=

kmkc0 1Vo I & ~&s og —M~
P(0.(R., (n.&(imco &e, )R.,R,g[0,)—h ;e(ges, jI, +s25o [0s))

—(imog„(0. f R,@.fggg, )+Ige;go&0.
f
I.,s+25,s / n, &)(gs, /

R„.
f
0,)j—Log„/(og+og„)g

X L(~. f
R.:[0,)(im~„(0. f R.,R., f n.)+/e;„(O. /

I-..+25., J
~.&)

—(imco„&n IR & glO &
ggge gs—(gs. ll g+25.BIO.))&O. IR glgg )j . (85)

IIere the o sum is over the cation sites within the one
unit cell, and R,~, I.„,5„, etc., are the sum of the
single-electron operators at site cr. As discussed earlier,
we have replaced I by I+2s in going from Eq. (83) to
Kq. (85). The general expression for o;;g given by Eq.
(85) may be compared with Kq. (19), in Sec. II, where
the phenomenological treatment was given. Using Eqs.
(21), (23), and (30), we find that the three tensors y"ggg,

n';;, and ~";;are given by

We now consider specifically the case of Cr203. We 6rst
simplify Eq. (86) by introducing the point-group sym-
metry of the crystal. If, following Osmond, "we label
the Cr+' sites in the unit cell by the letters A through
D, we 6nd that the point-group operations 2&, 1', and
2'& interchange 8 with C, D with C, and A with C,
respectively. In addition, these operations leave the
products of matrix elements appearing in Eq. (86)
invariant. Thus, it is only necessary to calculate the
matrix elements in Eq. (86) at one lattice site (say, site
C) and to multiply the result by four.

From Eq. (86), we find that the magnetoelectric
coeKcients in Cr203 at 0 K are given by

4me'N g'

ACORN P ff'& 7gW o GD22
—

CO

4' e2Ey2

XImt'(0,
~
R„~rg, & &gs,

~
R„R,g ( 0)

me~Ã
+(0.(R., (~,&(~,(R„R„)0)j, (86a)

12mc» hog '—co'

mcXo ~.»ocr„2—o)2
XReL&0[L;+25;erg&(gg)R;)0&j, (87)

4vre'Eg'

XReL&0,
~

I.„+25,
~
gr, &&n,

~
R., )0)g, (. 86b)

Similarly, the electric quadrupole contribution to the
2

mc(oÃg ~.~~0 co '—o)'

XImL&0.
~

I.„+25„)gg,)(n. ) R.;]0)j. (86c)
"S.Alexander and S. Shtrikman, Solid State Commun. 4, 115

(1966); R. Hornreich and S. Shtrikman, Phys. Rev. 161, 506
(1967). /The following corrections should be made in the latter

reference: Ecl. (1),change + to W preceding the third term on the
right; Kq. (4), multiply right side by P', Eq. (15), change & to +
preceding the last term on the right; Table I, multiply given values
for

~

bi'( by Z. In addition, Eels. (16)—(22) make use of the fact
that gq/gal=1 for Cr203. We are grateful to Dr. M. Mercier and
J. Tenenbaum for calling these errors to our attention. g

ge W. P. Osmond, Proc. Phys. Soc. (London) 79, 394 (1962).
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gyrotropic birefringence is

xe'E n

6hco ~~0 co '—co'

X& I:(0(&)'I )( I& lo)j (88)

Calculation of the matrix elements appearing in Eqs.
(87) and (88) is a diKcult problem and will not be at-
tempted by us here. The calculation is in many respects
similar to those involved in studies of the electric-
6el¹induced shift in the paramagnetic resonance
frequencies of Cr'+ in ruby. " "

We content ourselves here with a rough estimate of
the gyrotropic birefringence in Cr203 at optical fre-
quencies. We take the magnetic dipole strength of the
order of an electric dipole times the Qne-structure
constant e'/A c=1/137 and the quadrupole strength to
be an electric dipole times the ratio of the lattice spacing
a to the wavelength X of the field in the medium. Taking
to„250 cm ' in CrsOs. " we find that y"iii/(c/to)hot

10' at a free-space wavelength of 5000 A. Now from
Eq. (87) we see that An(co)/An(0) =co„'/co'—10 e.

»»ng" &a(0)=4X10 ', we thus And that Iy"iiikI
~4)(10 . We thus expect the optical gyrotropic
birefringence in Cr203 to lead to a shift in its principal
axes of roughly 10 ' rad when the eGect is due to the
electric quadrupole and roughly 10 ' rad when the
effect is of magnetoelectric origin.

"J.O. Artman and J. C. Murphy, in Proceedings of the First
Internatiorsal Conference ors Paramagnetic Resostagce (Academic
Press Inc. , New York, 1963), p. 634."E. B. Royce and N. Bloembergen, Phys. Rev. 131, 1912
(1963)."J.0. Artman and J. C. Murphy, Phys. Rev. 135, A1622
(1964).IK. A. Wickersheim, J. Appl. Phys. 34, 1224 (1963).

"D. N. Astrov, Zh. Eksperim. i Teor. Fiz. 40, 1035 (1961)
(English transl. : Soviet Phys. —JETP 13, 729 (1961)$.

VI. SUMMARY

We have presented various aspects of the effect known
as gyrotropic or nonreciprocal birefringence. ' We first
considered the effect phenomenologically and showed
that its origins lie in electric quadrupole and magneto-
electric' sects. Of the maximum of 18 independent
coefficients in the gyrotropic birefringence tensor in a
lossless medium, we find that 10are entirely quadrupolar
in nature, with the rest being in general linear combin-
ations of quadrupole and magnetoelectric contributions.
We also show the close formal connection between
natural optical activity' and the magnetoelectric effect.

We then brieQy consider a plane wave propagating
in a gyrotropically birefringent medium, limiting our-
selves to the case of Cr203. The gyrotropic birefringence
is shown to exhibit itself as a shift in the principal
optic axes of the system. ' The question of boundary
effects between a gyrotropically birefringent medium
and a lossless dielectric is then discussed.

Finally, a quantum-mechanical treatment of gyro-
tropic birefringence is given, using the method of
Agranovich and Ginzburg. " The general results ob-
tained are applied to Cr203 and expressions for the
quadrupole and magnetoelectric contributions to the
gyrotropic-birefringence tensor in this material are
given. Using these expressions and published data, ""
it is roughly estimated that the electric-quadrupole-
induced shift in the principal optic axes of Cr203 is of
the order of 10 ' rad and the magnetoelectric-induced
shift is two orders of magnitude less.
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