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A theoretical treatment of the optical effect known as gyrotropic or nonreciprocal birefringence is pre-
sented. By suitably renormalizing the electric dipole moment tensor, it is shown, for the case of lossless
media, that 10 of the 18 independent quantities in the gyrotropic-birefringence tensor have their origin in
electric quadrupole effects. The other eight are shown to be related to the magnetoelectric effect. The general
results are applied to the materials Cr;0; and MnTiOs. The propagation of a plane wave along one of the
crystalline axes of Cr,O; is then considered. It is shown that the gyrotropic birefringence exhibits itself as a
rotation of the principal optic axes, together with a change in the velocity of propagation of the wave in the
medium. Next, the modified boundary conditions corresponding to the renormalized field vectors are given,
and the case of a plane wave normally incident on a gyrotropically birefringent medium is discussed. It is
noted that the field relations at a boundary will be modified even when the quadrupole contribution vanishes
and the magnetoelectric tensor is isotropic, a case in which there is no gyrotropic birefringence in the medium
itself. Foinally, a quantum-mechanical calculation of the gyrotropic-birefringence tensor at 0°K is given. The

expressin obtained is applied to the case of Cr,Os, and the electric quadrupole and magnetoelectric con-
tributions are separated. It is roughly estimated that, at optical frequencies, the electric-quadrupole-
induced rotation of the principal optic axes of Cr;Os is of the order of 107¢ rad, and the magnetoelectric-
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induced shift is two orders of magnitude less.

I. INTRODUCTION

HE possible existence of an additional optical
effect, called gyrotropic or nonreciprocal bire-
fringence, was first pointed out by Brown et al.! They
showed that such an effect would appear in the form of
a polar ¢ tensor? (i.e., one that reverses sign under both
space and time inversion) of rank 3. For the case of a
lossless medium, this tensor also possesses intrinsic
symmetry in that it is symmetric upon permutation of
its first two indices. Property tensors having these
properties may be found in 56 of the magnetic crystal
classes.?

In Sec. II, we present a phenomenological theory of
gryotropic birefringence. Since the magnetic classes in
which gyrotropic birefringence is allowed are among
those in which the magnetoelectric effect may occur,*
the constitutative relations between the complex
amplitudes of the fields are written so as to incorporate
both these effects simultaneously. This is most con-
veniently done by combining all induced effects in a
suitably renormalized electric dipole moment.5 For the
case of lossless media, it is shown that the gyrotropic
birefringence property tensor has 18 linearly indepen-
dent components before crystalline symmetry con-
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siderations are introduced. We then show that a physical
basis for these 18 independent quantities may be found
in electric quadrupole and magnetoelectric effects, with
the former contributing 10 independent quantities
and the latter eight. In particular, we consider the
materials CroO3 and MnTiOjs, in which an experimental
observation of gyrotropic birefringence may be pos-
sible.! Finally, the closely related effect of natural
optical activity® is discussed and correlated with the
point of view presented here.

In Sec. III, we briefly consider wave propagation in
a medium exhibiting gyrotropic birefringence. The prop-
agation of plane waves along one of the crystalline axes
of Cr:03 is analyzed and it is shown that the gyrotropic
birefringence appears as a shift in the principal optic
axes, together with a change in the velocity of propa-
gation.

In Sec. IV, the boundary conditions on the renormal-
ized field vectors of Sec. IT are derived. We then go on
to consider a plane wave normally incident on a gyro-
tropically birefringent medium such as Cr,Q; It is
noted that the field relations at a boundary will be
modified even in the case of an isotropic magneto-
electric tensor, a case wherein the tensor does not lead
to any gyrotropic birefringence in the medium itself.

In Sec. V, we present a quantum-mechanical deri-
vation of the gyrotropic birefringence tensor at 0°K.
This is done by applying an electromagnetic wave to
the crystal and calculating the expectation value of the
current-density operator. The term linear in the wave
vector is extracted and a transformation to localized
(Wannier) functions is carried out. The general ex-
pression obtained is applied to the case of Cr;O3 and
the electric quadrupole and magnetoelectric contribu-
tions discussed in Sec. IT are separated. A rough estimate

¢ E. U. Condon, Rev. Mod. Phys. 9, 432 (1937).
1065



1066

of the shift in the principal optic axes in Cr:O; at optical
wavelengths due to gyrotropic birefringence is given.

In Sec. VI, we discuss and summarize our results
for gyrotropic or nonreciprocal birefringence.

II. PHENOMENOLOGICAL THEORY, SYMMETRY
CONSIDERATIONS, AND CONNECTION WITH
MAGNETOELECTRIC EFFECT

The usual description of the optical properties of
materials is obtained by using Maxwell’s equations and
taking the constitutive relations between the complex
amplitudes of the fields in the form®?

D;=¢&;(w,k)E;, (1a)
B;=H;, (1b)

where E;, D;, H;, and B; are the electric field, electric
displacement, magnetic field, and magnetic induction,
respectively. The indices refer to Cartesian coordinates
and summation over repeated indices is understood.
The natural optical activity v.; is then found by ex-
panding &;(w,k) to first order in k; thus

&i(0,k) = eij(w) Hivip(wkit- - - 2)

Equation (1) is usually derived for the case of a non-
magnetic homogeneous material.” The excitation is
assumed to be weak; thus the response function is taken
as linear in the excitation. That is,

t
Dy(x,t)= / at’ / dr’ &;(tr; Y Y)E(Y,Y),  (3a)

B;=H;. (3b)
That the ¢ integration runs only from — o to ¢ follows
from the causality principle. Also, because the properties
of the material are time-invariant, the kernel can
depend only on the time difference r=¢—¢. For the
case of a spatially homogeneous medium the kernel
can in addition, depend only the difference p=r—r'.
Taking E;(r',/')=E; exp[i(k-r'—wt’)] and D;(r,)=D;
Xexp[i(k-r—wt)], Eq. (1) follows directly, with

2uok) = [ ar / dosi(r,0) explk-o—wr). ()

We now wish to extend the above formulation to the
case of magnetic materials and, in particular, to ordered
magnetic solids, i.e., crystals. The outstanding charac-
teristic or crystalline structures is that they are not
spatially homogeneous, but are invariant only under a
group of finite translation vectors. For this case trans-
forming Eq. (3a) yields’

Di(wyk) = % Eif(wyk)K)Ef(w: k+ ZWK) ) (5)

7V. M. Agranovich and V. L. Ginzburg, Usp. Fiz. Nauk 76,
643 (1962) [English transl.: Soviet Phys.—Uspekhi 5, 323
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where K is an arbitrary reciprocal-lattice vector. To
arrive at Eq. (1a), it is necessary to neglect all terms in
the K summation except the term K=0. At optical
frequencies or lower, where k<K, such a procedure is
justified” and we shall thus ignore all K>£0 terms in
Eq. (5).

We now wish to take account of the fact that the
crystals under consideration are magnetic, that is, that
they are not invariant with respect to the operation of
time reversal. For this case, and again neglecting all
terms except the one in which K=0, Eq. (1) is general-
ized to

Di= €ij(w,k) Ej+aij(w, k) Hj, (6a)

Bi=ij(w,k) Ej+pij(w, k) H;. (6b)

It should be noted that the €; of Eq. (6) is 1ot the same
as the &; of Eq. (1). This point has been discussed by
Condon® and we shall touch upon it briefly at the end of
this section.

It will be useful to derive the transformation proper-
ties of the property tensors in Eq. (6) for later refer-
ence. This may be done by considering the physical
fields, which are given by

ei=3{E; exp[i(k-r4wt) [+ E;* exp[—i(k-r+wt) ]}, (7)

and similarly for d;, /;, and b;. Under the operations of
time reversal 7" and space inversion I we must have?

Tej=e;, Ie;=—e;, (8a)
Tdi=d;, Idi=—d;, (8b)
Thj=—h;, Ihj="h;, (8¢)
Tbj=—b;, Ib;=b;. (8d)

Inspection of Eq. (7) shows that the time-reversal
operator, which takes ¢ into —¢, takes E; into E;* and
k into —k in the transformed system. Similarly, the
space-inversion operator, which takes r into —r, takes
E; into —E; and k into —k in the transformed system.
Similar considerations apply to the other field vectors.
Looking at Eq. (6), we see that we must have

Teij(w,k) = €;*(w, — k),  Teij(w,k)=es(w, —k), (9a)
Taij(w,k) = —ai*(w, — k), Ta;(wk) = —aii(w, —k), (9b)
TBij(w, k) = —Bi*(w, —k), IB8;(w,k) = —B:i(w, —k), (9¢)
Tuij(w, k) =pi*(w, ~K),  Inij(w,k)=p;(w, —k). (9d)

For the case of insulating materials, Maxwell’s equations
may be written as

Ce,'szlkm= -—wB,- y (103)
Ceilmglkm= (.OD.‘ ) (].Ob)

where ¢ is the velocity of light and e, is the unit
antisymmetric tensor of rank three.

(1962)7; V. L. Ginzburg, A. A. Rukhadze, and V. P. Silin, J. Phys.
Chem. Solids 23, 85 (1962).



171

It is now convenient to combine all induced effects
in the material in a renormalized electric dipole moment
P/. That is, instead of separating the induced currents
into two parts, P; and ceumM 1km, where

P;=(Dy—E,)/4r,
Mi= (Br"‘H{)/‘lﬂ',

(11a)
(11b)

we combine them by suitably renormalizing P;. The
required relation is®’

Pi,=Pi+ (c/w) Eizlikm .

A renormalization such as that of Eq. (12) is always
possible in a continuous medium. It does, however,
lead to changes in the conditions on the field vectors
at boundaries between continuous media. We shall
defer the question of boundary effects to Sec. IV.

Using Egs. (11) and (12), Maxwell’s equations,
(10a) and (10b), become

(12)

Ceiz,nElkmz —wBi, (13&)
CéﬂmHl/km= wDi' y (13b)
where
Di/= E1+47FP,/ , (143)
B;=H/. (14b)
Thus, in renormalized form, Eq. (6a) becomes
D/ =[eij—aipriBiit (¢/w)(cirejim~+Bii€itm) prikm
— (¢/w) (851~ ps1) €ssk€rimbrkm JEj= A E;.  (15)

Here p;j= (uvY);; and 8;; is the Kroneker delta.

We shall restrict our attention to media that are
lossless in the frequency ranges of interest (these will
be low frequencies and those in the optical range).
For this case, we require that!-®

Ay=A5*, (16)
from which it follows that
€= €, (17a)
pii=pii*, (17b)
aij=Bi*. (17¢)

Equations (17a) and (17b) express well-known restric-
tions® on the elements of the permitivity and perme-
ability tensors in lossless media while Eq. (17¢) connects
the two generalized magnetoelectric-effect tensors of
Eq. (6). Replacing S;; by ai;* in Eq. (6b), we see that
the real part of @;; is the usual magnetoelectric tensor.*
The meaning of the imaginary part of a;; will be made
clear further on when the ordinary optical activity is
discussed.

Let us now examine the tensor A4; in more detail.
Since the effect of interest, gyrotropic or nonreciprocal
birefringence, will be expressed by terms in 4;; that are
linear in k, the term in A4;; with the explicit quadratic
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k dependence is not of interest. Let us put
Eij= Gij_'aikpklaﬂ* . (18)

Inspection of Eq. (6) shows that the only difference
between the tensors e; and &; is that they relate D to
E when H=0 or B=0, respectively. We expand
éij(w,k) to first order in k as in Eq. (2) and now wish to
find that part of D’ that is linearly proportional to k.
Writing the part of D’ linear in k as o;jmkn, we have

(19)

where the property tensors in Eq. (19) and henceforth
are dependent only on w. We now separate ¢, into its
real and imaginary parts, obtaining

Tiim="Yijm+ (¢/ iw) (Eikmaﬂ*+ €1mOiik) Pkl ’

o ,ijm = 'ijm~ (C/ w) [(eikma”jl" fjlma”'ik)Plkl

- (eikma,jl_}’ éjzma'ik)P"kl] ) (203)
0" sim="" iim— (¢/)[ (€skma’ 1+ €m0’ i1) 0" 1
+ (eitme” i— €ima” )0 1], (20b)

where ;jm=0"ijn+10" ijm, etc. It is Eq. (20b) that is of
principal interest. Consulting Eqgs. (2) and (9), we see
that the property tensor ¢’ is a polar ¢ tensor; that
is, it is transformed into its negative when acted upon
by either the time reversal or space-inversion operator.

It is thus the nonreciprocal or gyrotropic birefringence
tensor of the medium.! Using Eq. (17b), we may rewrite
Eq. (20b) as

(21)

" iim=7"ijm— (/o) (estm@ 1+ €j1m&' 1) ,
where
(22)

From Eq. (9), we see, in the notation of Birss,? that
o4 1s an axial ¢ tensor, o’y is an axial ¢ tensor, p'y; is
a polar ¢ tensor and p’’; is a polar ¢ tensor. Thus &';;
is an axial ¢ tensor.

From Eq. (17) it follows that

~) 7 / 17 "
O 3= QU ik k™ kP kj-

(23)

Thus the maximum number of independent components
of ¢”ijm is reduced from 27 to 18. The property tensor
incorporating the magnetoelectric effect, &3;, is not
restricted by Egs. (17c) and (22) and thus has nine inde-
pendent components, which are combined in the tensor

(24)

in such a way as to form only eight linearly independent
quantities; that is, Eq. (24) introduces the additional
restraint that

4 — "
0 iim=0 jime

— ~/ ~/
0iim= €am@ 1+ €1m& a1

€ijmdijm=0.

(25)

We must now examine the property tensor v/ in
order to determine the number of independent com-
ponents it contains. Since, in Eq. (6), we have written
separately the contributions to D and B from E and H,
respectively, we can consider there the case B=0, Es<0.
Note that once we renormalize Eq. (6) using Maxwell’s
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equation, this is no longer possible. For the case B=0,
we find that the tensor &; relates D to E and is thus the
true permitivity tensor of the medium. Upon expanding
&; in k, we obtain successively the dipole, quadrupole,
etc., contributions to the electric polarization of the
medium. We thus conclude that v";;; is an electric
quadrupole tensor and, from this and Eq. (17), it
follows that it has an intrinsic symmetry

Py sin=7"ijt, (26)
where P is any permutation of the indices ¢, 7, k. Thus
intrinsic symmetry reduces the number of independent
components of y"’;;x from 27 to 10.

Now, using Egs. (21) and (26), we have

0’"131=’Y“111 y U"222=’Y"222 ) 0”333'—‘7"333 )

o1=0"s1=7"11.— K@ 13, 0" 112=7" 110+ 2Re613,
o"m=0"su=7"115FRXe@12, 0"113=7"115—2Re&12,
"100=0""s12=7" 201+ Ro@ 23, " 201="7""201— 2K 23,

" 17 — A ~/ rn — A ~/
o133=0""313=7""351—Re@'32, 0" 331="" 331+ 2Re& 32, @n

0" 230 =0""300="7"905—Ro@'21, 0" 203=7"" 223+ 2Ke& 21,
0"233=0""303="""330FRo@'31, 0" 332=7""330— 2R0@ 351,
0" 15=0"313=7" 123+ Ro(& 11— & 22) ,
o 132=0""312=7"" 105+ Ro(& 33— &' 11) ,

1 " " ~/ ~/
o"2s1=0""301=""125FRo(& 22— &33) ,

where Ag=M\o/2r=c/w. Thus a physical basis for the
18 independent quantities in the general gyrotropic
birefringence tensor may be found in electric quadrupole
and magnetoelectric effects, with the former contribut-
ing 10 independent quantities and the latter eight. The
close connection between gyrotropic birefringence and
the magnetoelectric effect has been recognized by Birss
and Shrubsall.®

It is now of some interest to consider some materials
in which an experimental observation of gyrotropic
birefringence may be practical. For example, let us
first consider CrsOs; which has the magnetic point
group 3'm’.1® The symmetry of this point group reduces
the number of independent elements of ¢'’;jn from 18
to two.® Additionally, we find that the only nonzero
elements of the electric quadrupole tensor are v'/in
= —v"'132 and its permutations, while the only nonzero
elements of the magnetoelectric tensor are a’11=a’2 and
@’33. Both o’’;; and p”;; are null tensors for this crystal
class. We thus know from Eq. (27) that the nonzero
elements of the nonreciprocal birefringence tensor are
given by
d"1mu=—0"120=—0"o12=—0"91=7"111 s
0" 132=0""310=— 0" 951=—0"31 (28)
= Role'ss/u 33— a'11/p'11) -

8 R. R. Birss and R. G. Shrubsall, Phil. Mag. 15, 687 (1967).
9 1. Dzyaloshinski, J. Phys. Chem. Solids 4, 241 (1958).
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Thus one of the two independent ¢'/;;» elements may
be ascribed entirely to electric quadrupole interactions
and the second to causes related to those of the magneto-
electric effect.

A second interesting material is MnTiO; which
belongs to the magnetic point group 3’.! For this case,
the number of independent elements of ¢//;; is reduced
from 18 to six.? The electric quadrupole tensor will have
four independent elements and the magnetoelectric
tensor will have three. As in the case of 3'm’, both
o';; and p”;; are null tensors for the 3’ crystal class.
The nonzero nonreciprocal birefringence components
are now given by

17 — 2 —_— 7 — 1 R
0 111= "0 122=—0 212~ —0 221=% 111,
2 —_— 17 _— r — 17 — a0
0 220= "0 121= —0 211=—0 112="7 222,

0”333= ‘Y”sas )

0-”13Z= 0'”312:' '_"0'//231= ~0'”321 (29)
=Ro(e'ss/u' 33— @'11/6'11)

Gl’131 = 0,1311 = U//232 = 0'”322 = 7”113_ x0(1,12/#/11 )

17 — " — A / !
d"113=0"923=7" 113+ 2R0a 12/ 11 .

Of the six independent nonreciprocal birefringence
tensor components, three may be ascribed entirely to
electric quadrupole interactions, one entirely to the
magnetoelectric effect, and two to linear combinations
of electric quadrupole and magnetoelectric effects.
Although we have concentrated our attention on
gyrotropic birefringence in this section, it is useful to
note that the closely related natural optical activity®
may also be found by the procedure presented here. That
this is so can be seen by considering Eq. (20a). It fol-
lows from Eqgs. (2) and (9) that the o’;; tensor given by
Eq. (20a) is a polar ¢ tensor and is thus the optical-
activity tensor.! We use Eq. (17) to rewrite (20a) as

(30)

o’ iim="7"sim— (¢/w) (es1m@” j1— €j1m&’" 1) ,

where

&”ir: a”ikp,kj-‘_a,ikpl,kj- (31)
From Eq. (9) and the discussion following Eq. (22), it
follows that &”;; is an axial 4 tensor.

From Eq. (17), it follows that

0" ijm="—0"jim. (32)
Thus the maximum number of independent components
of ¢’;jm is reduced from 27 to nine. This is a well-known
result.? The tensor &";; is not restricted by Egs. (17¢)
and (31) and thus has nine independent components.
On the other hand, the electric quadrupole tensor
/% 1s required to be antisymmetric under permutation
of the indices 7 and 7 and symmetric under permutation
of the indices j and k. It is therefore a null tensor and
does not contribute to the optical activity tensor.®
We thus find that the entire optical activity tensor
comes from &”;;.
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Let us compare this result with the usual one derived
for the case of nonmagnetic materials having natural
optical activity. The optical activity as usually written
is®

' ijm=(¢/w) €ijigim- (33)
We thus have
€igin=—(eand’ n— eand’' 1) , (34)
which yields
& ij=gij, 1#] (35a)
&"ui=gu—3% Trg, (35b)

where by Trg we mean the sum of its main diagonal
elements.

Let us now briefly return to the question of the dif-
ference between &; of Eq. (1) and e; of Eq. (6). It is
clear that &; cannot be the true permitivity tensor
since, if it were, its quadrupole component would
necessarily be zero and natural optical activity could
not exist. In fact, &; is a renormalized tensor and thus
incorporates within itself the &”;; or g; tensor as well
as the true permitivity. The essential point is that
Maxwell’s equations, (10a) and (10b), linearly relate
the various electric and magnetic fields. Thus, in the
constitutive relations of Eq. (6), it is always possible
to replace any field vector by a linear combination of
field vectors. This reshuffling of a set of linear equations
will not, of course, change any physical results. How-
ever, once we rewrite our constitutive relations so as
to relate new linear combinations of fields to each other,
it is no longer possible to consider the property tensors
appearing in these remormalized equations as purely
electric or magnetic in origin.5

III. WAVE PROPAGATION

In this section we shall briefly consider the propaga-
tion of a plane wave in a medium exhibiting gyroscopic
birefringence. In order not to lose sight of the physical
results in a morass of algebra, we shall consider only
the case of Cr:Os. Thus the tensors ¢, u, and « are all
real and diagonal, with their x and yy components
equal.

We restrict our attention to waves travelling in the
x direction. In this case, Eq. (15) becomes

D)= (¢ 22—7" s2skz) E, (36a)
D,/ =[¥ ..~ v yyakat(¢/w) k2 (1— P'u)]Eu
+(c/w)ko(& 2o~ & 22) Ez, (36b)
D.'=(¢/w)ko& so— & 22) Ey
L€ (c/w)2k2(1—p'2z) JE.. (36c)
Combining Egs. (13) and (14b) gives
D=0, (37a)
Dy = (c/w)?*2E,, (37b)
D.'=(¢c/w)?k2E,. (37¢)
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In the case of CI'203, ’Y”::::::\:= _'Y”yyz= (c/w)pzz'y.
Combining Egs. (36) and (37), we find that

(gxx_"Pzz'Y/'v)Ex=0; (383.)
[Ezz+Pzz'Y/7)’"Pzz/7)2]Eu+ E(&zz"" &mz)/v]Ez“_‘ 0 ) (38b)
[(&zz—&zz)/v]Ey'{"[gzz—Pa:z/v‘z:lEz:O, (38C)

where v=0/ck.

One nontrivial solution of Eq. (38) is, of course,
P22Y/V= €z, With E,= E,=0. This solution is, however,
of no physical interest because our initial assumption in
expanding e in a power series in k was that p..v/1<K¢,,
in the frequency ranges of interest. We therefore take
E,=0 and restrict our attention to transverse waves.
In order to obtain nontrivial solutions of Eq. (38), it is
necessary that v satisfy

121,204 1,2y 03— [, 21,2 pop Aa? v
—yo+1=0. (39)

Here n.2=€0pz., #.°=€lios, Aa=q,;—84s, and the
redundent index on u., and u,, has been dropped. To
first order in vy and Aq?, the solutions of Eq. (39) are

U1,3= :’:[1+%#zﬂzAa2/ (”22_”:52):*:%7/”1]/”1 ) (40)
Ug,4= :h[1+%ﬂxﬂzAa2/<”z2—”zz)]/nz' (41)

One interesting point follows immediately from Egq.
(40); the magnitude of the velocity of propagation in a
gyrotropically birefringence medium changes when the
direction of propagation is reversed. This result may be
compared to that of Fuchs in his study of wave
propagation in a magnetoelectric medium.

We now restrict our attention to waves traveling in
the 4+ direction and resolve the electric fields E, and
E, into components traveling at v; and v.. Equations
(38), (40), and (41) then require that

E.}Y/Ej'=— Ao panz/(nt—ns% ], (42a)
Eyz/Ez2= A‘J‘Dlz”z/(”zz_navz)] ) (42b)

From Eq. (42), we see as expected that the gyrotropic
birefringence leads to a tilting of the principal optic
axes in the yz plane. Note that when the wave is
propagating in the % direction, the shift of the principal
optic axes is due entirely to Aa. This can be seen clearly
if we set Ae=0in Eq. (38). We then find that while the
wave velocity v, is affected by v, E,'= E,?=0. Thus no
shift of the principal optic axes occurs in this case.
In order for v to also lead to a shift in the principal
optic axes, the direction of wave propagation must have
a component in the xy plane that is not along the x or y
axes.

IV. BOUNDARY CONDITIONS

In this section we shall consider the conditions im-
posed on the electromagnetic field at the boundary of a

10R. Fuchs, Phil. Mag. 11, 647 (1965).
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gyrotropically birefringence medium. We first discuss
the changes in the usual boundary conditions caused by
the field renormalization of Sec. II and then go on to
consider the case of an incident plane wave.

Let us consider the conditions on the renormalized
field H' at a boundary. In the case of a boundary
between two media denoted by (1) and (2), the usual
boundary condition is

onX (Ho—H;) =47, (43)

where n is the positive normal to the boundary surface
S, drawn from (1) into (2), and x is the surface current
density. Using Eqgs. (11b) and (14b), Eq. (43) becomes

enX (Hy—Hy)=4n[x+cenX (M,—M,)], (44)

which is the required relation.

We now consider the condition on the renormalized
field D’ at a boundary. In this case the usual boundary
condition is

Il‘(Dz_D1)=O', (45)

where ¢ is the surface charge density. From Egs. (11a),
(12), and (14a),

oD’/ 3t =D/ dt+4xcVX M. (46)
Upon integration, Eq. (46) becomes
t
D’'=D-+}4wc (vXM)d:. 47)

—

Combining Egs. (45) and (47) gives
t
- (Dy—Dy) = o+ drc / [n-vX(M—M)dr.  (48)

Equations (44) and (48) express the boundary con-
ditions on the renormalized field vectors H’ and D’.
We see that, in the renormalized representation, there
appears a surface current

¥'=cnX (M,—M,), (49a)
and a surface charge
t
o' =4mc [n-VX(My—M,)]d:. (49b)

—0
Note that x” and ¢’ satisfy the continuity equation

47V %'+ 30’/ 0t=0; (50)

thus charge conservation is maintained in the renormal-
ized system.

Let us now consider specifically the boundary between
a magnetoelectric medium and a lossless isotropic
dielectric. We restrict ourselves to the case of plane
waves, in which case the time dependence of the field
vectors is given by e~%. In order to include the bound-
ary condition at /= — « required by Eqs. (48) or (49b),
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we generalize this time dependence slightly to e~ @+
with the understanding that in the limit 6 — —0.

In the case of insulating materials, we set k=0=0
and take medium 2 as the magnetoelectric one, dropping
the 2 index. In the lossless dielectric, Dy/=D; and
Hl’ = Hl.

With the above discussion in mind, Eqgs. (44) and
(48) become

nX (H'—H;)=4mXM, (51a)
—47c

n-(D’——Dl)={ ]n-VXM. (51b)
o-+iw

These then are the conditions on the renormalized
fields at the boundary between a gyrotropically bire-
fringent medium and a lossless dielectric.

Let us now consider the effects occurring when a
normally incident wave impinges on a gyrotropically
birefringent medium. As in Sec. III, we restrict our
attention to CryO3 and waves traveling in the x direc-
tion. We take the external dielectric to be the vacuum
and denote the incident wave by p and the reflected
wave by 7. We then have, in the vacuum,

Hz;»:Eyp’ H,,"=~—Ez/’,
Hs/=—E,, H/=E,.

(52a)
(52b)

We have already solved, in Sec. ITI, the wave propa-
gation problem in CryOs. From Egs. (13a) and (14b) we
see that

E,=—H',, E,=vH',. (53)

Using Eqgs. (40)—(42) and (53), we find, to first order in
Aa, that

H' y=—Ad[ s/ n.4n)Ey,—n.E,, (54a)
H' ,=n,Ey+Ac[um./(n.+n)|E.. (54b)

Writing the magnetization M in Eq. (51a) in terms
of E and H’ and using Eq. (54), the pertinent boundary
conditions become

Ey+Ey=pmn.E,—cE,, (55a)
Ep+E; =cEy/+pm.E,, (55b)
E,f—E,/=E,, (85¢)
Er—E,;=E, ) (SSd)

with
o= (aM.+an.)/(n+ns). (56)

One interesting solution of Eq. (55) is for the case
E,»=0. We then find that E," is given, to first order in
&, by

E =20/(14pm.)1+p.ns). (57)

Thus even when &.=a&. and there is no gyrotropic
birefringence, the isotropic magnetoelectric effect will
show itself through E.”, the reflected component of the
electric field.
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V. QUANTUM-MECHANICAL TREATMENT AT 0°K

In this section we formally calculate the elements of
the gryotropic birefringence tensor at 0°K. In general,
we shall follow the procedure of Agranovich and
Ginzburg!! in their calculation of spatial dispersion. An
alternate approach is that of Condon.®

Consider a perfect crystal acted upon by a mono-
chromatic plane wave of frequency w and wave vector
k. The electric field vector is taken as

e=3[Egere—iotf Eg¥eikereior] (58)
and may be derived from the vector potential
A= —(c/w) Re[iE et re=i0t] (59)
according to the relation
e=—(1/c)0A/ét. (60)

The magnetic field associated with the plane wave is
then given by
h=curlA. (61)

We take the field strengths to be such that only terms
linear in A need be included in our Hamiltonian. Then
in the presence of the plane wave we have

Je=3eo+3C:(1), (62)

where 3¢ is the Hamiltonian of the unperturbed system
and 3C,(¢) is given by

e
301(“) = Z l:__[A w‘"’vi"‘W'yiA vi]
v 2mc

e
——€ijiA yiSyikr— (/) Ey(ry) €ijud S w'fyk] . (63)
mc

The quantities in Eq. (63) are as follows; e and m are
the electron charge and mass, respectively; 7., 7, and
S.: are, respectively, the ith Cartesian components of
the position, mechanical momentum, and spin operators
of the yth electron; £,(r,) expresses the radial depen-
dence of the spin-orbit term of the yth electron, ey is
the antisymmetric unit tensor, and summation over
repeated indices is understood. The y summation indi-
cates that the contributions of all electrons in the crystal
must be included.

It is straightforward to show that the spin-orbit
term in Eq. (63) contributes only to the magnetoelectric-
type terms in Eq. (19) and not to the electric quadrupole
effect. Since it has been shown!? that this contribution
is negligible, we shall not consider it further here. We
shall also, at this point, discard the Zeeman term in
Eq. (63). The effect of this term will be reintroduced in

11V, M. Agranovich and V. L. Ginzburg, Usp. Fiz. Nauk 77,
663 (1962) [English transl.: Soviet Phys.—Uspekhi 5, 675 (1963)].

12 W, F. Brown, Jr., R. Hornreich and S. Shtrikman, Phys. Rev.
168, 574 (1968).
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Eq. (85) by the simple expedient of replacing the orbital
angular momentum operator 1 by 142s.
We will thus work with the perturbation

[4
3Cl(t)z - Z (A 7111i+7r'yiA ‘yi) .

2me v

(64)

Let us write the complete set of eigenstates of the
unperturbed Hamiltonian as |q,z). Since our system
has translational symmetry, these eigenstates will be
many-electron Bloch functions. The quantity q is the
wave vector associated with the Bloch function, and #»
represents the other quantum numbers entering into the
specification of the state, including that specifying the
band to which the state belongs. The ground state of
the system, i.e., the state occupied by the system at
absolute zero, will be written |0) and will have q=0.

Using time-dependent perturbation theory to second
order, the expectation value of any operator F(r) is
found to be!?

(F)=40[F|0)

—iwt

_Re{ S OlFlamnalie|o)

Wn,q— W)
Twt
+q£0 <0|F|q,n)<%,lI]3@1+|0>m , (65)
where we write
3C1(8) =3[3C—e "wi+3C Hetwt ], (66)

In Eq. (65), #iwn,q is the energy of the state |q,») and
we have fixed the zero of energy by taking (0|3¢,|0)=0.

Consider now the matrix element (n,q|3C;~|0); we
wish to know for which values of q this matrix element
will be nonzero. These values may be found as follows:
Let T, be the operator that translates the lattice a dis-
tance 7 and let 9 be such a translation that [ 7T,,3¢o |=0.
Then

Ty|n,q)=e"r|n,q). (67)
We also have, from the form of 3¢,
T30, (T, 1= eirkie,—. (68)
It then follows that (1,q]|3¢;|0)50 if and only if
n-[k—q]=2n1, (69)
where [ is an integer. This requires that
k—q=27b, (70)

where b is any whole-number multiple of a reciprocal
lattice vector. As was pointed out in Sec. II, it is
generally possible to neglect those terms arising from
nonzero values of b. Thus, in conclusion, of the matrix
elements (n,q|3¢;~|0), only the elements (n,k|3¢;~|0)

13 A. Messiah, Quantum Mechanics (North-Holland Publishing
Co., Amsterdam, 1962).
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need be considered. Similarly, it may be shown that, of
the matrix elements (,q|3C;+|0), only the elements
(n, —k|3C;t|0) need be considered.

We now take as F the current operator J(r). To the
same approximation as in Eq. (64), this operator may
be written as'®

J0) =% —[md—rp)+o—rdm], (1)
v 2m

where 6(u) is the Dirac delta function.

However, it will be more convenient to calculate
(Je,w)) than (J(r,w)). We therefore Fourier transform
Eq. (71), using

d(r—ry)=—— [ e ¢y, (72)
"y
to obtain
e
J) =2 —[metrrrterm, ]. (73)
v 2m
Now, using Egs. (65) and (73) and the relation
(Ji(k,w))— {J do=0i(Eo);, (74)

where (J;)o is the current present in the absence of the
plane wave (due to permanent electric and/or magnetic
moments), we obtain for the complex conductivity

tensor
162 1
oill) = (e /ma)oy+—— ¥ {( )
Am?he v.8,7%0 [ \w—wn %
X (0 l 7r.,ie“ik“7+ e‘“‘"“ﬂn,,- l k,n)

X <ﬂ,k I Wajeik'”-f- eik'”ﬂ'aj l O)

‘(“_")@, —k|mye e gkt 0)
W+ wn,—x

5 (0 mase® T e oy — n>} . (15)

where IV is the total number of electrons in the system
and 6;; is the Kroneker delta. The complex dielectric
constant e;(k,w) may be obtained directly from Eq.
(75) by means of the relation

€ii(k,w) = dij+ (4mi/w)oii(kw) .

Since the matrix elements at equivalent lattice sites are
equal, we need evaluate the matrix elements in Eq. (75)
only at sites comprising one unit cell. For sites within
this unit cell, we have k-r<1 for k values of interest.

2mwie?N 1
) 2

{ -
mhw? / 76,020 (w—w,

(76)
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We shall choose the unit cell containing the c.m. of
our system; thus we also have k-R«1, where R=N-!
X3 yr,. We now expand the operators and wave
functions in Eq. (75) in k, keeping only terms to first
order in k. To the same order of approximation we may
replace wn,x by wp,0=wa. We now expand as follows:

err~14k-r,, 77
1 (nlyo I k-1 I O;”)
| K, yei Rl: [0,7)+ 2 l Q"’)]
mN n'sn W= Wn!
1 (n'|k-XI|0)
~(1+ik-R) |[n)+— X [n"), (78)
mN n'=n Wp— Wy

whereII=3, =, and |#)= | 0,n). Considering one of the
matrix elements in Eq. (75) as an example, and using
Egs. (77) and (78) gives

O] myie 14 e T | k) 2(0 | | 1)
2 ki(n’ |10 | n)(0| il )
i 2
mN n’#n

+2’ikj(0 ] 77",1;Rj l n)— ik- <O l 7rw-r7+ l‘»,7rw'[ 7’L> . (79)

Wy —Wn

To simplify Eq. (79), we make use of the commutation
relations between the operators appearing therein. As
before, the spin-orbit interaction terms may be ne-
glected. The following relations then hold:

O] myi| )= —imw,{0]|r,i|n), (80a)
O]XL;| )= —imNw,{0| R;|n), (80b)
and
Ol myiryjtrymyi| n) = —imwn(0| ryiry;| n)
—fiei(0]Lye] ). (81)
Using Egs. (80) and (81) in Eq. (79) gives
O] yie vt et | ) = — 2imw, (0| 7,:| n)
— menki (0| 74iryi | n)+ikjeiii0| Ly | )
+2ik; 0| mys|n)(n | Rj|n). (82)

We shall be particularly interested in the case of Cr;O3,
where the symmetry element IT, where I is the space-
inversion and T the time-reversal operator, will belong
to the group of point operations that leave the system
macroscopically invariant. For this case (n|R;|n)=0.

We now write out the expression for the part of e;;(k,w)
that is linear in k, ie., the part proportional to ik.
Using Eqgs. (75), (76), and (82), we obtain

L0l 7yil m)(imwnln| 7sirsi|0)— hejuare | 1ot | 0)) — (imeon(O | i1 | )+ hreii{0| Lyi | 1))

X (75101~ [wn/ (@+wa) (| 74:] 0)({0 | 7ajrar| 1)+ hesurd0 | Lo | 1))

— (imwaln|74741|0)— hea(n |1y [0)) (0| 7] ﬂ)]} . (83

1 V. I. Cherepanov and V. S. Galishev, Fiz. Tverd. Tela 3, 1085 (1961) [English transl.: Soviet Phys.—Solid State 3, 790 (1961)7.
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Here N, is the number of unit cells in the crystal and the v,6 sums in Eq. (83) are over the electrons in one unit
cell. In fact, we may restrict these sums further to include only those electrons outside closed shells, i.e., only the
magnetic electrons on the cations.

We now wish to transform the Bloch function |#) to linear sums of localized (Wannier) functions. These func-

tions, for the case of electrical insulators, may be identified with a particular lattice site. We then have

lm)= (N |na), (84)

where N is the number of cation sites and the ¢ sum is over all such sites. The function |#,) is the true antisym-
metric Wannier function at lattice site o. Note that all lattice sites in a given unit cell are nonequivalent insofar as
we consider only the translational symmetry of the lattice. Thus electrons excited at different sites within the unit
cell belong to different bands. Of course, it may be that some of these bands will turn out to be degenerate once the
rotational symmetry of the lattice is considered.

To the extent that we neglect contributions arising from cation-cation coupling (i.e., exchange), we may take
the state |#,) as an antisymmetrized sum of products of single-electron functions wherein only eigenfunctions of
electrons belonging to a particular cation site and its neighboring anions are included.

Since it appears!® that there are no exchange contributions to at least the magnetoelectric effect in CryO; at
0°K, this approximation does not seem unreasonable.

With the above in mind, it is clear that the matrix elements (O, |7yi|#4), (0o |lyi|#6) OF (O |7yi7i|75) Will be

zero unless o=¢’ and the v electron is at the o site. Now, using Eq. (84), Eq. (83) becomes

2mwie2 N2 Wn
Um=(——-———> > { [400 | Rot] 1) imeon(rn0]| RosRot| 02)— hegun(e | Lost-255] 04))
mhw2]\70 a,n#0 (W— Wy

- (i7nwn<00 [ Raiva I nv>+ heilk<0v I Lak+zsvk ] na)) <na I -Raj l Oa>:|_ [wn/(w+wn)]
X [(nv l Ral [ 00>(imwn<00 l RajRal l na>+ hejlk<0¢ l Lak"‘ 2Salc l nv))
- (imwn(nc ’ Rn'va | 0|1>— heilk(”v ! Luk+ ZSJk l 06))(0¢ [ Rﬂ' | n”)]} . (85)

Here the ¢ sum is over the cation sites within the one
unit cell, and Ry, Lgi, S, etc., are the sum of the
single-electron operators at site o. As discussed earlier,
we have replaced 1 by 142s in going from Eq. (83) to
Eq. (85). The general expression for ¢;; given by Eq.
(85) may be compared with Eq. (19), in Sec. II, where
the phenomenological treatment was given. Using Egs.
(21), (23), and (30), we find that the three tensors y"ij,
&'y, and &”';; are given by

47"82]\712 w,ﬁ
hwNo om0 w,2— w?
XIm[{0,| Ryi| 7,){1s| RoiR01|0)
+{0| Rej| no)(ns| ReiRar| 0)],

41r62N 12 Wn

"o
Y Gl=

(86a)

-
a =
cho o, n#0 w,.2—w2

X Re[<0¢ I Loi+2S,; l ”v)<nv | Rvil O)] )

4mwerN 2 wn?

(86b)

~17

a o i=

mcwN g o170 w2 —w?

XIm[ {0y | Laj+2S0j| n0){ns| Rss] 0)].  (86€)

15 S, Alexander and S. Shtrikman, Solid State Commun. 4, 115
(1966); R. Hornreich and S. Shtrikman, Phys. Rev. 161, 506
(1967). [The following corrections should be made in the latter

We now consider specifically the case of Cr:Os. We first
simplify Eq. (86) by introducing the point-group sym-
metry of the crystal. If, following Osmond,'¢ we label
the Cr*3 sites in the unit cell by the letters 4 through
D, we find that the point-group operations 2,, 1/, and
2’, interchange B with C, D with C, and 4 with C,
respectively. In addition, these operations leave the
products of matrix elements appearing in Eq. (86)
invariant. Thus, it is only necessary to calculate the
matrix elements in Eq. (86) at one lattice site (say, site
C) and to multiply the result by four.

From Eq. (86), we find that the magnetoelectric
coefficients in CryO; at 0°K are given by

7l'62N Wy
Q= 2
12mc 70 \w,2—w?

XRe[(0| Li+-28:|n)(n| R:|0)], (87)

where =z, vy, or 2.
Similarly, the electric quadrupole contribution to the

reference: Eq. (1), change == to 7F preceding the third term on the
right; Eq. (4), multiply right side by 8%; Eq. (15), change =+ to -+
preceding the last term on the right; Table I, multiply given values
for |b/| by 2. In addition, Eqs. (16)-(22) make use of the fact
that gi/gn=1 for Cr0;. We are grateful to Dr. M. Mercier and
J. Tenenbaum for calling these errors to our attention.’]

18 W, P. Osmond, Proc. Phys. Soc. (London) 79, 394 (1962).
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gyrotropic birefringence is

me*N Wy2
/
Y ‘m=— Z
671w n#0 \w,2—w?

XIm[{0(R1)*|n)(n|R1|0)].

(88)

Calculation of the matrix elements appearing in Egs.
(87) and (88) is a difficult problem and will not be at-
tempted by us here. The calculation is in many respects
similar to those involved in studies of the electric-
field-induced shift in the paramagnetic resonance
frequencies of Cr** in ruby.!7—19

We content ourselves here with a rough estimate of
the gyrotropic birefringence in Cr:Os at optical fre-
quencies. We take the magnetic dipole strength of the
order of an electric dipole times the fine-structure
constant e2/%¢=1/137 and the quadrupole strength to
be an electric dipole times the ratio of the lattice spacing
a to the wavelength X of the field in the medium. Taking
0,~250 cm™! in Cr;0:.2° we find that v"111/(c/w)Ac
~102 at a free-space wavelength of 5000 A. Now from
Eq. (87) we see that Aa(w)/Ac(0)=w.?/w?>~10"
Taking?! Aa(0)=4X10"% we thus find that |y"111k]
~4%10~7. We thus expect the optical gyrotropic
birefringence in CryO; to lead to a shift in its principal
axes of roughly 10~¢ rad when the effect is due to the
electric quadrupole and roughly 10~% rad when the
effect is of magnetoelectric origin.

17§, O. Artman and J. C. Murphy, in Proceedings of the First
International Conference on Paramagnetic Resonance (Academic
Press Inc., New York, 1963), p. 634.

( 18 E, B. Royce and N. Bloembergen, Phys. Rev. 131, 1912
1963).

19 J, O. Artman and J. C. Murphy, Phys. Rev. 135, A1622
(1964).

20 K. A. Wickersheim, J. Appl. Phys. 34, 1224 (1963).

2D, N. Astrov, Zh. Eksperim. i Teor. Fiz. 40, 1035 (1961)
[English transl.: Soviet Phys.—JETP 13, 729 (1961)].
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VI. SUMMARY

We have presented various aspects of the effect known
as gyrotropic or nonreciprocal birefringence.! We first
considered the effect phenomenologically and showed
that its origins lie in electric quadrupole and magneto-
electrict effects. Of the maximum of 18 independent
coefficients in the gyrotropic birefringence tensor in a
lossless medium, we find that 10 are entirely quadrupolar
in nature, with the rest being in general linear combin-
ations of quadrupole and magnetoelectric contributions.
We also show the close formal connection between
natural optical activity® and the magnetoelectric effect.

We then briefly consider a plane wave propagating
in a gyrotropically birefringent medium, limiting our-
selves to the case of CryO3. The gyrotropic birefringence
is shown to exhibit itself as a shift in the principal
optic axes of the system.! The question of boundary
effects between a gyrotropically birefringent medium
and a lossless dielectric is then discussed.

Finally, a quantum-mechanical treatment of gyro-
tropic birefringence is given, using the method of
Agranovich and Ginzburg.!! The general results ob-
tained are applied to CryOs; and expressions for the
quadrupole and magnetoelectric contributions to the
gyrotropic-birefringence tensor in this material are
given. Using these expressions and published data,?:2!
it is roughly estimated that the electric-quadrupole-
induced shift in the principal optic axes of Cr.O; is of
the order of 1076 rad and the magnetoelectric-induced
shift is two orders of magnitude less.
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