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The parametric gain is computed for the case of a cubic crystal having a single lattice resonance as the
frequency of one of the generated waves, the idler, is swept through the lattice resonance. It is found that
as resonance is approached, the nonlinear susceptibility and the infrared absorption at the idler frequency
both become resonantly large in just such a manner as to leave the parametric gain unaltered. A simple
expression is derived for the parametric gain both by solving the coupled-wave equations and by calculating
the transition rate for light scattering. The parametric gain is estimated numerically for gallium phosphide.

I. INTRODUCTION

ARAMETRIC oscillation has been wused by
Giordmaine and Miller! and by others®? to gen-
erate visible and near-infrared light. In principle,
parametric oscillation could also be used to generate
far-infrared radiation. In this case, one of the generated
signals, which we will call the idler, would be close in
energy to the infrared lattice-absorption resonance of
the crystal. As the idler approaches the lattice reso-
nance, the absorption coefficient at the idler frequency
becomes resonantly large, but so does the nonlinear
susceptibility describing the parametric amplification
process.? It is not clear what happens to the parametric
gain in this situation. In this paper, we compute the
parametric gain as the idler frequency is swept through
the lattice resonance.

We restrict our analysis to the simplest case, a cubic
crystal with a single lattice resonance such as gallium
phosphide. In the process of parametric amplification,
a pump wave is used to generate a signal wave and an
idler wave.® We shall assume that the crystal is trans-
parent to both the pump wave and the signal wave,
but that the absorption coefhcient for the idler wave is
large compared with the parametric gain. In practical
situations, the parametric gain will be of order 1 cm™.
For idler energies 160-780 cm™!, the infrared absorp-
tion coefficient in gallium phosphide is greater than 10
cm at 300°K.° It rises to a peak value of about 4 10*
cm! at the lattice resonance, which occurs at an energy
of 366 cm™. Our treatment will apply to gallium phos-
phide over this energy range. In this near-resonance
region, the idler quanta are both photonlike and
phononlike in character and are called polaritons.”-?
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The problem of calculating the parametric gain
near a lattice resonance has been previously treated
by Loudon,® by Butcher, Loudon and McLean, and
by Shen.!! Each of these papers presented a similar
but somewhat different expression for the parametric
gain. The purpose of our paper is to clear up the dis-
crepancies between these papers by deriving a simple
analytical formula for the parametric gain first by
Shen’s method of solving the coupled-wave equations
and second by using Loudon’s approach of calculating
the transition rate for the light-scattering process.

Our expression for the gain has a number of simple
features which are illustrated in Figs. 1 and 2:

(a) The maximum gain occurs for the case of wave-
vector matching ky=k;+ k., where k; is the wave vector
of the linear pump wave, k. is the wave vector of the
linear idler wave, and k; is the wave vector of the linear
idler wave calculated in the absence of damping. (This
was pointed out by Shen.) The undamped k; (polariton)
dispersion curve is shown in Fig. 1.

(b) The peak gain (g2)max is slowly varying with
idler frequency and is essentially unchanged as the
idler frequency is swept from several linewidths below
resonance onto the lattice resonance (see Fig. 2).

(c) The variation of parametric gain with the idler
frequency results mainly from the interference of the
two terms which contribute to the nonlinear suscepti-
bility. For gallium phospbide, this interference causes
the parametric gain to go to nearly zero at an idler
energy fiw; of 250 cm™ (see Fig. 2).4

(d) The ratio of the idler power to the signal power
is inversely proportional to the infrared absorption
coefficient at the idler frequency. Because of this, the
amount of infrared light that can be generated becomes
negligible at the idler frequency approaches the lattice
resonance and absorption becomes large (see Fig. 2).

We use Shen’s method to calculate the parametric
gain in Sec. II. Shen’s! treatment is more general than
ours. When spatial dispersion and nonlattice infrared
absorption effects, included by Shen, are neglected, his
gain formula reduces to ours. (An algebraic error in his

9 R. Loudon, Proc. Phys. Soc. (London) 82, 393 (1963).

1P, N. Butcher, R. Loudon, and T. P. McLean, Proc. Phys.

Soc. (London) 85, 565 (1965).
'Y, R. Shen, Phys. Rev. 138, A1741 (1965).
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paper must also be corrected.’?) The generality of his
treatment tends to obscure several of the results
stressed in this paper.

In Sec. III, we calculate the parametric gain using
Loudon’s? method. We take into account the frequency
dependence of the idler damping constant, which
Loudon neglected. This leads to a simpler expression
for the parametric gain.

The method used by Butcher ef al.® will not be
discussed. These authors neglected certain second
derivatives of the field amplitudes at the beginning of
their calculation. They failed to realize that their
approximation is invalid very close to the lattice
resonance, where the infrared absorption coefficient
is very large. This mistake resulted in their deriving
an erroneous expression for the parametric gain near
the lattice resonance. The correct expression is in fact
a good deal simpler than that found by Butcher et al.

In Sec. IV, we relate the parametric gain to the spon-
taneous Raman-scattering cross section, discuss the
efficiency of producing infrared light, and numerically
estimate the parametric gain for gallium phosphide.

II. PARAMETRIC GAIN FROM COUPLED-
WAVE EQUATIONS

We will assume that the pump, signal, and lattice
fields are plane waves. The pump amplitude is fixed,
while the other fields may grow (or decay) exponenti-
ally. Accompanying the electric field E(w;) at the idler
frequency w; is a transverse optical lattice wave Q(wy).
The quantity Q(wi)/E(w:) becomes resonantly large
as w; approaches wy, the resonant frequency of the
lattice. We write these fields as

E(pump) = E(w3)+c.c.=A4 sets =4 c.c.,

E(signal)= E(ws)+c.c.= Ageite2 ottt cc.
E(idler)= E(w1)+c.c.=Aeitsrr—odtnrp cc.

Q(lattice) = Q(w1)+c.c.= QeiFrr—atd vt ¢ ¢,

The coupled-wave equations and the force equation
for the lattice oscillator Q(w1) are given by

[V2+ (we/c*) €2 JE(wa) = — (dmwa?/c?)

X PNL(wy=wz—wy),

[V (01/ ) e JE(w1) = — (4mer’/c?)

X PNL(wy=ws—ws)
uD(w1)Q(w1)=eE(w1)+FNE(w1=cwz—ws),

where D(w;)=w@—wi?—iw . Q(wy) is the lattice dis-
placement within the primitive cell, u is the reduced
mass, and e is the charge associated with the transverse
optical lattice mode.

Following the approach of Kleinman® and of Bloem-
bergen,* we assume that there exists a phenomeno-

1)

2

12 Ay95 listed by Shen after Eq. (6) is too large by a factor of 2.
B D, A. Kleinman, Phys. Rev. 126, 1977 (1962).
14 Reference 5, Sec. 1.3.
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F1c. 1. Solid curve shows the undamped polariton dispersion
curve (w1 versus k1) for gallium phosphide. The peak parametric
gain occurs when k;= | k;—k,|. Dashed curves are |ks—k.| versus
wi=wg—wz for various scattering angles 8. These curves were
calculated assuming the pump is the 6943 A line of a ruby laser.
The peak parametric gains occurs where the solid curves and the
dashed curves cross.

logical energy-density function UNL[ E(ws),E(we),E(w1),
Q(w1)] from which the nonlinear polarizations PNL
and the nonlinear force FNL can be derived using

PNL(p)=—9U/dE(w))*, i=1,2,3
FNL(w)=—9U/3Q(w1)*.
In this case,
U= —[dgE(ws)E(w2)*E(w1)*
+doNE(w3) E(w2)*Q(w1)*]+c.c., (4)
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FiG. 2. (a) Relative parametric gain (g2)max versus the idler
frequency w; for gallium phosphide. Solid portion of the curve
indicates the frequency range of the idler over which phase
matching is possible. (b) Infrared absorption coefficient for
gallium phosphide using I'=4 cm™. (c) Ratio of the idler flux
density S; to the signal flux density Ss,
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where N is the number of primitive cells per cm?.
Garrett!® has shown, using an explicit anharmonic
oscillator model which reproduces the optical non-
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Equation (2) can be solved only by equating the
exponents on each side of the equation. This gives

ko=k
linearities of the crystal, that dg and do are slowly kot 2_ % (5)
varying and may be taken as real and constant for the YI=Y =Y.
experimental frequency ranges we have in mind, i€, We may simplify notation by defining several new
160 <w,<780 cm™' for gallium phosphide. These gymbols:
assumptions have been verified experimentally by do'=dq/e,
Faust and Henry,* who were able to fit their measured ,_
. dg'=4ndg,
resonant frequency dependence of the nonlinear sus- \ ; (6)
ceptibility PNL(wp)/E(w1)E(w;) assuming dg and de wpl=4wNe/u,
to be real and constant. The nonlinear susceptibility Q1 =4meNQ;.
constants do and dg are actually third-order tensors. itud .
For a cubic material like gallilum phosphide, these The coupled amplitude equations then become
tensors are determined by one parameter. The tensor dg'A341*+dg' 430,
notation adds nothing important to the problem and +Lea— (¢&/wi?) (ka—iy)?]4,=0,
will not be incl}ldefi. The relative magnit}zde. of the Lew— (/i) (kat-im)F T4 "+ 0y *+-di' As* 42 =0, O]
nonlinear polarization for various polarizations of P AL D(wr) 01 —opd g A * A y= 0
E(w;), E(ws), and E(w;) has been discussed by wpiaL w1) U1 —wpidg 43" A,=0.
Loudon.! This leads to the secular equation
dE’A 3 dQ’A 3 €2 (wgz/cz) (kz—i‘y)z
€ (¢%/wr?) (ka+i7)? 1 dg'As* =0. (8)
—1 D(wl)*/wpz '—dQA 3*

We define the parametric gains gs and g; of the signal
and the idler waves as twice the projection of ¥ along
the propagation directions E» and £;:

§2= 2k2 Y
=25 )
sr=2k1"Y.
Neglecting terms of order 4%, we may write
(kz—"i‘f)z-': kzz—’ikzgz y
(k1+i‘f)z= k12+ik1g1 . (10)

The secular equation (8) thus establishes a relation
between g; and gs. Expanding the secular equation, we
have

wzz . w12
I:(kz’—"—ez)— tkoge || | BP——e’
2 &

w12
+i< €1"+klgl)]

c?

(11)
wrtwo? | 2+2d}9’dqlwpz
- Al dgp——
a4 [ T Dl
2 rc%ks? ic%k
+ i / - €t lgl)do’z:l)
D(wl)*\ w12 w12
where
a=e'+ie" = e, wrt/D(wy) 12)

15 C, G. B. Garrett, IEEE J. Quantum Electron. QE-4, 70 (1968).
16 R, Loudon, Advan. Phys. 13, 423 (1964); 14, (E)621 (1965).

is the linear dielectric constant at ;. We now assume
that the damping of a undriven (linear) wave at the
idler frequency is large, so that %;g1 can be neglected
compared to (wi?/c?)e)’’. We also neglect the %;g; term
on the right side of Eq. (11) since this term is small
compared to

[kt — (wrt/ e, |

in the near-resonance region which we are considering.
Having neglected g, we can solve Eq. (11) for gs.

Neglecting any imaginary component of e, the linear
wave vector for the signal wave ko, is defined by

kszE (wzz/cz) €2,
For ky=k,r, we may write
kzz'— (w22/62)62= (kz—kzz,) (kz-}-kzz,) = 2Ak2k2 y (14)

where Ak, is the nonlinear change in wave vector of the
signal wave. Using these approximations, we show in
Appendix A that Eq. (11) can be rewritten to an
excellent approximation as

(13)

. 2 p?
(2Ak2—"l«g2)= |A3|2
k202
wot—wi 2
X( . dE'+dQ') /D(wl)pM*. (15)
WP
The resonant denominator D(w;)pm is given:
wp2
D(w)pm= (woz——*—————wlz)— i . (16)
c2k12/w12—— €p
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The real part of D(w,) is zero when

w12 wpz
kl = €w+ )
c2 2 2

Wo"— Wy’

¢%))

that is, when (wi,%:) lie on the undamped polariton
dispersion curve plotted in Fig. 1. This is the condition
for the maximum gain, if the resonance is narrow. In
this case, the maximum gain is given by

wlwp?| As| 2/@902—-0)12

2
du’+da')- (18)
k262w1F \ wp2

(gz max =

If the resonance is broad, the maximum gain is found
by computing the imaginary part of Eq. (15). Accord-
ing to Eq. (15), Ake=0 when g, is a maximum, for a
narrow resonance.

III. PARAMETRIC GAIN FROM TRANSITION-
RATE THEORY

In conventional treatments of parametric ampli-
fication away from a resonance, the parametric gain
is written as a function of the idler damping coefficient
and of the wave-vector mismatch. We cast our solution
into such a form in Appendix B. There we also derive
an expression for the gain which holds both near and
away from the lattice resonance.

Consider a volume V with linear dimensions small
compared with 1/g,. Let a," and a;. be the creation and
annihilation operators for the pump wave with wave
vector k;. Similarly, let a,!, ai,, ai,', and a4, be the
creation and annihilation operators of the signal wave
and the idler wave. These operators satisfy the com-
mutation relations”

[aki}akjt]'__- Okikjs i, j=1,2,3. (19)
The fields may be written as
E (Pump) =E; (l‘) = Z E, (akze‘kx'x+ ak:fe—ika.r) )
k3
E(signal) = Eo(r) =3 Ez(ar,e™ "+ ag,fe®r),
k2 (20)

E (ldler) =E; (r) = Z El (akxeikl.r”'akxfe—_ikl -r) ’
k1

Q' (lattice)= Q" (1) =2 Qv’(ar,e™ *+ar,Te~ 7).
k1

Let #y,, 74,, and ng, be the mode occupation numbers
where the nonzero matrix elements of the operators are'”

(e, —1 l r; I ) =12,
(mrt1 l akiT I nry)= (m+1)42,

Just as in Sec. II, the three fields are assumed to be
coupled by a phenomenological interaction Hamiltonian

(21)

17 W. Heitler, Quantum Theory of Radiation (Oxford University
Press, London, 1954), Sec. 7.
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given by

d I
se=— / dx[zj:Ea(r)Ez(r)El(r)

+£:Ea(r)Ez(r)Q’(r)]

(22)
=—(1/4n)E2E;5(d'Q1'+dr’Ey)

XV (artartar,+ararar),

where k;+ks;=k;. Following Loudon,” we can deter-
mine the constants E;, =1, 2, 3, from the requirement
that for large values of #,; the expectation value of the
Poynting vector .S is given by

(ni| S| mi)= (&/4mvpe) (nii| Eo(2) Ei(x) | 01)
= homkiva,-/V ) (23)

where v,; and v,; are the phase and group velocities for
the undamped ith wave.
We find

Ed= Qnhewr/V) (05:0pi/¢) . (24)

We want to find the net probability of a Stokes
scattering in which a signal quantum and an idler
quantum are created. We will assume that the sys-
tem is initially in state | %y mxmi,). The rate is given by
the Golden rule'®

27
W=f;2—[l (i1, a1, mag— 1[50 20y, Mg, i) |2

- l {ry—1, may—1, w1 !501 Rkyy Pksy ”ksﬂzj
Xé(wetwi—ws). (25)

If this transition rate becomes large compared with the
lattice damping rate, the system will develop a coherent
state composed of linear combinations of the states
l”kvnkzsnks>: Ink1+1s g t1, nkz—'1>: and }”kx— 1,
nr,—1, n, 1), In this case, the initial state can no
longer be described as |#4,,%,,7%,) and the Raman gain
cannot be computed using the Golden rule. We are
restricting ourselves to the case where the lattice
damping rate is large compared to W. Using Eq. (22),
W becomes:

W= 2x/#) (Ex,Er,V/4n)* (3 Q1+ drE,1)?
X I:(”h+ 1) (”kz+ l)nk;—nklnkz(”ka+ 1)]

X8(ws—wa—w1). (26)

For large values of #y,, this reduces to

W= 2w/ 1) (E2V /4m)*(dg' Q1 +d 5 Er)?
X8 (ws—w1—we) (B, +nr,4-1).  (27)

The mode-occupation number density
Pra="ni,/V (28)

18 Reference 17, Sec. 14,



1062 C. H.

will satisfy the continuity equation

dpr;  Opi, Opry, W
e e (29)
a ot x V
In the steady state dpz,/9¢=0,
dpr, W 1 /W
=—= —<——>sz5 82Pks - (30)
dx gV vge\myp,

Thus the parametric gain gs is given by W/n,040. For
large 74, this term is independent of #y, and is given by

2w (ELV\? E; 2
g2=—~( ) <dE"—+dQ'> Q12 Eg’ny,
72\ 4w Q

’
1

1
X (ws—we—wr)—. (31)

Vg2

The final state damps out with rate I';. In this case we
must replace §(w;—ws—w;) by a normalized Lorenztian
of width I'; at half-maximum!:

i0y/m
(ws—wae—w1)?+ (3T1)? '

Making use of Eq. (24) to evaluate Es* and using Eq.
(31), we find the maximum value of the Raman gain
to be

(32)

6(&)3—‘ w2—w1) —

@am e B i . (53)
T c? 1 1
In Appendix C we show that
Q2/T1=2rhwp?/o TV, (34)
and in Appendix D we show that
E1/Q1= (w’—wr’)/wF. (35)

Using the relations vpe=ws/ks and Egny,= A3 (45 was
defined in Sec. IT), we find exactly the same expression
for the parametric gain as was derived in Sec. II.

A w90 p? /wo2—w12

Eoc?wiT \ o p?

2
(g2)max= dE"i"dQl) . (18)

For a real solid, the Lorentz oscillator model de-
scription of the infrared resonance holds only near the
resonance frequency wo. In order to take the infrared
absorption properly into account, we must allow the
damping constant and the resonance frequency wo to
be frequency-dependent.? It is this frequency-depen-
dent value of T' which must be substituted into Eq.
(35). Generally, T' will only vary by a factor of less than
10 over the near-resonance region of interest to us and
the frequency dependence of wo is negligible.

18 Reference 17, Sec. 18.
20 A, S, Barker (private communication).
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IV. DISCUSSION
A. Numerical Computation of Parametric Gain

The spontaneous Stokes Raman-scattering cross
section is given by W/NV, where N is the number of
primitive cells per cm?, multiplied by the density of
states for photons with wave-vector k, and divided by
the incident-laser photon flux S3/Aw;. According to
Eqgs. (27) and (30)

do gz(nkl-i-l)kzzhwa
dwdQ  NS;(r)®

(36)

Equation (36), together with Egs. (5) and (15), could
be used to compute the Raman-scattering cross section
for various scattering angles § (defined in Fig. 1).
Alternatively, we can measure the Raman-scattering
cross section and use Eq. (36) to estimate gs. At large
angles, the Raman-scattering peaks at the lattice
resonance frequency wg and has a linewidth I'. Therefore

(do/dQes) max= (do/dQ)we2/7T . (37)

Barker® has measured N(do/dQ)wo to be (0.240.1)
X 1078 cm™ sr! for GaP using a helium-neon 6328 A
laser. Evaluating Eq. (35) and using I'=4 cm™, we
find go(wo)max=1.24X107% cm™X.S3 cm?, where S; is
measured in W/cm?. The frequency dependence of
ga(w1) max according to Eq. (17) is given by

(38)

wlP—wit dg’ )2 wol’
]

g2(wl)max=g2(‘*’0)mﬂx( o I‘(w ) .

T
wp?  dq

The quantity gs(w1)max/g2(wo)max is plotted in Fig. 2
for gallium phosphide assuming I'(w;)=T, using

(dg’/d@l)woz/wpz= —1.89

as determined by Faust and Henry.* As shown in Fig.
2, the parametric gain (gs)max is slowly varying and
exhibits virtually no variation very near resonance
where oy, the infrared absorption coefficient also plotted
in Fig. 2, becomes resonantly large. The variation of
(g2) max near resonance results primarily from the con-
structive and destructive interference of the two terms,
proportional to dz’ and dg’, which contribute to the
nonlinear susceptibility. This interference causes
g2(w1)max to go to nearly zero at w;=250 cm~L. [The
term neglected at the end of Appendix A keeps (g2)max
from going exactly to zero.] As shown in Fig. 1, phase
matching in gallium phosphide is possible only for w;
between 305 and 366 cm™. The relative gain curve
g2(w1)max in Fig. 2 is drawn as a solid line over this
energy range.

B. Ratio of Infrared Light to Visible
Light Generated

While the resonant behavior of the infrared absorp-
tion does not affect the parametric gain (g2)max, it
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greatly influences the production of infrared light. We
can easily calculate the ratio of infrared and visible
light produced in parametric amplification. In each
scattering event, an idler quantum as well as a signal
quantum is produced, but the idler quanta are simul-
taneously damped out at rate I'y=a1/v,. The net rate
of production of idler quanta will be

7'L1= W— I‘lnl s (39)
where W is the transition rate which according to Eq.
(30) is given by govgoms. Equation (39) may be re-
written as

ﬁ1= 82Vgotle— 010171 « (40)
But we may also write 7; as
Nny= 19171 (41)

Combining Eqgs. (40) and (41) gives us the ratio of
vm1 and v,oms. Using this ratio, we find that the ratio
of the ratio of Poynting vectors of the idler wave and
signal waves is

S1 #1wgw1 g2 w1
Bt P (42)

This result could have been derived starting with Eq.
(7), but with much more labor.** As w; approaches the
lattice resonance frequency, wo, gz changes slowly, so
that the signal flux that can be generated will remain
roughly constant. On the other hand, o« increases
enormously near resonance, so that .Si/S: and con-
sequently the amount of light generated at the idler
frequency will be greatly reduced near resonance.

APPENDIX A: DERIVATION OF EQ. (15)

Neglecting g; and using Egs. (12) and (14), we may
rewrite the secular equation (11) as

(.1)12(022114312

(2Ak—1ige)=
: 64]82
ZdE/dQIwP‘z sz /62]212
X [dw+ + ew)dw] /
D(wl)* D(wl)*\ w12

w2 w? wp?
kil——ep—— -

—1
) . (A1)
¢ ¢2 D(w)*
The first bracketed term in the denominator on the

21 By starting with the last two equations of Eq. (7), eliminating
Q1'*, neglecting #, and solving for 4,*/4,, one can show that

S1/S2= (w1/ws)ga/2k1 1",

where k7 is defined in Appendix B. This is, for all practical
purposes, the same result as Eq. (42).
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right side of Eq. (A1) can be rewritten as
w? (k2— (wi?/c?) €x)
be——ef=—————— " D(w)en*, (A2
P Day* (w1)pm (A2)

where the resonant denominator D(w;)py is defined by

wp2

((*/wr’)ki— €x)
[D(wy)pm ™ is resonant when (wi,k;) lie on the un-
damped polariton dispersion curve shown in Fig. 1.
Using Eq. (A2), Eq. (A1) becomes
D (wl)*dE'2
sz2D (wl)pM*L((cz/wf)klz— ew)wp"’
2dg'dy’

+ +

(¢ w)kr’— e.)

We expect d¢’ and dx’ to be of the same order of mag-
nitude. For example, Faust and Henry* found

dq'/dy' = —0.28 (A5)

for gallium phosphide. As long as dq’ is not negligible
compared with dz’, the square-bracketed term on the
right side of (A4) will be slowly varying. The resonant
behavior of g» will be determined by the resonant
denominator D(wi)pm™*. The maximum value of g,
occurs at resonance when (wi,k;) lie on the undamped
polariton dispersion curve and

Pk /i’ — e =wp/ (wi—wr?). (A6)

Rewriting the square-bracketed term on the right side
of (A4) and using Eq. (A6) [which is a good approxi-
mation for (wi,k:) near the undamped polariton dis-
persion curve], we get

[ D'(wl) *dg? 2dE'dQ’
L do?
wr[(odki—e] [(odbi—e] }
wol— w2 2 il fwt—wi?
z(dﬂ' =de') il 1>dE'2. (A7)

wp? wpz\ wp2

D(wy)pm= [woz— wlz:l—iwlI‘. (A3)

w22|A3]2wp2 l—

(2Aak—ige)=

dez] . (A9)

The contribution of the second term on the right side
of Eq. (A7) to g» is negligible except when the first term

goes to zero as a result of cancellation of the two terms

within the braces. Even in this case, the contribution

of the second term will be small. We will neglect this

‘zerx;l. Substituting Eq. (A7) into Eq. (A4) gives Eq.
15).

APPENDIX B: PARAMETRIC GAIN AWAY
FROM THE LATTICE RESONANCE

The argument given in Sec. II and in Appendix A
is adequate where one of the interacting fields is close
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to the lattice resonance and the other is at a frequency
at which the optical loss is negligible. It is easy, how-
ever, to generalize the result [given above as Eq. (14)]
to the case where both signal and idler are far from
resonance. The work should then reproduce standard
results on nonresonant parametric amplification given,
for example, by Bleombergen.?

To show this, we restrict ourselves to the case of
forward scattering, where the pump, signal, and idler
waves are all propagating in the same direction. In this
case,

Hn=g=g. (B1)
We allow e to be complex. Then the complex linear
wave vector of the signal wave is given by

(k20’+ik20,’) = (0022/62) €2.

Starting with the secular equation [Eq. (11)] and
proceeding as in Appendix A, it may be shown after
some algebra that to an excellent approximation the
secular equation can be rewritten as

(B2)

[Aks—i(g+ka) L AkHiGg+ 1) J—ar?=0,  (B3)
where
Aky=Fk1—E4"’ (B4)
Ako=Fko—Fkao, (BS)
wlz wP2
A ) (B6)
02 wo"’-—-wlz
w1F wp2 w12
kR = p————— — (B7)

2 (wl—w)? ¢ ’
wiwe?| 4 wp? 2
fos?| e,l/dE,,r dd>. (B8)
PRI 2

wo —w

Here k," is the real part of the propagation constant
for the wndamped polariton curve and k"’ has the
frequency dependence of the imaginary part of the
undamped polariton curve in the limit wel'— 0. The
quantities Aky and Ak, are phase-mismatch parameters.
2ap is the parametric gain in the absence of losses or
wave-vector mismatch. Since g is real, we have, from
the imaginary part of Eq. (B8),

Aky(3g+ka') = Aka(3g+R1"") (B9)

which, together with

Ak = Ak1+Ak2= ks"—klw— kzo, ) (B 10)
determines both Ak and Ak,.
We now quote the consequences of Eq. (B3):

1. Threshold: Setting g=0 and using Eq. (B9), we
22 Reference 5, p. 99, Eq. (4-58).
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get from Eq. (B3)
apt={[(Ak1)*+ (—r"")*]/Rer™ Yo ,

which is completely general, independent of whether or
not w; is close to wo.
2. Gain near resonance: Setting 2,"">>g, k', we get

= —2ka" +2ap?k: " /[ (Ak1 )+ (ks)2]. (B12)

The second term on the right side of Eq. (B12) can be
shown to be the same as our previous expression for
the parametric gain near resonance given by the imagi-
nary part of Eq. (15).

3. Gain far from resonance: If ap, k;™, and ks’ are all
comparable, Eq. (B3) gives

= — (" b
:ERC[ (kl*”— kz”’—

(B11)

iARY+dapt 2, (B13)

which has the same form as the conventional expression
for the parametric gain discussed by Bloembergen.2
APPENDIX C: EVALUATION OF Q,?/T,

An energy density & for the idler wave will damp out
at rate I'y. That is,

&=—T,8. (C1)

This damping is produced by the dissipative force of
the oscillator and is given by

ulwr(Q"ay
(47)2Ne?
Tw,?
= —__Q 2 (nkl+%)

27w p?

Combining (C1) and (C2), and using e= %1 /v(1s,+3),
we find
Qll2

I‘l I‘w12 (nk1+%)

&= _NﬂI‘(Qz)av: -

(C2)

27w p? 8 27hw p?

- I‘le

(C3)

APPENDIX D: EVALUATION OF Q./E,

In our notation, the linear force equation for the
lattice wave is given by

Q1'+PQ1 +wo2Q1 =wp'E.

For a wave at angular frequency w;, according to Eq.
D1),

(D1)

01/ Er=wp*/ (wit—wl—iwT). (D2)

In evaluating [d# (E]/Q]_,)+dQ,], damping may be
neglected unless d¢’ is very small compared to dg’.
Neglecting the damping, we find

‘l"dQ:l
wel—wy?

E,
dEE—I+dQ'= [d (D3)

1



