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Theory of Parametric Gain near a Lattice Resonance

C. H. HENRY AND C. G. B. GARRETT

Bell Telephone Laboratories, Murray Hill, ¹w Jersey
(Received 22 March 1968)

The parametric gain is computed for the case of a cubic crystal having a single lattice resonance as the
frequency of one of the generated waves, the idler, is swept through the lattice resonance. It is found that
as resonance is approached, the nonlinear susceptibility and the infrared absorption at the idler frequency
both become resonantly large in just such a manner as to leave the parametric gain unaltered. A simple
expression is derived for the parametric gain both by solving the coupled-wave equations and by calculating
the transition rate for light scattering. The parametric gain is estimated numerically for gallium phosphide.

I. INTRODUCTIOH
' PARAMETRIC oscillation has been used by

Giordmaine and Miller' and by others" to gen-
erate visible and near-infrared light. In principle,
parametric oscillation could also be used to generate
far-infrared radiation. In this case, one of the generated
signals, which we will call the idler, would be close in
energy to the infrared lattice-absorption resonance of
the crystal. As the idler approaches the lattice reso-
nance, the absorption coeKcient at the idler frequency
becomes resonantly large, but so does the nonlinear
susceptibility describing the parametric amplification
process. ' lt is not clear what happens to the parametric
gain in this situation. In this paper, we compute the
parametric gain as the idler frequency is swept through
the lattice resonance.

We restrict our analysis to the simplest case, a cubic
crystal with a single lattice resonance such as gallium
phosphide. In the process of parametric amplification,
a pump wave is used to generate a signal wave and an
idler wave. ' We shall assume that the crystal is trans-
parent to both the pump wave and the signal wave,
but that the absorption coefficient for the idler wave is
large compared with the parametric gain. In practical
situations, the parametric gain will be of order 1 cm
For idler energies 160—780 cm ', the infrared absorp-
tion coeScient in gallium phosphide is greater than 10
cm ' at 300'K.' It rises to a peak value of about 4)& 10'
cm ' at the lattice resonance, which occurs at an energy
of 366 cm '. Our treatment will apply to gallium phos-
phide over this energy range. In this near-resonance
region, the idler quanta are both photonlike and
phononlike in character and are called polaritons. ~ 8

' J. A. Giordmaine and R. C. Miller, Phys. Rev. Letters 14,
973 (1965).

'S. A. Akhmanov, A. I. Korrygin, A. S. Piskaraltas, V. V.
Fadeev, and R. V. Khoklov, Zh. Eksperim. i Teor. Fiz. Pis'ma
v Redaktsiyu 3, 372 (1966) (English transl. : Soviet Phys. —
JETP Letters 3, 241 (1966)g.' L. B. Kreuzer, Appl. Phys. Letters 10, 336 (1967).

4 W. L. Faust and C. H. Henry, Phys. Rev. Letters 17, 1265
(1966). Our notation is the same as in this reference, except that
we have written the nonlinear constant dq as Ndq.

'M. Bloembergen, Nonlinear Optics (%. A. Benjamin, Inc. ,¹w York, 1965), Sec. 4.4.
'A. S. Barker, Phys. Rev. 165, 917 (1968).' J. J. Hopfield, Phys. Rev. 112, 1555 (1958).' C. H. Henry and J. J. Hopfield, Phys. Rev. Letters 15, 964

(1965).

The problem of calculating the parametric gain
near a lattice resonance has been previously treated
by Loudon, ' by Butcher, Loudon and McLean, ' and
by Shen. " Each of these papers presented a similar
but somewhat different expression for the parametric
gain. The purpose of our paper is to clear up the dis-
crepancies between these papers by deriving a simple
analytical formula for the parametric gain first by
Shen's method of solving the coupled-wave equations
and second by using Loudon's approach of calculating
the transition rate for the light-scattering process.

Our expression for the gain has a number of simple
features which are illustrated in Figs. 1 and 2:

(a) The maximum gain occurs for the case of wave-
vector matching ks= kt+ks, where ks is the wave vector
of the linear pump wave, ks is the wave vector of the
linear idler wave, and kt is the wave vector of the linear
idler wave calculated in the absence of damping. (This
was pointed out by Shen. ) The undamped kt (polariton)
dispersion curve is shown in Fig. 1.

(b) The peak gain (g&), is slowly varying with
idler frequency and is essentially unchanged as the
idler frequency is swept from several linewidths below
resonance onto the lattice resonance (see Fig. 2).

(c) The variation of parametric gain with the idler
frequency results mainly from the interference of the
two terms which contribute to the nonlinear suscepti-
bility. For gallium phosphide, this interference causes
the parametric gain to go to nearly zero at an idler
energy 4r& of 250 cm ' (see Fig. 2).'

(d) The ratio of the idler power to the signal power
is inversely proportional to the infrared absorption
coeKcient at the idler frequency. Because of this, the
amount of infrared light that can be generated becomes
negligible at the idler frequency approaches the lattice
resonance and absorption becomes large (see Fig. 2).

We use Shen's method to calculate the parametric
gain in Sec. II. Shen's" treatment is more general than
ours. When spatial dispersion and nonlattice infrared
absorption effects, included by Shen, are neglected, his
gain formula reduces to ours. (An algebraic error in his

' R. Loudon, Proc. Phys. Soc. (London) 82, 393 (1963).
P. N. Butcher, R. Loudon, and T. P. McLean, Proc. Phys.

Soc. (London) 85, 565 (1965).
u Y. R. Shen, Phys. Rev. 138, A1741 (1965).
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a r must also be corrected. ") The generality of his
treatment tends to obscure severa o e
stressed in this paper.

~ ~ ~

In Sec. III, we calculate the parametric gain using
Loudon's' method. %e take into account the frequency
dependence of the idler damping constant, which
Loudon neglected. This leads to a simpler expression
for the parametric gain.

ill not beThe method used by Butcher et a/." will not e
d' d. These authors neglected certain second

in ofderivatives of the 6eld amplitudes at the beginning o
their calculation. They failed to realize that their

close to the attice
resonance, where the infrared absorption coefficient
is very arge. is mi1 . Th' istake resulted in their deriving
an erroneous expression for the parametric gain near
the lattice resonance. The correct expression is in fact
a good deal simpler than that found by Butcher et al.

In Sec. IV, we relate the parametric gain to the spon-
taneous Raman-scattering eros s section discuss the

pfB
' f oducing infrared light, and numerically

estimate the parametric gain for gallium p osp i e.
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II. PARAMETRIC GAIN FROM COUPLED-
WAVE EQUATIONS

We will assume that the pump, signal, and lattice
ld pl . Th p p pht d i fi d

while the other fields may grow (or decay) exponenti-
ally. Accompanying the electric field E(~i) at t e i er

x)04frequency co& is af s& is a transverse optical lattice wave Q(»).
1 lar eThe uantity Q(cur)/E(») becomes resonant y arge

as eo& approaches oro, the resonant frequency of the
lattice. %le write these fields as

E(idler) =E(rei)+c.c.=/fre""&'-"&'&+»' c.c. ,
Q(lattice) = Q(hei)+c.c.=Qie'& "-"&"+'r" c.c.

The coupled-wave equations and the force equation
for the lattice oscillator Q(rut) are given by

Lvs+ (o '/c') es]E((os) = —(4~~s'/c')

XI (& =~a—~i)
P"+(o) '/c') e„]E((oi)= —(4s a&i'/c') (2)

XI (&i= ops ros),

/ D(»)Q(~i) = eE(»)+~"(~i=~s—~s)

—~ r. «N1& is the lattice dis-( )= ~
— — Q(, '

placement within the primitiv, p
'' '

e cell is the reduce
mass, and e is t e c arzed

'
th h rge associated with the transverse

optical lattice mode.
"and of Bloem-Following the approach of Kleinman" and of B oem-

bergen, ' we assume14 that there exists a phenomeno-

2h. y23 listed by Shen after Eq. (6) is too large by a factor of 2.
"D.A. Kieinman, Phys. Rev. 126, 1977 (196 }.
"Reference S, Sec. 1.3.
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adhere X is the number of primitive cells per cm'.
Garrett" has shown, using an explicit anharmonic
oscillator model which reproduces the optical non-
linearities of the crystal, that dg and d@ are slowly
varying and may be taken as real and constant for the
experimental frequency ranges we have in mind, i.e.,
160 &co»&780 cm ' for gallium phosphide. These
assumptions have been verified experimentally by
Faust and. Henry, 4 who were able to 6t their measured
resonant frequency dependence of the nonlinear sus-
ceptibility 8"L(&u2)/E(orl)E(res) assuming dlr and dq
to be real and constant. The nonlinear susceptibility
constants d@ and dg are actually third-order tensors.
For a cubic material like gallium phosphide, these
tensors are determined by one parameter. The tensor
notation adds nothing important to the problem and
will not be included. The relative magnitude of the
nonlinear polarization for various polarizations of
E(s&l), E(a»), and E(~2) has been discussed by
Loudon. "

Equation (2) can be solved only by equating the
exponents on each side of the equation. This gives

kl+ks ——ks,
Y»= Y2= T'.

We may simplify notation by deining several new
symbols:

dq'=dq/e,

dg =47)'dg,

cops = 4''e2/y,

Q,'= 42recVQl.

The coupled amplitude equations then become

d g'A 2A l~+ d q'A 2Ql'*

+Les —(c'/ul') (k2—2y)')A2 ——0)
t'2„—(cs/oll2) (kl+iy)2)A 2*+Ql"+der'A 2*A 2 0, ——

—Mp Al +D(Ml) Ql —(Op dq As As=0.
This leads to the secular equation

dg'3 3 dq'A3

e„—(C'/col') (kl+sy)' 1

D(o»)'/el p'

22—(co22/cs) (ks—iy) 2

=0.
—dgA3*

e deine the parametric gains gg and g» of the signal
and the idler waves as twice the projection of y along
the propagation directions k2 and. kl ..

g2=2k, g,
(9)

gl —=2kl y.

Neglecting terms of order p, we may write

(k2 iy)2=—k22 iksg2,—
(kl+iy)2= kl'+iklgl.

Tile secular equation (8) thus establishes a relation
between g» and g~. Expanding the secular equation, we

have

I
k22——22

I

—ikcs

(&2
+ il —sl"+kcl

I

EC2 )
(11)

(012~22 2d g dq N p

D(oil)*

My c k» tc k»g»—e„+ dq~
D(tel)* &2 222

where

is the linear dielectric constant at e». We now assume
that the damping of a undriven (linear) wave at the
idler frequency is large, so that k»g» can be neglected
compared to (o»'/c')el". We also neglect the klgl term
on the right side of Eq. (11) since this term is small
compared to

I
kl2 —((ol2/cs) e„j

in the near-resonance region which we are considering.
Having neglected gl, we can solve Eq. (11) for gs.

Neglecting any imaginary component of e2, the linear
wave vector for the signal wave k» is de6ned by

ksr,'= ((us'/c') 22.

For k&=k&L, we may write

k2 (&2 /& )22 (ks k2Ir) (k21k2Ig) 2+k2k2 y (14)

where Ak2 is the nonlinear change in wave vector of the
signal wave. Using these approximations, @re show' in
Appendix A that Eq. (11) can be rewritten to an
excellent approximation as

G022M g~

(2hks —sg2) =
I
A2I'

kmc'

((g22 rel2 2

x I ~, +aq' D(~l) pM*. (15)
~p2

The resonant denominator D(o») pM is given:
el= el +221 = 2~+&p /D(esl) (12)

» G. G. B.Garrett, IEEEJ.Quantuln Electron. QE-4, 70 (1968).
~2 R. ~udon, Advan. Phys. 13, 423 (1964); 14, (E)621 (1965).

D( )pM=(
csk12/&F12

—~22
I
—~,1'. (16)

r
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The real part of D(rut) is zero when

a)t f o)p
kts= —

l e„+
cs E too —tots)

given by

dg
(17) aC= — dx Es(r)Es(r)Et(r)

4~

that is, when (~t,kt) lie on the undamped polariton
dispersion curve plotted in Fig. 2. This is the condition
for the maximum gain, if the resonance is narrow. In
this case, the maximum gain is given by

o)sso) ps
l
g s l

s
f a) ss (op

(gs)-= d~'+do' . (18)
ksc rotI i o)p

If the resonance is broad, the maximum gain is found
by computing the imaginary part of Eq. (15).Accord-
ing to Eq. (15), 8ks ——0 when gs is a maximum, for a
narrow resonance.

III. PARAMETRIC GAIN FROM TRANSITION-
RATE THEORY

In conventional treatments of parametric ampli-
6cation away from a resonance, the parametric gain
is written as a function of the idler damping coefficient
and of the wave-vector mismatch. We cast our solution
into such a form in Appendix B.There we also derive
an expression for the gain which holds both near and
away from the lattice resonance.

Consider a volume V with linear dimensions small
compared with 1/gs. Let ak,t and ak. be the creation and
annihilation operators for the pump wave with wave
vector ka. Similarly, let a»~, aI,» ul„t,and ul„be the
creation and annihilation operators of the signal wave
and the idler wave. These operators satisfy the com-
mutation relations'~

I

+ Es(r)Es(r)Q'(r)
4x

(22)
= —(1/4s)EsEs(do'Qt'+dg'Er)

X V(ak) aks ak)+ak)aksak) ) )
t

where irk+Its=hs. Following Loudon, ' we can deter-
mine the constants E;,i = 2, 2, 3, from the requirement
that for large values of n~,. the expectation value of the
Poynting vector 5 is given by

(n; l sl e;)= (c'/4)rt)„)(nk; l Eg(x)E, (x) l ek;)
= Ao)nk;t)o, /V, (23)

where vo; and t)„arethe phase and group velocities for
the undamped ith wave.

Ke 6nd
E"=(2 k /V)(. '.%') (24)

We want to 6nd the net probability of a Stokes
scattering in which a signal quantum and an idler
quantum are created. We will assume that the sys-
tem is initially in state

l nk, ek,nk, & The r.ate is given by
the Golden rule"

2'
W= El (e—„+1,n„+1,n„1l&—Ink„n„,n„&ls

A2

l (n„—1, e„——1, n„+1lacle„,n„,e„&ls5

X~(o)s+tot &s) ~ (25)

fak))ak) 5 ~k)k) ) I) J= 1) 2) 3,

The 6elds may be written as

E(pump) =Es(r) =p Et(ak,e'~"+ak, te '~s'),

E(signal) =Ex(r) =Q Es(ak, e*""+ak,te '«")'-
kp

E(idler) =El(r) =p Eg(ak, e)k) r+ak, te-e) r)
kg

(19)
If this transition rate becomes large compared with the
lattice damping rate, the system will develop a coherent
state composed of linear combinations of the states

l nk»nk»nk, &) l nk, +1,nk, +1,nk, 1&, a—nd l ek, —1,
nk, —1, nk, +1). In this case, the initial state can no
longer be described as

l nk„ek„nk,) and the Raman gain
cannot be computed using the Golden rule. %e are
restricting ourselves to the case where the lattice
damping rate is large compared to W. Using Eq. (22),
8' becomes:

Q'(lattice) = Q'(r) =p Qr( ake)'~"+ak)te 'k)') .
kg

Let ek„nk„andnk, be the mode occupation numbers
where the nonzero matrix elements of the operators are'~

(nk, —1l ak,. ink,.)=eke,
(ek,.+1lak,. ink, .)= (ek.+1)'".

Just as in Sec. II, the three 6elds are assumed to be
coupled by a phenomenological interaction Hamiltonian

W= (2'/ks) (Ek Ek,V/kr)s(da'Qk'+dzEt)s

X Dek,+1)(nk, +1)ek, ek,ek, (e—k,+1)5
X~(o)s—ros —&t) (26)

Por large values of eA,» this reduces to

W= (2s/tss)(EsV/4n)'(d, 'Q '+dz'R)'
Xb(~s—~t—~s) (nk, +n..+1) (27)

The mode-occupation number density

(28)
"W. Heitler, QNalt»m Theory of Radjaiiog (Oxford University

Press, London, 1954), Sec. 7. "Reference 17, Sec. 14.
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dp~, ~pa, Bpp, S'
Sg2-

Bx V

In the steady state Bp&,/BI=0,

Bpp, W 1 W)
Ipj,= gopA:, .

Boo oooV woo np, j

will satisfy the continuity equation

(29)

(30)

IV. DISCUSSION

A. Numerical Computation of Parametric Gain

The spontaneous Stokes Raman-scattering cross
section is given by W/&VV, where E is the number of
primitive cells per cm', multiplied by the density of
states for photons with wave-vector k& and divided by
the incident-laser photon fiux Sp/A&op. According to
Eqs. (27) and (30)

Thus the parametric gain gp is given by W/mop, o. For
large n~„this term is independent of nA, , and is given by

do go(mo, +1)kp'Atop

kadQ ESp(2~)'
(36)

The anal state damps out with rate F~. In this case we
must replace 5(&ap —or& —a») by a normalized Lorenztian
of width F~ at half-maximum":

—',rt/m
8((a,—oo,—rot) ~

(top —top —») +(oP&)
(32)

Making use of Eq. (24) to evaluate Eo' and using Eq.
(31), we find the maximum value of the Raman gain
to be

2~(E V o

g&=
I

d& +dQ Qt Ep +18
h' k 4~ Qt'

1
X&(~p—too—rot)—. (31)

Equation (36), together with Eqs. (5) and (15), could
be used to compute the Raman-scattering cross section
for various scattering angles 0 (defined in Fig. 1).
Alternatively, we can measure the Raman-scattering
cross section and use Eq. (36) to estimate g&. At large
angles, the Raman-scattering peaks at the lattice
resonance frequency ~p and has a linewidth I'. Therefore

(do/dQdto) = (do/dQ)top2/a. P. (37)

Barker" has measured E(do/dQ)pop to be (0.2&0.1)
X 10 ' cm ' sr ' for GaP using a helium-neon 6328 A
laser. Evaluating Eq. (35) and using I'=4 cm ', we
find go(top)~~=1. 24X10 o cm 'XSp cm', where Sp is
measured in W/cm'. The frequency dependence of
g&(cot)~,„according to Eq. (17) is given by

too V e~, Et ' Qt'
Epopt. —ds —+ dq

C Ql Pt
(go)--=

2'

In Appendix C we show that

Q,'/P =2 k ~'/, I'V,

and in Appendix D we show that

(33)

(34)

(top —toP d@ ) ropP

gp(~t)--= go(~o)- I +1
I

(38)
oo p do ) cotP (Cot)

The quantity gp(») .„/g&(pop) is plotted in Fig. 2
for gallium phosphide assuming P(») =P, using

(dz'/do')~o'/~z' ———1.89

Et/Qt= (~o' —~t')/~P. (35)

Using the relations v po= coo/ko and Egeo, ——Ap (A3 was
defined in Sec. II), we find exactly the same expression
for the parametric gain as was derived in Sec. II.

(go)max= dE +do
I

~

koc MtF tor )

For a real solid, the Lorentz oscillator rn.odel de-
scription of the infrared resonance holds only near the
resonance frequency cop. In order to take the infrared
absorption properly into account, we must allow the
damping constant and the resonance frequency 4)p to
be frequency-dependent. " It is this frequency-depen-
dent value of F which must be substituted into Eq.
(35). Generally, P will only vary by a factor of less than
10 over the near-resonance region of interest to us and
the frequency dependence of ~p is negligible.

» Reference 17, Sec. 18.
'o A. S. Barker (private communication).

as determined by Faust and Henry. 4 As shown in Fig.
2, the parametric gain (g&),„

is slowly varying and
exhibits virtually no variation very near resonance
where n~, the infrared absorption coefficient also plotted
in Fig. 2, . becomes resonantly large. The variation of
(go) near resonance results primarily from the con-
structive and destructive interference of the two terms,
proportional to dg' and d@', which contribute to the
nonlinear susceptibility. This interference causes
go(co&)~ to go to nearly zero at opt=250 cm '. [The
term neglected at the end of Appendix A keeps (gp)
from going exactly to zero. ) As shown in Fig. 1, phase
matching in gallium phosphide is possible only for cv&

between 305 and 366 cm '. The relative gain curve
gp(»)m~ in Fig. 2 is drawn as a solid line over this
energy range.

B. Ratio of Infrared Light to Visible
Light Generated

While the resonant behavior of the infrared absorp-
tion does not affect the parametric gain (go), it
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greatly in6uences the production of infrared light. We
can easily calculate the ratio of infrared and visible
light produced in parametric amplification. In each
scattering event, an idler quantum as well as a signal
quantum is produced, but the idler quanta are simul-

taneously damped out at rate I'l=rrl/v, l. The net rate
of production of idler quanta will be

right side of Eq. (A1) can be rewritten as

1012 (kP —(oiP/C2) 0„)
kl' ——el*—— D(oil)1M*, (A2)

c2 D(-.)*

where the resonant denominator D(101)pM is defined by

nl= 8'—I lni, (39) D(&1)PM &0
('/ ') '—.)—oi P —ioi,I'. (A3)

where lV is the transition rate which according to Eq.
(30) is given by gsv, sN2 E.quation (39) may be re-
written as

(40)nl gg g2+2 &1&yl+1 ~

But we may also write ril as

ril gl&gi+1 ~

Combining Eqs. (40) and (41) gives us the ratio of

e,lnl and e,2n2. Using this ratio, we 6nd that the ratio
of the ratio of Poynting vectors of the idler wave and
signal waves is

S]. +],&g]&1 g2 1 g&1

S2 N2&02~02 &1+gl 002 rr1~02

APPENDIX A: DERIVATION OF EQ. (15)

This result could have been derived starting with Eq.
(7), but with much more labor. "As tet approaches the
lattice resonance frequency, ~0, g2 changes slowly, so
that the signal Qux that can be generated will remain
roughly constant. On the other hand, o, increases
enormously near resonance, so that Sl/Ss and con-
sequently the amount of light generated at the idler
frequency will be greatly reduced near resonance.

LD(oil) pMj ' is resonant when (col,kl) lie on the un-
damped polariton dispersion curve shown in Fig. 1.
Using Eq. (A2), Eq. (A1) becomes

0122~ 22)200ps D (oil) *dii'2
(26k ig—s) =

ksc D(Gl )1pM ((c /c01 )kp —e~)00p'

2dg dg
+do" . (A4)

((c2/00p)kp 0 )
We expect d@' and dz' to be of the same order of mag-
nitude. For example, Faust and Henry found

dq /d@ = —0.28 (A5)

for gallium phosphide. As long as dg' is not negligible
compared with dz', the square-bracketed term on the
right side of (A4) will be slowly varying. The resonant
behavior of g2 will be determined by the resonant
denominator D(o~l)pM*. The maximum value of gs
occurs at resonance when (&ol,kl) lie on the undamped
polariton dispersion curve and

c kl /top —e~= cop /(r00 —~p) . (A6)

Rewriting the square-bracketed term on the right side
of (A4) and using Eq. (A6) Lwhich is a good approxi-
mation for (~i,kl) near the undamped polariton dis-
persion curve), we get

00pot22
I
A 2 I

'
(26k —igs) =

C4k2 +do'
I

—
I

[d~". (A&)
o~ p2 ) &0ps k (0ps J

2dir dq 00P pep (c kl
X A"+ +

D(G)i) D(101) k (01
The contribution of the second term on the right side
of Eq. (A"/) to g2 is negligible except when the first term
goes to zero as a result of cancellation of the two terms
within the braces. Even in this case, the contribution
of the second term will be small. We will neglect this
term. Substituting Eq. (A7) into Eq. (A4) gives Eq.
(15).

(
+12 ~12 (gP2

012——~ ——— (A1)
c' c' D(101)*

The Grst bracketed term in the denominator on the

Neglecting gl and using Eqs. (12) and (14), we may
rewrite the secular equation (11) as Q

l;P("/;)kP —..] L("/:)k, —..j

"By starting with the last two equations of Kq. P), eliminating
Q1'~, neglecting y, and solving for A1~/Ar, one can show that EN X ' PARAMETRIC GAIN AWAY

FROM THE LATTICE RESONANCE
1 1= (Cl&1 &2 g'1 1

where k t" is 1leiine1i in Appendix B. This is, for all practical The a gument given in Sec. II and in APPendix A
purposes, the same result as Kq. (42). is adequate where one of the interacting fields is close
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8~=82=8. (81)

VVe allow ~2 to be complex. Then the complex linear
wave vector of the signal wave is given by

to the lattice resonance and the other is at a frequency
at which the optical loss is negligible. It is easy, how-
ever, to generalize the result [given above as Eq. (14)]
to the case where both signal and idler are far from
resonance. The work should then reproduce standard
results on nonresonant parametric ampli6cation given,
for example, by Sleombergen. 22

To show this, we restrict ourselves to the case of
forward scattering, where the pump, signal, and idler
waves are all propagating in the same direction. In this
case,

get from Eq. (83)

np'= {[(d,kr)'+(kr ")']/k, t")k,o", (811)

which is completely general, independent of whether or
not co~ is close to sup.

2. Gain near resonance: Setting k~ "&&g, k~o", we get

g= —2koo"+2np'kr'"/[(Akr)'+ (krt")'] (812)

The second term on the right side of Eq. (812) can be
shown to be the same as our previous expression for
the parametric gain near resonance given by the imagi-
nary part of Eq. (15).
3. Gain far from resonance: If np, k~~", and k~o" are all
comparable, Eq. (83) gives

(km'+ikoo") = (oooo/c') eo.

Starting with the secular equation [Eq. (11)] and
proceeding as in Appendix A, it may be shown after
some algebra that to an excellent approximation the
secular equation can be rewritten as

which has the same form as the conventional expression
for the parametric gain discussed by Bloembergen. "

(82) g= —(krt"ikoo")
& Re[( k,

t" ko"—iAk—)o+4npo Jio (813)

[Ak,—o(-',g+koo")][Akr+o(og+kr ")]—np'=0~ (83)

where

APPENDIX C: EVALUATION OF Q, 'o/1. ,

An energy density b for the idler wave will damp out
at rate I'~. That is,

6k'= k).—kg~',

hk2=k2 —k2o,

cor r oop
kr' =——

/
e.+

co k (oo —
d'or )

(C1)8= —I'g8.

(86), ~1' '(Q")-
g= —X&r(qo).„=-

(4or)'Xe'

(84)
This damping is produced by the dissipative force of
the oscillator and is given by

GOD
krt'krt"=+

COg

(oooo rolo)o c2
(8&) I'eq2

Qr" (»i+a) (C2)
2gMP2

2~~6)pQ, o 2orro po h

I', I'roro (»,+-', ) I'd'or V
Here k~~' is the rea/ part of the propagation constant

for the Nnduowped polariton curve and. krt" has the
frequency dependence of the imaginary part of the
undamped polariton curve in the limit copI'-+0. The
quantities b k~ and rM~ are phase-mismatch parameters.
2nP is the parametric gain in the absence of losses or
wave-vector mismatch. Since g is real, we have, from
the imaginary part of Eq. (Bg),

(C3)

APPENDIX D: EVALUATION OF Q, '/E,

In our notation, the linear force equation for the
lattice wave is given by

Qr'+rQr'+~o'Qr'= rop'R. (D1)

d'or'ooo'
) A o (

'(
(Bg) Combining (C1) and (C2), and using e= hro&/rt(», +q),

4c4kr'koo' & ~o'—~P w'e Gnd

Akr (-',g+ koo") = Ako(-,'g+ kit"),

which, together with Qr /+r =oop /(roo —oor —ooorI ) . (D2)

(89) For a wave at angular frequency cur, according to Fq.
(D1),

b,k= Akr+Ako= ko—krt' —koo',

determines both hk~ and b,k2.
We now quote the consequences of Eq. (83):

1. Threshold: Setting g=o and using Eq. (89), we ~P2
dg +do = d'8 +do

I
1 COp —(d y

(D3)
o' Reference 5, p. 99, Eq. (4-58).

(810) In evaluating [dz'(Er/Qr')+do'], damping may be
neglected unless dg' is very small compared to d&'.
Neglecting the damping, we find


