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A.- x Conversion and the Hypertriton*
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The binding energy of qII is calculated using a Faddeev-type multiple-scattering formalism. The sects
of virtual A-Z conversion via hS ~ ZE are included in a full two-channel representation of the YE inter-
action. Nonlocal separable, S-wave, spin-dependent potentials are used for each two-body interaction.
Calculations are performed for two sets of lo'w-energy AX scattering parameters and two different sym-
metry models for the YÃ potential. The introduction of A-Z conversion in the YÃ spin-triplet channel
increases the binding energy. The binding is decreased by the use of A-Z conversion in the YE spin-singlet
channel. When incorporated into both YE spin channels, the eBect of A-Z conversion is to reduce the qH'
binding energy.

I. INTRODUCTION

'HIS paper is one of a series' ' in which the
A.-nucleon (A1V) interaction is investigated by

means of the Faddeev equations4 applied to the hyper-
nucleus qH'. The purpose of these investigations is to
find an appropriate set of nonlocal separable (NLS)
potentials which 6ts the low-energy hE scattering data
and the binding energy of &H'. In this paper the e8ect
of virtual A-Z conversion on the binding energy of the
hypertriton is examined.

Recent studies of the AS interaction in hypernuclei
with A&3 have been complicated by the existence of
charge symmetry breaking (CSB) forces, ' possible
three-body ASS forces, ' and in certain cases suppres-
sion of A-Z conversion due to isospin conservation.
Because the third component of the ~H' isopin is zero,
CSB effects cancel out. In addition, the calculations of

Gal, ' and of Bhaduri, Loiseau, and Nogami have indi-

cated that the three-body ASS forces play only a
minor role in the loosely bound &H' system, so that a
phenomenological treatment of them is not unwar-

ranted. With the inclusion of the Z channel in the

problem, isospin must and can be explicitly taken into
account.

For free AS scattering' and for the AS interaction
in light hypernuclei" a single channel (the A channel),

* Work supported in part by the U. S. Atomic Energy Com-
mission Contract No. AT(04-3)-136, Report No. USC-136-131.

f Gillette-Paper-Mate Fellow.
' J. H. Hetherington and L. H. Schick, Phys. Rev. 139, 31164

(1965).
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'L. D. Faddeev, Zh. Kksperim. i Teor. Fiz. 39, 1459 (1960)
LEnglish transl. : Soviet Phys.—JETP 12, 1014 (1961)g; Dokl.
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energy-independent, AS potential is usually used. One
effect of taking AZ conversion explicitly into account is
to make the AS potential energy-dependent. A second
eGect is to change the single-channel AX potential into
a 2X2 YE(Y=A,Z) potential matrix whose diagonal
(off-diagonal) elements represent the potential for
YE &+Y'Ar wi-th Y= Y'(Y& Y')."This is known as the
two-channel model. A third eGect is to introduce a
three-body ASS force via AS~AS, followed by
ZS' ~AS', where Sand S' are different nucleons. The
ASS potential may also be handled in a one- or a two-
channel model.

The sects of A-Z conversion on the binding energy of
the hypertriton have been previously considered by
Rajasekaran and Biswas, '2 Vashakidze and Chilashvili, "
and BLN.'4

Rajasekaran and Biswas used a two-channel AS
model with NLS potentials and global symmetry to
determine the AS ~AS scattering lengths and effective
ranges. In their variation calculations of hypernuclear
binding energies, however, they merely used single-
channel, energy-independent local AS potentials ad-
justed to yield these same low-energy scattering
parameters.

Vashakidze and Chilashvili also used NLS potentials
and global symmetry but with a full two-channel
formalism throughout. Within their model they ob-
tained an exact set of coupled integral equations for
the hypertriton, but in solving this set of equations the
angular dependence of part of the kernel was neglected.
According to their calculations, the net eGect of the Z
channel was a considerable reduction (from 4.6 to 2.9
MeV) in the binding energy of aHs. As global symmetry
yields low-energy AS —+ AE scattering parameters in
disagreement with recent Ap scattering data and light

"The connection between these two effects is given in the
Appendix. The energy dependence is usually ignored because the
energy range of interest lies well below the ZN threshold."G. Rajasekaran and S.N. Biswas, Phys. Rev. 122, 712 (1961)."I.Sh. Vashakidze and G. A. Chilashvili, Dokl. Akad. Nauk
SSSR 157, 557 (1964) LEnglish transl. : Soviet Phys. —Doklady
9, 576 (1965)g.

'4 For other authors who have attacked this problem see BLN.
The results af these authors are contained in or are special cases
of the BLN work.
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hypernuclear-binding-energy analyses, the validity of
the results of this work and that described directly
above is suspect.

BLN, using dispersion theoretic techniques, calculated
the two-pion exchange contribution to the AXE po-
tential (i.e., A-Z conversion via one-pion exchange
repeated on two different nucleons). They used a
single-channel, energy-independent AXE model in
their calculations of the effect of the AXE forces on the
binding energy of &H' and &He'. The effect on the
hypertriton was calculated by the averaging of their
three-body potential over the gH' wave function of
Downs, Smith and Truong. "This wave function is one
obtained on the basis of a single-channel, energy-
independent AE potential. Their results indicate a
repulsive effect of about the same size ( 0.15 MeV) as
Bq, the binding energy of the A. in qH'.

The present calculation makes use of the Faddeev
multiparticle scattering formalism along with NLS
S-wave potentials to obtain a set of coupled, one-
dimensional, linear integral equations for the h.-deu-
teron spin-2, S-wave, elastic-scattering amplitude. Non-
relativistic kinematics were used in all calculations.
Within these limitations, an exact calculation of Bq
was made by 6nding the pole in the A-d scattering
amplitude. A full two-channel formalism for the inter-
action of the hyperons with the nucleons was used
throughout. No attempt was made to separate the con-
tributions to Bg of the different effects of A-Z conversion
described above.

Unlike the previous calculations described above, the
VE potential parameters used were not completely de-
termined by appeal to more fundamental considera-
tions. In each case considered in this work there was one
parameter left undetermined which was used to vary
the coupling between the FS A. and Z channels. For the
range of couplings for which calculations were per-
formed, the change in B~ never exceeded 65% of B~.

Section II describes the two-body calculations. The
hyperon-nucleon (VÃ) potentials were written as 2X2
matrices in each spin state. The AE potentials were 6t
to two sets of shape-independent parameters, one deter-
mined from the low-energy A-p scattering data" and
the other from the binding energies' of three- and
four-body hypernuclei. In addition, two symmetry
models were used to relate the ZX potential parameter
to the AÃ interactions. One assumed equal strength in
the I'X interactions and the other was based upon
restricted symmetry.

In Sec. III, the e6ects of A.-Z conversion in each spin
state of the I'S interaction on the hypertriton binding
energy are given. It mas found that the inclusion of
A.-Z conversion in the spin-zero (S=O)FE state alone

"B.W. Downs, D. R. Smith, and T. N. Truong, Phys. Rev.
129, 273Q {1963)."G. Alexander, O. Benary, U. Karshon, A. Shapiro, G.
Yekutieli, R. Englemann, H. Filthuth, A. Fridman, and B.
Schilby, Phys. Letters 19, 715 (1966).

gives a decrease in the ~H' binding energy, the inclusion
of A-Z conversion in the spin-one (5= 1)I'X state alone
gives a very slight increase in binding energy, and the
inclusion of hyperon conversion in both spin states
results in an over-all decrease in binding energy which
is larger than that calculated for the spin-zero case alone.

The mathematical details of the two-body calcula-
tions are covered in the Appendix.

II. TWO-BODY INTERACTIONS

All particles were taken to have spin ~~. The e and p
were assumed to be members of an isospin doublet;
the A., an isospin singlet; and the Z, an isospin triplet.
The two-body interactions were assumed to be charge
symmetric. Coulomb forces were neglected throughout
the work. The values used for the particle masses were
(in MeV) 3E~= 938.9, 3'= 1115.4, and Mz= 1193.0.

The two-body interactions were taken to be NLS
S-wave potentials of the Yamaguchi type. " In the
single-channel A.-deuteron scattering problem, ' the
ES 5-wave interactions were restricted to 5=1 by
isospin conservation. With the inclusion of the Z
channel, both spin-0 and -1 SS interactions must be
considered. The %PS=1 parameters were 6t to the
binding energy of the deuteron, ED=2.225 MeV, and
a scattering length of 5.39 F. The ES $=0 parameters
were 6t to a scattering length of —23.678 F and an
eGective range of 2.51 F.' Details of these calculations
may be found in Refs. 1 and 17.

The I E potential was written as a 2&2 matrix
in each spin state. For a given spin, the matrix element
of the I'E potential taken between two plane-wave
states of momenta k~ in hyperon channel A and k~ in
channel 8 is

(kg
~

V
~
kB)=XABWg(4)VB(kp) (A, B=A, &), (1)

where v~ = 1/(k~'+P~'). The notation 4i.—=Xqq, Xz
is introduced for convenience. Each

element of the potential matrix involves a range param-
eter p~ and a strength parameter X~. The entire poten-
tial matrix is block diagonal in the spin variable. The
YE isospin coordinate is ignored in the following dis-
cussion because the problem at hand restricts the total
isospin of the hyperon and nucleon to the I=

~ channel.
Details of the derivation of the I'E t-matrix from
the Lippmann-Schwinger equation are given in the
Appendix.

The dynamical input parameters to the two-body VE
calculations were the S=0 and 1, A.S scattering lengths
and effective ranges. Two sets of data were used and
are given in Table I. The result of Alexander et gl."
(referred to in Tables I—IV as AEA) was obtained as a

"Y. Yamaguchi, Phys. Rev. 95, 1628 (1954}."H. P. Noyes, Phys. Rev. 130, 2025 (1963); Phys. Rev.
Letters 12, 171 (1964). To enchance the effect of the NN S=O
interaction on BA, the most attractive interaction (i.e., the one
with most negative scattering length and smallest effective range)
of the S-wave singlet ep and ee interactions was used.
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TABLE I. Two-body AN low-energy parameters and
corresponding single-channel range parameter.

Input

AEA

Spin

0
1
0

eg (F)
—2.46
-2.07
—2.75—1.95

~+ (F)

3.87
4.50
2.98
8.42

~o-' (F)

0.8750
0.9359
0.7329
0.7527

for the spin-one channel and

& ~= i'o (9+y)l ~~, &z= i'o (1+9y)~Nor,

Xx=~(& (3—3y)ANN

(3)

'~ The scattering lengths and effective ranges given by Herndon
and Tang (Ref. 5} for their "H" potential are appropriate for the
A-p interaction only. The values given in Table I were calculated
from the CS potential parameters given for potential "B" in

Eq. (16}of the second paper listed in Ref. 5.
~ W. Gajewski, G. Mayeur, J. Sacton, P. Vilain, G. Wilquet,

D. Harmsen, R. Levi-Setti, M. Raymund, J. Zakrzewski, D
Stanley, D. H, Davis, E.R. Fletcher, J.E. Allen, V. A. Sun, A. P.
Conway, and P. V. March, Nucl. Phys. 81, 105 {1967).

"A. Deloff and H. W. Wyld, Jr., Phys. Letters 12, 245 (1964).

best 6t to the low-energy A-p cross sections in the
effective range approximation. The HTCS values are
those corresponding to the charge symmetric -part of the
A-N potential "H" obtained by Herndon and Tang, ' "
who used an exponential vrell outside a hard core to
fit the binding energies of the 5-shell hypernuclei and
the h, pscat-tering data. /Pote added in proof. Our cal-
culations for the HTCS scattering parameters were not
correct. The values for rj, are too small by 2.5%. The
use of the correct values would not change our con-
clusions. j As was shown in Ref. 3 (for no explicit Z

channel), the AEA parameters used with a single
attractive NLS potential for each AN interaction give
Bg in agreement with the experimental value of
0.20~0.12 MeV.20 Because the HTCS parameters were

determined from a local potential that included a hard
core, when a purely attractive NLS potential (again
with no explicit Z channel) is matched to these param-

eters, a too large value of Bz results. Thus, by the use of
both these sets of input parameters, any dependence of
the three-body results on the specific value of 8+ may
be seen.

In each spin state there were five parameters to be
fixed, the strength parameters ) ~, ) ~, X~, and the ranges

pg and pz. To determine these parameters, the perfect
SU3 symmetry model of Delo6 and Kyld2' was used.

Here, however, the potentials used were purely attrac-
tive and the AX eftective ranges as well as the scattering
lengths were taken as known. With this model pq= pz
=Pa ~, where P~N is the range parameter of the nucleon-

nucleon potential whose value in each spin state was

determined by the methods described above. From
Ref. 22 and Eq. (1) the FNstrength para'meters in

this model are related to X~~, the nucleon-nucleon

strength parameter, by

Xg= Xz=-,'(1+x)X~~, Xx=-s' (—1+x)),Nsr (2)

for the spin-zero channel. The parameters x and y were
fixed by fitting the appropriate A.N scattering length.
The singlet and triplet effective ranges were then calcu-
lated and found to be significantly smaller than they
should have been. For example, with S= 1 and u~ ——

—2.07 F, it was found that r~=2.50 F rather than
4.50 F as listed in Table I. Because of the assumption
of perfect SU3 symmetry and the use of potentials
without repulsive cores, no great significance is attached
to this failure to fit both the AE scattering lengths and
eGective ranges.

A "patched up" version of the above SU3 model
(e.g., one with the range parameter variable) that
allowed the desired agreement to be obtained was not
used. Rather, this model was discarded in favor of two
other, more blatantly phenomenological models. In
both of these, as a means of reducing the number of
undetermined parameters, the ranges in a given spin
state were taken to be equal and the resulting p was
left as a free parameter. The expression (A6)" for the
A1V-+AN t-matrix together with Eq. (A13) and the
standard eGective range expansion gave two relations
connecting the three X's. The models used to obtain a
third relation were an "equal-strength" model and a
model based upon restricted symmetry in the hyperon-
nucleon coupling constants.

The equal-strength model assumed that Xz——Xz—=X.
Kith this assumption Xz could be varied by allowing

P to vary As P .approached its maximum value Po (cf.
Table I and the Appendix), Xx would approach zero.
Hence, the degree of coupling between the hyperon
channels could be varied by changing P. The parameter

(4)

given in the tables was used as a measure of this
coupling. It was felt that this parameter rather than
some more direct measure of the coupling (e.g., the
ratio Xx/Xs) offered the best way to compare the results
of the two models used. Table II lists the parameters
corresponding to the equal-strength model which were
used in the three-body calculation.

The restricted-symmetry model was based upon the
field-theoretic calculation of hE and ZN scattering
carried out by de Swart and Iddings" to fourth order
in proper pion-exchange diagrams. According to their
calculations, if the Z-h. mass difference is neglected and
if, in the usual notation, fez = fzz (but unlike global
symmetry fzz~W fz&,), then

Vx = -,'43 (Vz —Vg) . (5)

Since it is assumed here that Pz=Ps=P, Eq. (3)
becomes

Xx= —,'VS(Xz —Xa) . (6)

As the Vq and V~ used here did not include a repulsive

~ All equations whose number begins with A are given in the
Appendix.

~ J. J.de Swart and C. K. Iddings, Phys. Rev. 128, 2810 (1962l.
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TABLE II. FE potential parameters from the equal-strength model.

Input

AEA Spin 0

AKA Spin 1

HTCS Spin 0

HTCS Spin 1

Case

A
8
C
D
F
A
8
C
D
E
A
B
C
D
A
B
C
D

—0.6659—0.6615—0'.6526—0.6215—0.5780
—0.4892—0.4609—0.4274—0.2700

0.0000
—1.2651—1.2315—1.1528—1.0760
—1.0105—0.8752—0.4464

0.0000

0.0000
0.1247
0.2178
0.3971
0.5583
0.0000
0.3064
0.4522
0.8456
1.2450
0.0000
0.3804
0.6944
0.8999
0.0000
0.7612
1.5311
2.0099

yq (MeV)r/(20e. )I ) x (MeV)'/(20e)' P ' (F)

0.8750
0.8755
0.8765
0.8800
0.8850
0.9359
0.9400
0.9450
0.9700
1.0201
0.7329
0.7350
0.7400
0.7450
0.7527
0.7630
0.8000
0.8478

10'g

0.00
0.06
0.17
0.57
1.14
0.00
0.44
0.97
3.64
9.00
0.00
0.29
0.97
1.65
0.00
1.37
6.28

12.64

BJ, (MeV)

0.21
0.21
0.19
0.17
0.14
0.21
0.21
0.22
0.23
0.26
0.65
0.62
0.55
0.49
0.65
0.66
0.68
0.71

core, no attempt was made to relate the parameters X

to the coupling constant f Note . that this model is
quite diferent from the equal-strength model in that
the coupling between the hyperon channels vanishes if
Xq= Xs is used in Eq. (6).

The resulting set of equations for P z, ) z, and Xz are
given in matrix form in Eq. (A16). As shown in the
Appendix, the restricted-symmetry model yields two
sets of solutions for the strength parameters, denoted
by RS(+) and RS(—). This ambiguity arises from the
combination of Eq. (6), a linear relation that connects
)x to the other two strength parameters, with the rela-
tions (that connect ) xe to Xq and Xs) which follow from
fitting the model to the low-energy AS scattering
parameters. These same two solutions would be ob-
tained if the phase convention used in Ref. 23 were
changed so that the sign of Vx relative to that of
Vs —Vq in Eq. (5) were reversed. With the sign con-
vention of Eq. (5), if the absolute sign of Xx is chosen
to be positive, the set of solutions RS(+) results. The
choice Xx(0 yields the set RS(—). Of course ~Xz~,
) x, and ) q do not have the same values for the RS(+)
solutions as for the RS(—) solutions. '4 The RS(—)
solutions were discarded because they yielded infinite
solutions for certain values of P. As P is allowed to
approach Pe, Xx again becomes small and Eqs. (A16)
decouple. Table III lists the parameters corresponding
to RS(+) which were used in the three-body calcula-
tions.

Further details of Tables II and III are included in
Sec. III.

III. THREE-BODY CALCULATXONS

The application of the Faddeev formalism to h.-d

scattering has been discussed previously. ' Addition of
the Z channel to the problem results in a set of six

'4 There are also two sets of solutions in the equal-strength
modeL With that model, however, the linear relation (Xq=he)
does not contain )~. The two sets are identical except for the sign
of )X. This sign was chosen to be positive.

coupled linear integral equations corresponding to the
possible two-body A.X, ZS, and SS interactions in the
singlet and triplet spin states. The binding energy of
the hypertrition was computed" by finding the pole
in the S-wave t-matrix element corresponding to A.-d
elastic scattering in the doublet state. The values ob-
tained for B& are estimated to be accurate only to
within 0.01 MeV, owing to computational inaccuracies.

The shift in the binding energy of &H' due to virtual
A-Z conversion in the FS$=0 channel alone was cal-
culated for each set of singlet FS parameters listed in
Tables II and III. In'these calculations, A-Z conversion
was neglected in the S= 1 channel, the triplet hS inter-
actions being given by the potentials labelled A in the
tables. In addition, the ÃS $=0 interaction was
neglected, i.e., the nucleons were not allowed to scatter
in the presence of the Z hyperon. With these assump-
tions, the original set of six coupled equations was re-
duced to four. Analogous calculations showing the
eGects of A.-Z conversion in the FXS= j. channel alone
were also made. The results are presented in Tables II
and III under the heading B~, the difFerence in the
binding energies of ~H' and the deuteron.

From Tables II and III it is easily seen how the
effect of A.-Z conversion on B~ increases as the coupling
between the A and Z channels, as measured by p, in-
creases. In Table II, the maximum values of g used for
the 5=1 state were set by going to the extreme case
of Kg=0. The maximum value of g in the S=O state
was arbitrarily chosen to give a change hB& due to
h.-Z conversion in this state that was large enough
(LLBq/Bq= 25-33%) to make comparison of the various
cases meaningful, yet small enough to assure BJ,&0
when the $=0 and $=1 A.-Z conversion efFects were
combined as in Table IV. As is well known, B~ deter-
mines mainly the S=O FE interaction. Thus, for a
given absolute change in B~, the S=0value of g is much

"All numerical work was performed on the Honeywell H-800
computer at the University of Southern California Computer
Science Laboratory.
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TABLE III. YE potential parameters from RS(+) model.
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Input

AEA Spin 0

AKA Spin 1

HTCS Spin 0

HTCS Spin 1

B
E

C
F
D
F
B

—0.6568—0.5686—0.4882—0.4213—1.2634—1.0530—1.0058—0.8611

Case ) q (MeV)'/(20m)' Xg (MeV)'/(20m)3

—0.4431
0.1734—0.4214
0.1703—1.2635
0.1825—0.8386
0.1573

)~ (MeV)'/(20 )'

0.1851
0.6425
0.0579
0.5124
0.0843
1.0699
0.1448
0.8820

~- (F)

0.8760
0.8850
0.9360
0.9450
0.7330
0.7450
0.7530
0.7630

10'g

0.11
1.14
0.01
0.97
0.01
1.65
0.04
1.37

Bq (MeV)

0.21
0.14
0.21
0.21
0.65
0.47
0.65
0.66

TABLE IV. Values of Bq for h.-Z conversion in both FP spin
states. The potentials in the second column are given in Tables
II and III.

Input/Model

AEA
'Ag =Kg

HTCS
Xg=) g

AEA RS(+)

HTCS RS(+)

YN potentials
(spin 0 + spin 1)

C+D
C+E

(D+B)
D+B

(D+E)
D+K
E+C
B+D
(C+D)
C+D
D+B
B+F
E+C
F+F
D+B

B, (MeV)

0.17
0.17
0.14
0.14
0.11
0.09
0.08
0.51
0.36
0.31
0.36
0.20
0.08
0.65
0.33

& Denotes calculations which included NÃ, S =0 interaction.

smaller than the corresponding S= 1 value. The other
values of q used in Table II were chosen to give repre-
sentative results of how Bq varied with g. The values

of g used in Table III were chosen to facilitate corn-

parison between the two models used.
Table IV lists the results of the binding energy calcu-

lations where A-Z conversion was considered in both
YS spin channels. The FN potentials are identified in

each case by a pair of Roman capitals referring to the
potentials listed in Tables II and III under the appro-
priate model and input headings. In most of these cal-
culations, the NS S=O scattering was again neglected.
An asterisk denotes calculations which did not make
this approximation, with the singlet SX parameters
determined as described in Sec. II.

A comparison of the results of Table IV with each

other as well as with those of Tables II and III, yields

the following information:

I. Independent of the model or the AS input param-

eters, the effect of A-Z conversion is to reduce Bq. In
fact, for the HTCS AN parameters, the reduction is

sufhcient to bring B~ into agreement with the experi-
mental value without the use of repulsive core potentials.

2. Independent of model or AN input parameters,
the effect of A-Z conversion in the VN S=1 state is

to increase B& slightly —~B&=0.06 MeV at most. Yet,
with A-Z conversion in both I"S spin states, the de-

crease in BJ, is greater than it is when A-Z conversion is
present only in the F'S S=0 state. This effect could be
due to the presence of terms in the Fredholm deter-
minant that lower B~, which are absent unless A-Z
conversion is present in both I'S spin channels. Such
terms exist because the I'N pairs in qH' are not com-
pletely both in the singlet or both in the triplet spin
state; i.e., in terms of a multiple-scattering expansion
of the Faddeev equations, a VS spin singlet scattering
may be followed by a FN spin triplet scattering and
vice versa. That these terms do indeed contribute a
repulsive effect is part of the subject of a further
analysis of the hypertriton which will be published at a
later date.

3. For a given set of AN input parameters and a
given A-Z coupling, the values obtained for B~ are
model-independent; e.g., compare the E+C cases in
Table IV.

4. The contribution of the NS S=O interaction to
B~ is attractive; i.e., B~ is increased. This contribution
is, however, very small [e.g., compare cases D+E
with (D+E)* in Table IV], being completely negligible
at all except the largest values of q considered. This
suggests that a large fraction of the change in B~ due
to A-Z conversion is due to the change in the two-body
AN interaction rather than to the introduction of three-
body ANN forces. That the NN S=0 potential may be
dropped from consideration —thus reducing the number
of coupled integral equations in the three-body problem—becomes significant when, in order to include the
sects of repulsive cores, it becomes necessary to
represent each basic two-body potential by a sum of
NI.S potentials.

In sum, the exact three-body calculations performed
here with phenomenological YN potentials strongly
reinforce the result of previous approximate three-body
calculations with more fundamental I"S potentials
that the explicit introduction of the Z channel reduces
BA. This work furthermore shows the strong dependence
of this reduction on the amount of coupling of the
I"NA and Z channels, especially in the singlet spin
state.

How much the change in BA discussed here is modi-
6ed when repulsive cores are included in the two-body
potentials, what part of this change comes from modi-
fication of the AÃ potential due to A-Z conversion
rather than from the ANN potential generated by this
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conversion, and just what the size of this change is for
more fundamental models of the I'X potential, are aB
topics to be subjected to further investigation.

ts= V+ Vg(E)tr„ (A1)

(g~(z~) o

gz(Ez)

Here Eg=E—Egg, where Egg is the threshold energy
iIl channel A, A =Z, A,.The convention Egg=0 18 used
for convenience. It follows that kzz= Rz(k»z —koz), where
E =pz/t»» and ka =2t»»ZI, with t»» being the reduced
mass in channel A, 6 the Z-A. mass difference, and
k»= Ik»I the relative momen. turn in channel A. In
momentum space, the kernel g»(E», q») of the Green's-
function operator g»(E») is that appropriate to out-
going waves in hyperon channel A:

g»(E», q») = L&»—q»z/2t»»+~'~J ', ~ ~ 0+ (A4)

%ith v~~ de6ned by

(k»I tjsI ks)=v»(k»)r»sos(ks),

Zq. (1) of Sec. II, and Eqs. (A1)-(A3) yield

r»»(E) = P»(1—&zgz)+&x'gzl/D(E),

rzz(E) = I:~z(1—~4»)+&x'g»j/D(E)

r»z(E) =),~/D(E),
(A6)

and

g»=L1/(2~)'j d&g»(E, ()»'(&) (AS)

D(E)= (1—&»g»)(1 —~zgz) —~z'g»gz (AS)

For a Yamaguchi potential,

g»= (t »/4~P»)L(2t»»E»)'"+~P»J ' (A9)

Below the channel-A threshold the positive imaginary
root in Eq. (A9) is used which places g» on the erst, or
physical, sheet of the E plane cut from Eg to 00.

From Zqs. (A6) and (AS), it follows that r»»(E) may
be expressed in the form it takes on vrhen there is no

APPEHXHX

The Lippmann-Schwinger equation for the FE
t-matrix of the energy E in a given spin channe1 may
be written

Z channel (i.e., Xx=0), but with an energy-dependent
strength; namely

r»»(E) =7»»P -y»»g»j-',

v»»= &»+&x'gzL1 —&zgz$ ' (A11)

is energy-dependent through the dependence of gy on E.
It is necessary for convergence of the Fredholm de-

terminant in the three-body problem that the two-
body FE t-matrices have no poles lying along the
positive imaginary kg axis. Such poles correspond. to
FE bound states. In order to check this, the zeros of
D(E) were calculated for each set of FE parameters
used in the three-body calculations.

The 5-wave phase shift for AÃ elastic scattering is
related to the t-matrix through the equation

(k»'It»Ik»&= —(2 /t )(k»cotb —ik )-'. (A12)

k» cotb»= ik» 2s.(k»'+—P»')'/(t»»r»»), (A13)

and the usual effective range expansion k~ cotb~ ———c~ '
+-2r»k»' gives two equations relating the three X's and
the two P's to the hE shape-independent parameters.

With the assumption of equal strength in the hyperon-
nucleon interactions, there results

X»= Xz=—X= (pr —qs)/(s pW), —
Xx= +(r/s)»'(1+Xp),

where

p=t»z(4mp) '(Eko+p) ',
q= 4ra&4[@»(ag 2)5—
=q'0. &)L»tt.--(4/")(tt+tt. )3/(W.)', (A15)

s= E'jP(ko) '(Eko+p) —'.
The constant Po is the range parameter ti that is obtained
from the same aq and r~ with )x——0. The requirement
that the Vs be real implies r&0, so that with ay&0
there necessarily results P &Po. If P =Pa, the equations
in (A15) decouple.

Restricted symmetry leads to the equations

s —p'r 0 ' X~' 'pr qs—
0 —p'r apQ(rs) Xz = pr . (A16)

,.—v3 v3 —2, .&z, . 0

There are two solutions to Eq. (A14) corresponding to
the choice of sign of the radical. The appearance of r
under the radical leads to the same requirement on P
as in Eqs. (A15).


