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When two particles interact via a potential V which is the sum of a separable potential Va and a Coulomb
potential Vz, the two-body T matrix can be obtained exactly and can be split in the usual way into a pure
Coulomb T matrix and a "nuclear" T matrix which also contains Coulomb eRects. Using the fact that the
"nuclear" T matrix is still separable in the oR-shell variables, the formalism of Alt, Grassberger, and Sandhas
is applied to the calculation of Coulomb eRects in the three-nucleon system, with the contribution of the
nonseparable Coulomb T matrix fully taken into account. The Coulomb energy b,& of 'He and the prob-
ability P3~& of 6nding the He in an I= —, state are calculated, using s-wave spin-dependent potentials of the
Yamaguchi type to describe the two-nucleon interaction. This model yields values for Ag which are in
reasonable agreement with the binding-energy difference of 'H and 'He, but predicts a negligible admixture
of the I=-,' state in the 'He wave function. The eRect of the nonseparable part of the p-p T matrix on the
binding energy and wave function of 'He is discussed. Finally, the possible relevance of hard-core effects is
pointed out.

I. INTRODUCTION
' 'T is a well-known fact that a nonlocal separable po-

tential yields a two-body T matrix which is also
separable in the o6-shell variables. ' In the last few
years, these potentials have been used extensively in
three-body calculations; the reason being that the
Faddeev equations' with separable two-body T-matrices
become Fredholm integral equations in only-one variable
after angular momentum decomposition.

The application of the separable approximation to the
three-nucleon system has had a reasonable success. ' "

~ On leave of absence from Universidad Nacional de La Plata,
Argentina. Member of the National Research Council of Argentina.

f On leave of absence from Universidad Nacional de La Plata,
Argentina. Fellow of the National Research Council of Argentina.' See, for example, G. Lovelace, Phys. Rev. 135, B1225 (1964).'L. D. Faddeev, Zh. Eksperim. i Teor. Fiz. 39, 1459 (1960}
LEnglish transl. : Soviet Phys. —JETP 12, 1014 (1961)j; L. D.
Faddeev, Dokl. Akad. Nauk SSSR 138, 565 (1961) LEnglish
transl. : Soviet Phys. —Doklady 6, 348 (1961ig; L. D. Faddeev,
Dokl. Akad. Nauk SSSR 145, 301 (1962) t English transl. : Soviet
Phys. —Doklady 7, 600 (1963)j; L. D. Faddeev, Mathematical
Problems of the Quantum Theory of Scattering for a Three-Particle
System (Steclov Mathematical Institute, Leningrad, 1963), No. 69
LEnglish transl. : His Majesty's Stationary Once, Harwell, 1964].

3 A. N. Mitra, Nucl. Phys. 32, 521 (1962).
4 A. N. Mitra and V. S. Bhasin, Phys. Rev. 131, 1265 (1963).
'A. G. Sitenko and V. F. Kharchenko, Nucl. Phys. 49, 15

(1963).
R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. Letters

13, 574 (1964).
~ R. Aaron, R. D. Amado, and Y. Y. Yam, Phys. Rev. 140,

B1291 (1965).
V. S. Bhasin, G. L. Schrenk, and A. N. Mitra, Phys, Rev. 137,

B398 (1965).' B.S. Bhakar, Nucl. Phys. 46, 572 (1963)."F.Tabakin, Phys. Rev. 137, B75 (1965)."B.S. Bhakar and A. N. Mitra, Phys. Rev. Letters 14, 143
(1965).

"V. K. Gupta, B. S. Bhakar, and A. ¹ Mitra, Phys. Rev.
Letters 15, 974 {1965)."A. C. Phillips, Phys. Rev. 142, 984 (1966).' A. C. Phillips, Phys. Rev. 145, 733 (1966}."A. C. Phillips, Phys. Letters 20, 50 (1966).

The two-nucleon system contains, at low energies, the
deuteron bound state with quantum numbers J=1,
I=O, and a singlet virtual state (denoted by s) with
quantum numbers J=0, I= 1.The simplest assumption,
as discussed by Lovelace, ' is that the two-body T matrix
is dominated by central forces in these two states.
Tensor forces have also been taken into account —either
phenomenologically, ~ "or in an explicit fashion" ""—
in calculations of the 'H bound state and e-d scattering
lengths. Perhaps the most complete calculation has
been carried out by Schrenk and Mitra. '~ These authors
include tensor forces in the triplet state and hard-core
eGects in the singlet state using a variety of separable
potentials that fit the two-body data, and conclude
that the separable approximation provides a reasonable
description of bound-state and scattering properties
of the three-nucleon system at low energies.

We are concerned in this paper with a nonperturba-
tive calculation of Coulomb eBects in the three-nucleon
system. The problem of two particles interacting via a
potential V which is the sum of a separable potential
V~ and a Coulomb potential V~ has been discussed by
Harrington. "This author showed that the problem can
be solved exactly and that the resulting T matrix can
be split in the usual way in a pure Coulomb and a
"nuclear" T matrix. "Needless to say, the "nuclear"
T matrix also contains Coulomb e6ects. However, the
crucial point is that it is still separable in the off-shell

"R. Aaron and R. D. Amado, Phys. Rev. 150, 857 (1966).
'~ A. ¹ Mitra, G. L. Schrenk, and V. S. Bhasin, Ann. Phys.

(N. Y.) 40, 357 (1966).
. Borysowicz and J. Dabrowski, Phys. Letters 24B, 125

(196 ).
'~ G. L. Schrenk and A. N. Mitra, Phys. Rev. Letters 19, 530

(1967).' D. Harrington, Phys. Rev. 139, B691 (1965)."M. L. Goldberger and K. M. Watson, Co/lision Theory
(John Wiley R Sons, Inc., New York, 1965), 2nd ed.
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variables. In Sec. II we brieQy review the results by
Harrington which are relevant for our purposes and dis-
cuss the two-body interactions used as an input in our
model.

In writing the equations for p-d scattering, one has to
face the problem of the nonseparable Coulomb part of
the p-p T matrix. This is accomplished in our calculation
by using an elegant formalism devised to take into
account nonseparable contributions to the Lovelace
equations, due to Alt, Grassberger, and Sandhas. " In
Sec. III we brieQy review their formalism and derive
the Lovelace equations for p-d scattering.

Since the Coulomb potential violates isospin sym-
metry in a very de6nite way, we discuss to some extent
the SU(2) symmetry breaking in the three-nucleon
system and write the equations in a basis in Hilbert
space in which the breaking is more transparent. The
bound-state scattering amplitudes are no longer diag-
onal in I, the total isospin, and for a given value of Iz
we obtain a set of coupled equations in I.When Iz= ——'„
they reduce to the well-known equations for e-d scat-
tering, ' but for Iz +z th——ey show explicitly the Cou-
lomb e6ects.

In Sec. IV, we discuss the bound-state properties of
the three-nucleon system and use a procedure suggested
by Amado" to obtain the 'He wave function from the
Lovelace equations for the p-d scattering amplitude.
Section V contains the numerical results. The binding
energy di6erence of 'H and 'He is calculated by comput-
ing the shift of the pole of the p-d scattering amplitude
with respect to the pole of the e-d scattering amplitude.
It should be emphasized that, although our calculation
of the 'He Coulomb energy is based on the exact solu-
tion of a model, we are not saying that perturbation
theory calculations of such a quantity are unreliable. '4

Our interest in this model has been raised because it
allows an exact computation of both 'He binding energy
and its wave function. The isospin symmetry breaking
due to the Coulomb interaction produces not only the
splitting of isospin multiplets but also con6guration
mixing, and therefore the 'He wave function acquires
a small I= ~3 component. We also discuss the calcula-
tion of the probabilities of 6nding the 'He in the I= ~

state, and in the S' state of mixed spatial symmetry
with I= ~~.

Finally, Sec. V also contains a discussion of our
results.

It should be emphasized that, although our cal-
culations are restricted to bound-state properties of
the three-nucleon system, our equations can be im-

mediately used as they stand to perform calculations
of p-d scattering with the Coulomb corrections fully
taken into account.

"K.O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. $2,
1m (1967).

mg R. D. Amado, Phys. Rev. 141, 902 (1966).
"In these calculations Ap is obtained by computing the ex-

pectation value of the Coulomb potential, using 'H wave func-
tions. See, for example, Ref. 36.

II. TWO-BODY INTERACTIONS

The simplest model used previously to describe the
two-nucleon . interaction assumes a spin-dependent
separable potential of the Yamaguchi" "type, dered
by

V(P', P) =&.g.(y')g. (y)&.+4g.(y')gd(y)&d, (21)
where

g (P) =1/(P'+P') ~=s,d (2.2)

and E„Eq are the appropriate spin-isospin projection
operators. The two-nucleon T matrix is given in this
case by

T(y', y; E)=g,(p')t, (E)g, (y)P,
+g.(p')t. (E)@(y)I'., (23)

where

p'g"(p)
t '(E)= +4z —dp

o pm —E

(2.4)
X; p;(p;—~gE)

The singlet and triplet parameters in the potentials
are determined by sting the two-body data in a way
described in Sec. V. In order to take into account
Coulomb effects, one has to add to the potentials given
by Eq. (2.1) a term of the form Vc P&,&, where Vo is the
Fourier transform of the Coulomb potential and E~,i
is the projection operator

Py, y= iI= 1; Iz=+1)(I=1,Iz=+1 ( ~ (2 5)

Since the Coulomb potential acts only on I=1 states, it
modifies only the singlet part of the two-nucleon X'

matrix. It is a well-known fact that if isospin is an exact
symmetry, the T matrix is not only diagonal in I, Iz but
also independent of Iz. The Coulomb potential breaks
the symmetry in such a way that the singlet T matrix
is still diagonal, but acquires an Iz dependence. Con-
sequently, the two-nucleon T matrix is given by"

T(y', p; E)=gd(y')tg(E)gg(p)Pg

+g, (p')t, (E)g, (y) fI'g, o+Pg, i1
+[T~(y',P)+go(y')to(E)g~(y)Ã~. ~ (2 6)

In this equation Tc(p', p) represents the pure Coulomb
T matrix, and the remaining coeKcient of P~,~ represents
the "nuclear" T matrix for p-p scattering. The modified
form factors gc(p) have been calculated by Harrington, "
with the following result:

ge(y) = g.(y)Co(n) expPn tan-'(pp. ')j, (2 7)

where q=mz'/p, m is the reduced mass of the two-

2~ Y. Yamaguchi, Phys. Rev. 95, 1628 (1954).
26Y. Yamaguchi and Y. Yamaguchi, Phys. Rev. 95, 1635

(1954l.
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particle system, and

Co(q) = {2IrgLexp(2Irq) —Ij-I)'". (2.8)

The function tc(E) is given by an expression analo-
gous to Eq. (2.4), except that it is the modified form
factor which appears in the integrand. Therefore, one
is faced with the problem of evaluating the integral

I(E)=4
P'Coo(g) expL4g tan-l(PP, —')j

dp
' . (2.9)

(p'+~.')'(p'-E)

4k' P.s—k'
+

-~,(~.+k)
(2.10)

Going back to the modified form factor gc(y), it
follows from Eqs. (2.7) and (2.8) that it has an essential
singularity at p=0 owing to the behavior of Co(q). This

"See Ref. 3/ for a discussion of the experimental situation with
respect to nucleon-nucleon scattering lengths.

The value of P, necessary to fit the two-body data is
such that (me'/P, ) 0.06. Consequently, this quantity
can be used as an expansion parameter in the calcula-
tion of I(E), and terms of order (mp'/P, )' can safely
be neglected. %e refer to Harrington's paper for de-
tails. "As a result of the calculation one can get rela-
tions between P-P and Is-N low-energy scattering
parameters which are indeed very reasonable. If the
parameters P, and X, are fixed so as to yield a» ———7.81
F and r»=2.80 F, one gets for the corresponding
parameters with the Coulomb effects removed the
values a„„=—i.8.0 F and r„„=2.93 F. Although these
values for a„„and r„„are a little large, '~ this result
indicates that the Coulomb interaction is rather well
described by this formalism at low energies. Anyway,
this point is not of extreme importance to us since we
are not taking the attitude of introducing as an input
for the 'He calculation the p-n scattering data with
Coulomb corrections. Our inputs are the "nuclear"
two-body T matrix plus the pure Coulomb T matrix.
The parameters will be determined as indicated in Sec.
V by 6tting the singlet efFective range and scattering
length. Without Coulomb corrections, this gives a
reasonable model for the 'H. Our attitude is to test the
stability of the three-body model against electromag-
netic corrections to the strong interactions.

The calculations we carry out in this paper are re-
stricted to the bound-state region of the three-nucleon
systcII1. Sllicc thc two-paltlclc pl'o'pagRtols t '(E) RppcR1'
In tllc LovclRcc cqllatlolls 111 'tile fol'111 ti(E—

g )» E being
the total energy„ it is clear that we need the function
tc(E) below its cut on the positive real axis. For E(0,
the integral (2.9) can be evaluated, " and we obtain,
scttlIlg k= sg E, —

x2 4m m@2
Ec '(k)= —+ +

P.(P,+k)s (P,s—k')'

essential singularity merely reQects the long-range
nature of the Coulomb potential. "In order to avoid this
dHBculty, the Coulomb potential is cut off at a distance
R much greater than the range P, ' of the separable
potential. In this condition, Eq. (2.7) is not valid all
the way down to p= 0, and ceases to be valid for values
of p such that

pR~mse'/ps. (211)

III. THREE-BODY EQUATIONS

The problem of modifying the Lovelace equations in
the case in which the two-body T matrix contains non-
separable terms such as, for example, the Coulomb T
matrix given by Kq. (2.6), has been discussed by Alt,
Grassbcrger, and Sandhas (AGS)."These authors in-
troduce transition operators for bound-state elastic
rearrangement scattering, ttp (E), which are slightly
difFerent from those used by Lovelace. ' However, they
yield the same scattering amplitude when their matrix
elements are put on the energy shell. In terms of the
Lovelace transition operators %tp &+&(E), the 'ttp (E)
are de6ned by

~p-= (1 &p-)(H-=-E)+~p-'+'
= —(1—1Ip )(Hp —E)+'ttp &-&,

where H =Ho+ V; a, P= 0, 1, 2, 3; and Vo—=0. These
operators satisfy Faddeev-like equations,

&p-(E) = (1 &p—«)Go—'(E)
—Z 2".(E)~o(E)& «(E), (3 2)

~.«)=-(1-~..)~; (E)
—Z ~p, (E)Go(E)&,(E), (3.3)

where G,(E)=(Ho—E)-' and r„ is the two-body T'
matrix for the pair p in the three-body Hilbert space.
The bound-state elastic or rearrangement scattering
operators are deined, as usual, by"

X-, -(E)=( IGo(E) tt- (E)Go(E) IP ), (34)
"J.D. Jackson and J. M. Katt, Rev. Mod. Phys. 22, "/7 (1950}."We are using here the same notation as in Ref. j..

In our calculations we have kept E. as a free parame-
ter and have used a form factor given by Eq. (2.7)
for p) po, but defined for p&~po by

gc(p)=g. (1)Co(no) expL2no tan '(poP. ')j, (2 12)

where po' m'p'R-——I, go ——Il(po).
All the results vie quote in Sec.V correspond to a value

of 8=20 F. As a matter of fact, we have checked that
they are quite insensitive to variations of this parame-
ter up to 50 F. The range of the singlet potential that
we use is of the order of 1 F.
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where (p ~cion)= g (p ), and the corresponding scatter-
ing amplitudes are calculated by taking matrix elements
of X „,s (E) between plane waves representing the
relative motion of the particle n (or p) and the eth
(or mth) bound state of the pair (Py) /or (ny) j.

In the case in which the two-body T matrices are
separable, Lovelace has shown' that Kqs. (3.2) or (3.3)
can. be recast in the form of a set of coupled Lippmann-
Schwinger equations for the operators X „,p (E), with
energy-dependent potentials which become complex
above the three-particle threshold. Let us now assume
that T can be written in the form

T-(E)= T-'(E)+T-'(E), (3 5)

where T '(E) represents the nonseparable contribution.
In order to handle this piece of the two-body T matrix,
AGS define a new set of operators 8, p'(E), as the solu-
tion of Eqs. (3.2) and (3.3) with only the nonseparable
part of T (E):

&-~'(E)= —(1—&-s)Go '(E)
—Z Tv'(E)Go(E) ttvs'(E) (3 6)

—Z 'lt-. '(E)Go(E)T.'(E) (3 7)

After doing this, AGS proceed to show that Eqs. (2.2)
and (2.3) can again be reduced to a set of multichannel
Lippmann-Schwinger equations, namely,

—P Z.„,,„(E)t,„(E)X„„,(E), (3.8)
r, yea

where t~„(E) are the Lovelace propagators, but the
potentials are different and defined by

Z „,p„( )E= ( «iGp( )Etpt'( )EG ( 0)Ei pm). (3.9)

It is clear from Eqs. (3.6) and (3.7) that if T„'=—0,
these potentials reduce to those defined by Lovelace.
AGS suggest the use of perturbation theory to compute
them. This means that one can solve Eqs. (3.6) or (3.7)
by iteration and replace the result in Eq. (3.9) to ob-

tain, to first order,

Z-. .s-(E)= —(1—~-s)(«l Go(E) IPm)

+ Q («(Go(E)T~'(E)Go(E) (Pm) — . . (3.10)
v&~ P

However, AGS also point out that in the case in

which there is a nonseparable interaction only between
one pair of particles, Eqs. (3.6) and (3.7) can be trivially

solved and the operators tt,s'(E) can be coumpted ex-

actly. Let us assume, for the sake of definiteness, that
Ti'&0 and T2'= To'=—0. In this case, Kqs. (3.6) and

(3.7) imply that

%.~i'(E) = —(1—8~i)GO '(E) for any n, (3.11)

%is'(E) = —(1—Rp)Go '(E) for any P, (3.12)

respectively. Therefore, we can summarize this result
by stating that

'tt-s'(E) = —(1—4«)Go '(E)
if n=1 or P=1. (3.13)

Using again this information in Eqs. (3.6) and (3.7)
we 6nd

&-s'(E) = —(1-&-t)Go '(E)- Ti'(E)
if a, PW1. (3.14)

Therefore, only the potentials Z „p (E) such that n,
P/1 are modi6ed and the final exact result is

Z.„, (E)= —(1—S.,)&« I G,(E) I Pm)+ (1—S.,)
X (1—&pi)(«) Go(E) Ti'(E)GO(E) ) pm) (3 13)

It is obvious that these results can be immediately
applied to our problem, Ti'(E) being the pure Coulomb
T matrix. When we treat the three particles as identical
by introducing the isospin formalism, the fact that the
series solution of AGS reduces to just the 6rst and.

second term is guaranteed by the isospin transformation
properties of the Coulomb T matrix as given, for ex-

ample, by Eq. (2.6).
In what follows we shall keep in the potentials only

terms of order e', and therefore we replace T'&' by V&~,

the Coulomb potential. This is consistent with our
previous approximation for the Coulomb-corrected form
factor gc(p), where we have also retained the terms of
order e'. Therefore, all the Coulomb corrections to the
potentials Z „,s (E) will be of first order in e', because
it can be checked immediately that the condition o.,
P&1 in Eq. (3.15) implies that the matrix element of

GOV~ t"0 never has to be calculated between states that
contain Coulomb-corrected form factors. Moreover,
this matrix element can be computed analytically if
the initial and 6nal states contain form factors of the
Yamaguchi type" discussed in Sec. II. Such a calcula-
tion is described in Appendix A.

Having established where we stand, we proceed with

our calculation along the usual patterns. In the 6rst
place, the identity of the particles can be used to reduce
the number of equations. As a result, they no longer

depend on the index n that labels pairs of particles.
Since we are including neither tensor nor L-S forces,
the orbital and spin angular momentum decouple and

we can discuss the equations in the L-S representation.
The 'H and 'He are, in this model, bound states in the
L=O, S=-', partial wave. The spin dependence of the
two-body forces that we use can be taken into account
in the three-body equations by means of recoupling
coefficients. '
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dq Kee~r~, „»I~~ (q,q; E)

XX ~ I,ei~(q",q; E), (3.16)

where the channel indices (22,I) can take the values
(d, 22), (s,2), and (s,2). It only remains to specify the
potentials and the kernel of Eq. (3.16). Let us define,
for the sake of simplicity, the functions

g'(p')g (p)
f'(q', q; E)=(l)'"

p2+~2 —E
(3.1/)

8 e' 1 1
F'(q', q; E)= — &p

3v3 2r2 [p—k2$2+ p .2 [p—k2]2+ q'2 —E
1 1 4 e'1

X—=--
p2 [p k ]2+q2 E [p—ki)2+p.2 3v3 2r2 72

1 1 1
X---

(p L2)2+/i, 2 (p
' 22)2+ I/&2E (p+L2)2+/, 2

As far as the treatment of isospin is concerned, in-
stead of working in a basis in which the individual
isospins of the bound state and the remaining particle
are diagonal, we choose to work in a basis in which the
total isospin I is diagonal. Since the Coulomb interaction
violates I but not Ig, the bound-state scattering opera-
tors will still be diagonal in Iz, but will have nonvanish-
ing matrix elements between states of different I.
Therefore, for a given eigenvalue of Ig, let us say 3f,
we must expect to obtain a set of coupled equations in
I. Setting M=-,' or (—2), we shall obtain the equations
for p-d or 22-d scattering, respectively.

The eigenstates of I available for the three-nucleon
system are I=-', and I=—,'. lf a pair of nucleons are in a
d state, the total isospin can only be I=~. However,
if the pair of nucleons are in an s state, the total isospin
can take both values ~ or ~. Therefore, it is clear that
we are dealing here with a three-channel system.

Our formulation of the problem, as well as the
kinematics we use, is the same as in Ref. 1. We shall
label q the relative momentum of the pair (Py) and the
particle a in the total center-of-mass system, and p
the relative momentum of the particles P and 7 in their
own center-of-mass system. There are factors absorbed
in the definition of q and p in such a way that the
kinetic energy of three free particles is E=p '+q '. The
equations for our problem are of the form

x.I,.I"(q',q; E)= —2Z. I,.I"(q',q; E)

FIG. i. Graphical representation of
particle-'bound-state potentials that con-
tain a Coulomb-corrected form factor. C 2

In Eq. (3.17) g;(p) are the formfactors defined in Sec.II,
and the indices ~, j can take the values d, s, or C. In Eq.
(3.18) the indices i, j can only take the values d or s.
The method of computing the integrals is discussed
in Appendix A, where a more explicit formula for
F;;(q,q; E) is given. With these definitions, it is shown
in Appendix 8 that the potentials are given by

Zd;, d (q',q; E)= 2[f—dd Fdd]—, (3.19)

Zd*„.;&(q',q; E)= (1/v3) fd—c
(1/2v3—)[fd, Fd,],—(3.20)

Zd:, .~'(q', q; E)= (1/V—'6) fdc
+ (1/Q6) [fd,—Fd,j. (3.21)

Z..„„,—:(q,q; E)= ;[f,.—F-„j——;[f„+f (3.22)

Z,;,,j(q',q; E)= —-,'v2[f„—F„]
2&2f.c+—2~2fce, (3.23)

Z,y„t&(q',q; E)= ', [(f„F„)-+fc,—+f,cj. (3.24)

The first and second row, or column, correspond to
I=~ or ~, respectively. The deuteron propagator re-
mains unchanged, and is given by

These potentials must still be multiplied by the spin
recoupling coefFicients. Those not listed here can be ob-
tained without diQiculty by recalling that they are
symmetric under exchange of all the variables (includ-
ing channel indices) in the initial and final states.

We can use Feynman-like diagrams to represent these
particle-bound-state potentials. The function f... can
be represented by the diagram of Fig. 1, and the func-
tion (f;; F;,) (2,j4 c—) by that of Fig. 2. These diagrams
will be helpful when we compare our method with
perturbation theory.

The calculation of the propagators is also discussed in
Appendix B.Since two nucleons in an s state and a third
one can be in two total isospin states, the propagator
t,(E) now becomes a matrix in total isospin space:

tei, ei' (F)

:t.(E)+l/. (E) K~[—t.(E)-t.(E))~
(3.25)

-',%2[tc(E)—t,(E)] ;«(E)+ ', t.(E)—-

tdI, dI' (E) 5II'tSeetd(E) ~ (3.26)X, (3.18)
(p+-'~)'+q' —E

where

ki=(1/&3q+(2/~3)q', k2= (2/&3q+(1/~3)q'

2-= (2/v3') (q' —q) .

J J.

FIG. 2. Graphical representation of the nonseparable cor-
rections to the potentials that do not contain a Coulomb-corrected
form factor.
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Pro. 3. Graphical representation of the form
of the p-d, breakup amplitude.

Finally, the kernel of Eq. (3.16) is

E r,„r~(q',q,E)
=2 Z"r .-.r-"(a',e; E)&-r".-r"(E g')—(3»)

%e have written our equations for the case 3E=~;
that is to say, they are valid to discuss p-d scattering
or the 'He bound state. It is not necessary to verite ex-
plicitly the equations for M= —

~ because they can be
obtained from the previous ones by switching oG the
Coulomb interaction. If this is the case, the modi6ed
form factors gc(y) coincide with the singlet form factors
g, (y), and the same thing happens with the propagators
rc(E) and t,(E). Therefore, the indices C and s in all
our previous equations became" indistinguishable, and
it is evident that:

(i) Both the potentials and propagators al e now
diagonal in I. As a matter of fact, f, ,r...r. '"(E) reduces
to the singlet propagator times the unit matrix. Con-
sequently, the two-channel equations for I= ~ are de-
coupled from the one-channel equation for I=~~.

(ii) The numerical coefficients that inultiply the
functions fq~, fq„and f„are precisely the isospin re-
coupling coefficients quoted by Lovelace. '

This is a consistency check on our results.

IV. 'He WAVE FUNCTION

%e are interested in calculating not only the Coulomb
energy of 'He, but also its wave function. There are
several ways of doing this, and we choose to follow a
procedure suggested by Amado23 to extract the wave
function from the Lippmann-Schwinger equations for
the T matrix. This method was used by Amado to cal-
culate the 'H wave function. ~'

It is a well-known fact that the oG-shell matrix
elements have a pole in the parameter E at the binding

energy E~ of the two-particle system, and that the
residues factorize in the oG-shell variables, ' namely,

x(p')c(p)
&p'I &(E) le)=

E+Es
+terms regular at E=Es. (4.1)

The bound-state wave function. is given by the prod-
uct of the bound-state form factor and the free Green's

function that is

+(u) = (P'+Es) 'g(p) (4 2)

The same is true for the three-body problem; the
bound-state scattering amplitudes (g'l X~~,s~(E) l q)

have a pole at the binding energy of the three-body
bound state, and their residues factorize in the OG-shell
variables. ' However, if we calculate the residue of these
amplitudes and generalize the preceding argument, we
do not obtain the full three-body wave function but
rather the vertices for 6nding the bound state as a
system composed of a nucleon and a d or s state. "It is
rather easy to convince oneself that, in order to obtain
the three-body wave function, one has to calculate the
residue at the pole in a breakup amplitude, namely, an
amplitude in which there are three free particles in the
Anal state.

The breakup amplitude for the process 1+(2,3)~
1+2+3 can be obtained in the AGS formalism~2 in
terms of the bound-state scattering amplitudes given
by the integral equation (3.8).Such a breakup amplitude
is the matrix element &q, lX,„,p, 'l g, ') of an operator
de6ned by

Xg„,„(E)= —Zg, y, (E)
—P X,„,.„(E)&,„(E)Z,„,„(E). (4.3)

Notice that this is not an integral equation. In the case
in which there are nonseparable interactions only be-
tween one pair of particles, let us say y, the operators
Z~, ~, (E) are given exactly by

The meaning of Eq. (43) is exhibited in terms of
Feynman-type diagrams in Fig. 3. Since we are in-

terested in obtaining the residue of the matrix element
of X~„,» (E) at E=Es (binding energy of the three
body bound state), we can drop the first term of the
right-hand side of Eq. (4.3) because only the bound-
state scattering amplitudes are singular at E=E~.

The eGect of the nonseparable interactions on the
residue of the breakup amplitude is taken into account
by: (a) the bound-state scattering amplitudes, because
they are calculated vrith potentials that include the
nonseparable contributions, and (b) the second term
of the right-hand side of Eq. (4.4), in which the non-

separable terms produce a "6nal-state interaction, " as
is obvious from Fig. 3. This term complicates the
analysis of the three-body wave function. %e have
carried out the analysis as far as possible by replacing
T~' by the Coulomb potential in the 6nal-state inter-
action term, but in spite of the fact that some of the
integrals involved can be computed analytically, we
are left with quintuple integrals to be computed numeri-

cally in the 6nal formulas for the probabilities we want
to calculate. Therefore, we have neglected the contribu-
tion of such "6nal-state interaction" terms, since we

cannot estimate them in a reliable way. They are of the

30 C. Love1ace, in Strong Interactions and High-Energy I'byes,
edited by R. C. Moorhouse (Oliver arid Boyd, London, j.964).
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same order as other contributions we have taken into
account, and therefore our 6nal numerical results should
be considered only as estimates of the order of magni-
tude of the different probabilities we calculate.

Taking into account thc ldentlty of the particles,
neglecting the "6nal-state interaction" terms, and in-
troducing spin and isospin, we compute the right-hand
residue of &qllX», selsb'), which we call I'(y1,811). The
wave function is obtained by multiplying the residue
by the Green's function (pl'+pl' —Es) '. However,
bcforc glvlng our 1csults lt ls convcnlcnt to recall some
properties of the spin and isospin wave functions of
three nucleons. %'e shaQ use here the same notation as
SchiK" and write the doublet spin states of three
nucleons in the form

Xl= [c81clsPs++IPscls 2Plasasg y (4.5)

X2=—[o'I&aPs-+A&sf.
K2

(4.6)

These spin functions correspond to S=g, Ss= 2. Since
spin is conserved. in our problem, the results are in-
dependent of Sg. The spin functions X~ and X~ cor-
respond to coupling first the pair (2,3) in a state with
5~3= i or 52~=0, respectively. These two functions are
the basis of the two-dimensional representation of the
permutation group of three objects and transform
under pcrmutations into linear combinations of them-
selves, as discussed in Ref. 31.

Ke also need the isospin wave function. There are
tw'o functions corresponding to I= g~ Ig= g~ which we
call p& and p 2. They have the same structure and trans-
formation properties under permutations as X~, X2.
There is also the isospin wave function corresponding
to I= +~, Ig= ~, which we call gej~'f'. Its explicit form is
not needed; we must only remember that it is a totally
symmetry function.

Going back to our problem, it is clear that when we
solve the homogeneous integral equations with the
same kernel as Eq. (3.16) at the bound-state energy
8=Eg, we obtain the vertices for 6nding the 'He as a
d-Ã bound state with I= ~~ or as an 5-S bound state
with I= ', or —,'. We call th-is function Fs(g,q), I', (-'„q),
and I', (82,g), respectively. Of course, it is only the over-
all normalization of these three functions which is
arbitrary, since they satisfy coupled integral equations.

A straightforward calculation gives the wave func-
tion as

ill(P', 8l') =~8+(V'k)(~242 —~+I)
VZ

+$V3(8IX2—V2XI)les)P', (4.11)

where the spin-isospin wave function @8, pl, and @2
are dcined in Ref. 3j. as

j,
48=—(&sy I—&Its), (4.12)

41 (X2'g2 XI'gl) p

W2
(4.13)

4 2 (~2'gl+ X192) (4.14)

and the functions I, m~, m~, el, and e~ can be calculated
in terms of Ii j) Jim, and G. I et us de6ne

f+(g,p) =~1(q,p)+~2(g, p) (4 15)

Then those functions are given by the following
formulas:

&=f-41pl)+f 42 ps)+f 48ps)--(4.16)

I
28'I= —[f+(gs ps)+ f+(gs ps) —2f+(ql pl)j (4 1&)

i and j, and. the functions F~, P2, and G are given by

(p'+q' ~s)~I(q,p) = I'~(saba)~8(Es C—')gs(p) (4 g)

3(p'+q' —Es)~2(g,p)
= ~.(;,~)[2~.(~'-& )g.(p)+~.(~.-e)g.(p)3+«.(k,q)I &o(&s—C')go(p)-&. (Es—V')g. (p)j

(4.9)
3(p'+S' E~)—G(e,p)=«.(LC)I:&c(E~ S')g—o(p) &.( E—~ V')g—*(p)l

+I'.(2,&)L&o(&s V')g—o(P)+~&.(&~ Ag—(P)j.
(4.10)

The complete antisymmetry of the wave function
given by Eq. (4.7) is guaranteed by the properties of
the spin and isospin wave functions and the fact that
the functions Fj, F~, G depend only on the modulus of
y and q. Here again we can check very easily that, if
the Coulomb interaction is switched O8, these results
coincide with the expression written by Amado for the
'H wave function. "Carrying out the symmetrization
required by Eq. (4.13) we obtain

0'(94%1) 8 (+12+~28++81)P 1(pl)Pl) Xl'02

+&2(gI,PI)xsnl+G(ql, PI)xsgs(2'"1, (4 7)

where I';; are permutation operators that interchange
the coordinates (including spin and isospin) of particles

"L. I. Schiif, Phys. Rev. 133,3802 (1964).

28'2= f+(VS&pS) —f+(ttsips) (4.18)

Tile functions 'vl and $2 dcpcIld OI1 G(g,p) 111 'tllc sanle
way as u 1, ms depend on f+(g,p).

The Grat term in the right-hand side of Eq. (4.11)
represents the dominant 5 state of the three-nucleon
system, the function s being totally syrarnctric. The
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FIG. 4. Set of p-p perturbation diagrams that contribute to the
pure Coulomb T matrix. W'avy crossed lines represent the Cou-
lomb potential.

second term represents the 5' state of mixed spatial
symmetry, and the third term the I=—,

' component of
the wave function which is present here due to the
isospin symmetry breaking induced by the Coulomb
interaction.

V. NUMERICAL RESULTS AND
CONCLUSIONS

In order to calculate the Coulomb energy ht, of 'He,
we consider the Faddeev-t. ovelace equations (3.16) and
project the 1=0 partial wave; The 'H and 'He binding
energies are computed by searching for the zeros of the
Fredholm determinants of the equations corresponding
to M= —

& and M=» respectively. Their diffcrcIKC
yicws the desired Coulomb energy 5~.

Wc have carried out two different calculations of
by choosing two difkrent sets of parameters X„P„

Xz, P& to describe the two-body interactions. In the first
case we have used the same parameters as Sitenko and
Kharchenko' (SK) in their calculation of the triton
binding energy. These parameters are obtained by
fitting the deuteron binding energy arid the scattering
length in the '5~ state, and the scattering length and
cGcctivc range in the '50 state. This model overestimates
the 'H binding energy, which comes out to be —11.96
McV. In the second case we have used the parameters
corresponding to the Naqvi32 potentials defined as
(Cii+SN) in Ref. 12. They are obtained by 6tting the
two-body data with a central plus a tensor separable
interaction in the '50 state. Only the central part of the
separable potential is retained in the three-body cal-
culation. The 'H binding energy is underestimated by
these potentials, which yield the value of —6.95 MeV
fol that quantity. IQ both. Cases thc slnglct scattcllng
length takes the value u, = —23.7 F.

We have used both sets of separable potentials with
the same purpose in mind as Gupta and Mitra" in a
recent perturbativc calculation of d, g. These authors
calculate D~ by computing the expectation value of the
Coulomb potential, using exact 'H wave functions given

T&s&.E I. Results of the calculation of the Coulomb energy
~g of 'He and of the probability Psq2 of the I=$ state. The nota-
tion for the potentials is explained in Sec. V.

by this kind of model. As they point out, the diGcrencc
of the results for the above two cases is expected to give
Rn indication of the explicit contribution of the tensor
forces to this calculation.

As fRr Rs thc Hc wave function ls conccrncdq lt ls
calculated by using the formulas developed in Sec. IV
and by solving numerically the homogeneous equations
corresponding to Eq. (3.16) to compute I'q(~i, q),
I', (i~,q), and I', (~3,q). This is equivalent to obtaining an
eigenfunction of the kernel of Eq. (3.16) corresponding
to an eigenvalue equal to 1.Most of the analysis carried
out by Wcinberg'4 concerning the properties of the
eigenvalues and eigenvectors of thc kernel of the
Lippmann-Schwinger equations for real potentials can
be extended to the case of complex potentials. We ex-

ploit the general properties of the eigenvalues discussed

by Weinberg and solve numerically the homogeneous
equations on a computer by a rapid convergent itera-
tive method. "

The probabilities of the states 5, 5', and I= ~3, which
we call E8, I'8., and 83~2, respectively, can be calculated
at once from Eq. (4.11) by recalling that the spin and
isospin wave functions are defined in such a way that
they are normalized to 1."The integrals involved in
the calculation of the probabilities can be reduced to a,

triple integral: one integral over angles and two integrals
over the modulus of two independent momenta.
Gaussian quadratures are used to evaluate them, with
a mesh of seven points for the angular integral and 20
points for the momentum integrals. Because of our
rather crude momentum mesh, the errors in the final

results for the probabilities have been estimated in the
order of 30%. These big errors, together with the fact
that we have neglected what we called "final-state
interaction" terms in the previous section, indicate
that our results should be considered as estimates of
the probabilities.

The results we obtained for d g and I'3~2 are shown in

Table I. In order to study the effect of the nonseparable
T matrix on the binding energy and wave function of
3He, we have recalculated Ag and I'3~2 by neglecting
everywhere the contribution of the Coulomb T matrix
to the Faddccv-Lovelace equations. It turns out that.
its contribution is quite small; it only accounts for a
few percent of the predicted h~ for both sets of parame-
ters. The estimates of I'3~2 also remain unchanged.
Therefore, as far as Aq and Eag2 are concerned, the main
Coulomb effects are contained in the nuclear p-p
T matrix.

Potential ~& (MeV)

0.68~0.05
0.84+0.05

I'w~('%%uo)

~.01~.01
I'"Io. 5. Set of p-p perturbation diagrams that contribute to the

"nuclear" T matrix. Dotted crossed lines represent the nuclear
potential.

"J.H. Naqvi, Nucl. Phys. 58, 289 (1964); A. N. Mitra and
J. H. Naqvi, jbjd'. 25, 30I (I961}.

"V. Gupta and A. Mitra, Phys. Letters 24$, 27 (1967).

"S.steinberg, Phys. Rev. 131, 440 (1963).
'~H. Fanchiotti, thesis, University of La Plata, Argentina

(unpublished).
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Fzo. 6. Set of three-body perturbation diagrams, to erst order
in Vg, whose eBect is taken into account by the nonseparable cor-
rections to the bound-state potentials,

These results seem to contradict one's intuition,
because it can be immediately argued that, had we
chosen to includ. e the contribution of Tq in a perturba-
tive way, we should probably have got an effect of thc
order of AE=(Q~ H„TyP IH), where f~n, is the wave
function calculated by neglecting Tq. Then it is obvious
that, since P~H, f~H and, to first order in e', Tp Vp,
the contribution expected from Tg is precisely the
perturbation-theory result. Therefore, one is led to the
conclusion that, as far as 6|. is concerned, it should be
accounted for mainly the by CGects of the nonseparablc
Coulomb part of the P-p T matrix.

However, it is easy to convince oneself that in this
case lntultloD falls RDd leads to double-CouIltlng. Lct
us 6rst consider a perturbation expansion of the p-p
transition matrix and make the rather trivial remark
th.Rt peltuI'batlon diaglaIDS coIltainlDg oIlly 3 ccI'tain
number of Coulomb potentials (Fig. 4) contribute to
T~, but diagrams containing interference terms be-
tween the Coulomb and the nuclear potential (Fig. 5)
contribute to the "nuclear" T matrix, that is to say, to
the Coulomb-corrected form factor. If we consider now
all the possible perturbation-theory diagrams for the
three-nucleon system of 6rst order in Vg, it is clear that
the contribution of the class of diagrams shown in Fig.
6 ls takcD into RccouIlt by Tg but thc contllbutloD of
thc clRss of dlagI'ams shown ln Flg. 7 ls included in thc
Coulomb-corrected form factors. This example shows
clearly that the usual perturbation-theory contributions
are shared in our approach by the Coulomb-corrected
form factors and the corrections introduced by Tg, and
that one cannot u priori decide which one, if any, will

give the dominant contributions. This one is a model-
dependent question; in our case it happens that the
nuclear potentials are such that the corrections to the
Lovelace potentials introduced by Tg are strongly
depressed.

Our values for Ag are reasonably close to thc experi-
mental value of 0.764 MCV for the electromagnetic mass
difference of 'H and 'He. The 6rst and second. sets of
parameters slightly underestimate and overestimate,
such a mass, respectively. These results do not agree
with the work of Gupta and, Mitra, "in the sense that
in their perturbative calculation, in addition to getting
larger values for Dg, they found that the 6rst setof
parameters predicts a larger value than the second. . %C
have no comments to make on this point because a close
comparison of our results with perturbation theory is
certainly not meaningful. %c determine the potentials
that appear in the Faddeev-Lovelace equations to 6rst

~ ~i
r

I ~
I

I I
~ ~I II
a l.

}
I l

e &
~

4 I I
~ I

FIG. 7. Set of three-body perturbation diagrams, to 6rst order
in Vc, whose effect is taken into account by the Coulomb correc-
tions to the two-body form factors.

order in e', but afterwards we solve the equations
numerically. Therefore, our results are rot 6rst-order
results.

It has been suggested. recently that the Coulomb
energy of Hc may bc considerably smRllex' than the
binding energy difference of 'H and 'He."A recent cal-
culation that includes in the 'H wave function the
cRect of R soft I'cpulslvc. cole o'f thc nuclear fol'ccs
indicates that this discrepancy may be of the order of
18/p. Needless to say, if this discrepancy is a real effect,
it implies the existence of a charge asymmetry of the
nuclear forces, in particular that the I-e interaction is
stronger than the p-p interaction. ' Moreover, it has
been shown that in separable-potential models the in-
clusion of hard-core CBects, which we have neglected,
tends to reduce the binding energy of the three-nucleon
system by approximately 10-15%.i9 It seems plausible
to us that our results will tend to agree with those of
Ref. 37 if hard-core effects in the nucleon-nucleon force
are included.

Ke also 6nd that for both sits of parameters
Ps' 1 /p in agreement with previous calculations, "
and Ps/2 0 01 /p "As.far a.s Paf2 is concerned„such a
smRB value represents a negligible mixing of the I= ~
state in the 'He wave function. These results are not
very surprising; we know that wave functions are much
more sensitive to the details of the input forces than
binding energies or scattering cross sections. " The
separable potentials of the Yamaguchi type used in
this model arc pulcly Rttx'Rctlvc 'RDd that ls ccltaiDly
not the case for the nucleon-nucleon system. The prob-
ability I'8 has proved to be insensitive to the inclusion
of tensor forces, "but the inclusion of hard-core effects
can raise Ps. up to a value of approximately 2%.'s
This is roughly the amount of 5' state admixture com-
patible with inelastic electron scattering from 'H and
'Hc, '9 with the rate of slow neutron capture in deu-
terium, 4 and with the nuclear binding energy. 4 How-
ever, such an admixture of the 5' state cannot account

36K. Okamoto, Phys. Letters 11, 150 (1964); Progr. Theoret.
Phys, (Kyoto) 34, 326 (1965);J. N. Pappademos, Nucl. Phys. 56,351 (1964); D. A. Krueger and A. Goldberg, Phys. Rev. 1$$„8934 (1964); L. M. Delves, ~Md. DS, 31316 (1964);Y. C. Tang
and R. C. Herndon, Phys. Letters 18, 42 (1965);B.K. Srivastava,
Nucl. Phys. 67, 236 (1965)."K.Okamoto and M. Lucas, Nucl. Phys. 82, 347 (1967).» See for example, T. Ohmura, Progr. Theoret. Phys. (Kyoto)38 626 (19M).

3~ f. A. Gray and R. J. Oakes, Phys. Rev. 135, 81161 (1964).4o 'g. K. Radha and N. T. Meister, Phys. Rev. 136, 8388 (1964).4~ J. M. Blatt and L. M. Delves, Phys. Rev. Letters 12, M4
(1964).
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for the striking difference between the charge form
factors of both nuclei. Gibson and Schiff4' consider
that the most promising candidate to explain the re-
maining discrepancy between both the form factors is
the I= ~~ state.

The fact that our model predicts such a small admix-
ture of the I=~~ state should not be taken as an argu-
ment against that possibi1ity. It remains to be seen
what happens to P3/Q when more realistic two-body
forces are considered. The next step is to include hard-
core eGects in the two-nucleon system. Work is in
progress in this direction and we shall report on it in the
near future. Finally, it must be emphasized that the
methods we have discussed in this paper can be im-

mediately applied to the study of p-d scattering, with
the Coulomb corrections fully taken into account.
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where

I(k1,2/1, k2, 2/2)

j.
dg (A4)

(y—k1)'+e' P' (y—k2)'+e'

An integral of this form with 1/P2 replaced by 1/(P' —X2)

was computed by Lewis. 4' We have checked that there
are no di6iculties in setting X»= 0 in his result, which in
our case reads

I(kryo Y(1j kop2/2)
(b2 ~)1/2

where

-g+(g2 op)1/2-
ln (A5)

(g2 op) 1/2

2a/~[q
tan-1

g2 g»j
(AS)

ay=L(k1 k2)'+(q1+n2)'791'+g1'jp2+g2 jy
(A6)

'92(~1 +'g1 )+2/1(/22 + /2 ) '

From these relations we find

= 6 ay= Lk2(2/12+$12) kl(2/22+$22) j2(0 ~ (A7)

Therefore, using (A7), Eq. (AS) can be rewritten in
the form

8 e» i
I;,(q',q; E)= — dy

3v3 ~'
t y—k21'+p12 (p—k2]2+/22

where

X— —,(A1)
p2 fp kl)2+/112 Ly k132+p.2

k1——(1/43)q+ (2/V3)q', k2 ——(2/V3)»+ (1/A)q',

pg»= g» —S, p» gl» J ~ (A2)

By making a decomposition in simple fractions, we can
write (A1) in the form

8 e'
I'1(»',»; &)=-

3v3 ~2 (/12 —p')(/22-p')

X t I(kr,pg., ko,p;)—I(k1,/11, ko,p;)—I(k1)p/,.k2, /12)

+I(k1,/11,k2, /22) j, (A3)

~&3, F. Qibson and L. I. St:hi8, Phys. Rev. 138, M6 (1965).

APPENDIX A

Here we discuss brieQy the computation of one of the
integrals involved in the definition (3.1S); the other is
much simpler and can be computed in a similar way.
Consider

We want to discuss here the isospin dependence of the
potentials and propagators that appear in Eqs. (3.16).
We shall neglect spin indices because we are working
with central forces and the spin dependence of the
potentials can be taken into account in the way de-
scribed in Ref. 1. From Eq. (3.15) we can see that the
potentials are basically matrix elements of the Green's
function Go(E). If there were no isospin in the problem,
the potentials called Z (q', q; E) would be given by
matrix elements of Go(E) between an initial and a final

state in which there is a particle and a bound state
called 22 (or 22') with relative momentum q (or q') in the
total center-of-mass system, respectively. For equal-
mass particles, such a potential is given explicitly by'

Z„„(q',q; E)= (»', 22'
~
Go(E) ~q, /2)

, „,g. (p')q-(p)

P2+/I2

where y= —22V3»—22V3»', y'=22V3»+22V3q' and g„(p)
are the form factors of the bound states. The same is
true in the case in which, instead of bound states, we

have virtual or resonant states of two particles.
When isospin is introduced and the second term in

the right-hand side of Eq. (3.15) is taken into account
(with V~o, the Born approximation, instead of T7'), we

&'R. R. Lewis, Jr., Phys. Rcv. 102, 537 (i956).
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usc R bRsls ln Hllbclt spRcc lD which thc thIcc lsosplns
of the individual particles, the isospin I„of the bound
state e, the total isospin I, and its s component Iz are
diagonal. The eigenvalues of Ig are labeled M. There-
fore, the potentials we need are given by

Z. z, z (zl',q; E)= ((-,' —',)I„P„I',M; q', n'~ Go(E)

X i-,', (-', q)I,I, M, qe}—((-', ',)I -„I',M,g',n'
i

&&G,(E)V„G,(E) i
', (-,'—,')I„,I,M, qe). (82)

(81), everything reduces to Clebsch-Gordan algebra.
However, one has to be careful because we have scen
in Sec. II that in the case where there is isospin sym-
metry breaking, the two-body T matrix, and conse-
quently the form factors g (y), depend on the s corn-
ponent of the isospin I„ofthe two-body subsystem. %c
label 3f„ the eigenvalues of I„g, and denote the form
factors by gjr„(p). For the singlet state I„=1and it is
clear that

gi(u) =go(p); g0(1) =g-i(p) =C.(p)These matrix elements can be calculated by recalling
that Go(E) is the identity in isospin space. Using Eq. Therefore, the potentials are given by

Z„z.,„z (q', zf; E)= Z Z
M~M~'+my tag M~M~+tnI

f~„~„(zf,zf, E)(I p„I&M(I»,M»;', ,mm}(I M„,—,',—,')Lmg, q,ma)

y(-,', mg, -'„ms~-', ,—',,I., M. }(I., M.;,', mx tI., ~~I,M) Q— Q Q Iz~„,jz„(zf',zf; E)(I»,g,I',M (I M, g,mm)
3f~Mss +sag tag M~M'ss+mg

)&(I. ,M„,~ —,
'

~
-'„mg, —',,mg)(-,',mph'„mm] 1,+1}(1,+1~-,',mg, —,',mg)

X(-;,m„-,',m, [I.,M.„*„'}(I.,M.„',m, tI.„',I',M), (84)

where the functions fjz„,m„(g',zf; E), and &sr, ,m„(zf'q, E)
are given in Eqs. (3.17) and (3.18), respectively.

It ls interesting to discuss in gcneI'Rl what hRppcns
when the Coulomb interaction is switched OG. ID this
ease, obviously, the second term of the right-hand side
of Eq. (84) vanishes, but also in this case the form
factors no longer depend upon M„, and all the functions
of g', g ean be factored outside the sum over Clebsch-
Gordan coe6.eicnts. %hat remains is by de6nition an
isospin recoupling coefFicient, ' which of course vanishes
unless I=I'. Therefore, Eq. (A4) shows explicitly how
the isospin violation in the three-body system is
lnduccd by the collcspondlDg vlolatloIl ln thc two-body
subsystems.

~,(E)=~,(E); ~,(E)=L,(E)=~.(E). (83)
In the basis we are using, the propagators are

t z, z ~(E)=Q t~„(E)(I„;2,I,M(I„,M„,),M—M„)
M~

x(I.,M.;2,M—M„(I.„',I',M). (86)
From this equation, one can easily obtain Eq. (3.25).

As far as the propagators t„(E q') are—concerned,
they described the propagation of a particle and a bound
state labclcd s. However lt ls clem floIQ oui discussloD
in Sec. II that in the case in which there are Coulomb
interactions they also depend on M . %e denote the
propagators by t~„(E q'). When—I„=1,it is clear that


