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One-Boson-Exchange Potential and Nuclear Matter*
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The one-boson-exchange potential model is studied in some detail. The parameters of a velocity-dependent
potential based on such a model are Btted to reproduce two-body scattering data. This potential is then used
in nuclear-matter calculations. It is shown that the average binding energy of a nucleon in nuclear matter
and the saturation density are in reasonable agreement with the experimental values.

1. INTRODUCTION
' 'T has been apparent for some time that one can fit
~ - all the two-nucleon data with any one of several
phenomenological potentials, particularly if one allows
momentum dependence. It may be expected that
nuclear-matter calculations will help choose between
such potentials, since these calculations involve matrix
elements which do not arise in the two-nucleon system,
namely, those between states of different energy. Of
course, for this purpose the nuclear-matter calculation
must be reliable and of known accuracy; this situation
has recently been achieved.

The early calculations by Brueckner and Gammel, '
Brueckner and Masterson, 2 and Razavy' did however
suggest that potentials with infinitely hard repulsive
cores would give too little binding. Attention has
recently shifted to potentials with soft repulsive cores.
Also some years ago, Green4 replaced the infinite hard
core by a velocity-dependent phenomenological po-
tential of the type

V (r) = V e (r)+PsW (r)+W (r)Ps,

with W(r) Gaussian. He concluded that such a po-
tential, if W(r) is weak enough to permit use of pertur-
bation theory, does not give saturation at reasonable
densities. However, this is not an inherent property of a
velocity-dependent potential, but to obtain saturation
one must have 8' so strong that perturbation theory
cannot be employed. '

With the discovery of vector mesons, capable of
producing short-range nucleon-nucleon repulsion, there
has been a revival of interest in potentials which are
only in part phenomenological, guidance being obtained
from observed resonances of the two-nucleon system.
Such boson-exchange potentials possess in principle
both soft cores and momentum dependence. Impetus
for such studies was given by D. Wong's successful
calculations of the two-nucleon system based on ex-
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change of observed bosons and using dispersion re-
lations; he and Scotti obtained good agreement with
observed cross sections, polarizations, and correlation
parameters. ' Bryan, Dismukes, and Ramsay7 gave a
static-potential model arising from the exchange of
three types of mesons: one scalar meson, one vector,
and one pseudoscalar meson x. In a later paper, Bryan
and Scott improved the fit to two-body scattering data
by making use of the exchange of six different mesons.

D. Wong, ' treating the potential derivation rela-
tivistically, arrived at a nonlocal one-boson-exchange
potential (OBEP) with explicit velocity dependence
as well. By expansion of the nonlocality in powers of
relative momentum, D. Wong also expressed his
potential in a local but explicitly velocity-dependent
form.

Although it was not explicitly related by its author
to meson fields, the static soft-core, three-term Yukawa
potential used by C. Wong" may be regarded as arising
from the exchange of three diferent mesons. With
three adjustable parameters, C. Wong reproduced 'So-
state scattering data. Assuming the interaction to
occur only in the 'Sp state, he estimated that a soft-core
potential would give more binding in nuclear matter
than a hard-core potential. Among the various po-
tentials studied by Sprung et a/. " in their recent
nuclear-matter calculations is the soft-core Bressel
potential. Their calculation also indicated that a
soft-core potential provides more binding than hard-
core potentials.

The aims of the present investigation are as follows:
First, we wish to study the form of the velocity depen-
dence arising from the QBEP model. We shall see that
there are rather severe restrictions on the velocity
dependence: to order p', the radial dependence W(r)
is necessarily a Yukawa; the velocity dependence
occurs in the tensor and spin-orbit forces as well as in
the central forces; and that to order ps the Schrodinger
equation has a nonphysical singularity. We would like
to employ the momentum-dependent potential pro-

6 A. Scotti and D. Y. Wong, Phys. Rev. 138, B145 (1965).
7 R. A. Bryan, C. R. Dismukes, and W. Ramsay, Nucl. Phys.

45, 353 (1963).' R. A. Bryan and B.L. Scott, Phys. Rev. 135, B434 (1964).
9 D. Y. Wong, Nucl. Phys. 55, 212 (1964).' C. W. Wong, Nucl. Phys. 71, 385 (1965)."D. W. L. Sprung, P. C. Bhargava, and T. K. Dahlblom,

Phys. Letters 21, 538 (1966).
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duced by the following bosons, which are the only ones
up to nucleon mass which nucleons exchange: x, g, p, eu,

and an isoscalar scalar. With this potential, one would
like to correlate as many observed numbers as possible.
One can envisage a quite extensive parameter-6tting
problem, as well as the need to solve reliably a good
many integrodiBerential equations.

Before embarking on such an extensive calculation,
we have studied the nuclear-matter properties of a
model of this full potential in which the exchange of
only three bosons has been considered: m, one "iso-
scalar" vector, and one isoscalar scalar. The vector
meson has been given a diGerent coupling constant in
the singlet S state than would arise for an isoscalar
exchange; thus the actual existence of both isoscalar
and isovector vector mesons is partially mocked up. In
Sec. 2, we adjust this OBEP model to 6t qualitatively
the two-body scattering data. Section 3 is an account
of the nuclear-matter calculation using the reference-
spectnun method developed by Bethe et al.'2 In Sec. 4
we discuss our results and compare them with other
works.

2. ONE-BOSON-EXCHANGE POTENTIAL

A. Potential Model

We shall use D. Wong's expanded, local, but velocity-
dependent potential Lsee his Kq. (12) Ref. 9]. We
assume the bosons exchanged to be the pion, one
isoscalar scalar meson, and one isoscalar vector meson.
Furthermore, for simplicity, we only include direct
coupling for the vector meson, and we also neglect the
quadratic spin-orbit term. The form of the potential
we use is, for a given isospin state,

Vt.tv= V+VrS»+VrsL S
+p'LW+WrS»+WisL S]

+$W+WrSgs+WgsL S]p', (2.1)
where

V= Vo+V.eg es,
W= Wo+W. ex. es,

and S~2 is the usual tensor operator. We shall also write
Vz= Vz—3V„Vs——V&+V, and similarly for W& and
8'3. We have not put in the ~&.c2 dependence explicitly,
but we shall write separate potentials for the T=O and
T=1 states. The potentials are then, with

S=O, T=O:

Vi= —gdF(S) (1——.'xd —ssxs4)+-;g.'x.&F(~)

+gr'F(V) (1—s'~xv'),

Wx =sgs'F (S)(1—sxs' —+ixs') —hg. 'x.'F(s.)
+sg&F(V) (3—sxH+~Zxr')

~r = Jl I.s= lVr =~'I,s=0;

S=1, T=O:

(2.3)

Vs =—gs'F (S)(1—s'xs'+ ~'gxs4) —-'g~'x~'F (s.)
+gr'F(V) (1+-sxF +~~xrs),

Vr = —~sg~'F (s )$(3/r')+ (3x„/r)+x~']
—t.gr'F(V)/12r(3/r')+(» /r)+xH],

V.,=—g, F(S)P(1/")y(,/')](-;-P*, )
—gr'F(V) L(1/r')+ («/r)](5+ —'ex&)

Ws= ggs'F(S)$1 —(11xs'/24)+~isxs4]+ —,
'

g 'x 'F(s.)
+sgp F(V)L3—(11xr'/24) —,',x '],

Wz =t'gs'F(S)/96][(3/rm)+(3xs/r)+xs ]
+~sg-'F(~)L(3/r')+ (»-/r)+x-']

+$gr'F(V)/96]L(3/r')+ (3x /r)+x '],
=kg 'F(S)L(1/ ')+(* l )](3—l*d)

+~&' g&F(V)L(1/r')+(xr/r)](5+sx&); (2 4)

S=1,T= j.:
Vs ———gs'F (S)(1—~sxs'+sLsxs4)+ Lg 'x 'F (s )/12]

+g&F (V) (1+ssxrs+~xr'),
Vr =Lg-'F (s )/12X(3/r')+ (»-/r)+x-']

—LgrsF (V)/12]L. (3/r')+ (3xr/r)+xr'],
VLs= —gs F(S)L(1/r')+ (xs/r)] (2 —i sxs')

—
g&F (V)L(1/r')+ («/r)](s+hxr')

Ws =~sgssF (S)L1 (11xs'/24)+~i' xss]
—(g,'x '/48)F(s)

+s'gr'F(V)L3 —(11xrs/24)-+xmas],

Wr = Lgs'F (S)/96]r:(3/r')+ (3xs/r)+xs']
—[g,sF(x)/48]((3/r')+ (3x /r)+x„']

+LgrsF(V)/96]L(3/rs)+ (3xr/r)+xr ],
W»= llfgs'F(S)L(1/r')+(xs/r)](3 —sx&)

+—:.g&F(V)L(1/")+(x /r)](5+ix&) (2.5)

S=O T=i
F(~)= (1/r)s-"-",

Here

Vg= —gs'F(S)(1—,'xs' —s'sxs') —gg 'x 'F(s)
+g&F (V) (1—~ssxr')

Wg=-,'gs'F (S)(1—,'xsS ——,',x ')+—,',g,'x 'F (m)

+msgr'F (V) (3—$xr'+~sxr'),
~r= ~r.s=~r=~r. s=o,' (2.2)

"H.A. Bethe, B.H. Srandow, and A. G. Petschek, Phys. Rev.
129, 225 (1963).

F(a) =e ""/r, -
x.=~./M,

and the g"s are the coupling constants. We adopt a
unit system in which h= c=1, and the nucleon mass M
is set to be unity also. It should be added that the
potential functions W;(r) of the velocity-dependent

part as listed above are D. Wong's results divided
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by two, owing to the Hermitization process total wave function

IJz, (r)
+(r) =Z 'JJ»s-1

r

p'W;~ z3(p3W;+W;p').

B. Schrodinger Equation

Let us consider the triplet case, as the singlet case The two-body Schrodinger equation is then (in units
can also be readily obtained from it. We expand the of A=M=c=1), for

I.=J—1

4(j—1) 4(j—1)
NJ, J 1" —(1+2W3)+ Wr —2(J—1)WLS +NJ, J 1' —2W3'+ Wr' —2(J—1)WLS'

(2J+1) (2j+1)
J(J—1)(1+2W3) 2(J—1) 4(J—1)'J Wr WLs+IJ,J-1 +V3— Vr+ (J—1)VLs —W3"— + 2J(j—1)3

r2 (2J+1) (2J+1) r' r'

2 (J—1)
+ Wr"—(J—1)WLS" +IJ,J+1"—

(2J+1)

6P(J+1)j'"
+33J,J+1 Vz-

(2j+1)
L=J+1:

12[j(j+1)j113 12P(j+1)j1l
Wr +NJ.J+1'—

(2J+1) 2J+1

6[j(J+1)]1~3 12(J3+j+1)[j(j+1)]1~3Wr-
Wr"+

(2J+1) (2J+1) r'
=k IJ,J 1,' (2.6)

4(j+2) 4(J+2)
33J,J+1 (1+2W3)+ Wr+2(j+2)WLS +33J,Jy1 2W3+ WT'+2( j+2)WLS'

(2J+1) (2J+1)
(J+1)(J+2)(1+2W3) 2(J+2) 4(J+1)(J+2)'WT

+33J,Jyz +V3— Vr —(J+2)VLS—W3"—
(2J+1) (2J+1)r'

2(J+1)(J+2)' 2(j+2) 12P(J+1)g'13
WLS+ Wr"+(J+2)WzS" +NJ, J 1"— S'z

r' (2J+1) (2J+1)
6[J(J+1)]'"

8'z"
(2J+1)

12(J'+J+1)[J(J+1)1113WT-
+

(2J+1) r'

r2

12[J(j+1)j113 6[J(J+1)j113
+IJ',J—1 Wr' +33J,J 1— Vy-

(2J+1) (2J+1)

=k333J,J+1. (2.7)

Here 43=E. We note that Eqs. (2.6) and (2.7) are coupled because of the tensor force. For the L=J state, we
have an uncoupled equation:

IJ,J"[—(1+2W,) 4WT+—2WLS3+IJJ'[ 2W,3' —4WT'+—2WLS'3+IJJ,J(J+1)(1+2W3)
+V3+2VT VLs

r2

Wz
W3" 2Wr"+4J—(J+1)— +WLS"

r2

2J(J+1)
Wz, S =03NJ, J. (2.8)

The equation for the singlet state is simply

(1+2W1)N3"+2W ' '1N3

(1+2W1)l(l+1)
+V1—W1" 333——k3N3.

r2
(2.9)

C. Results of Phase-Shift Analysis

We and that the parameters used by Bryan, Dis-
mukes, and Ramsay~ give us surprisingly good results.
We are forced, however, to make a few ad hoc state-
dependent adjustments. The vector meson coupling
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FIG. 1. Phase-shift characteristics. The solid curves show the results of calculation with potential M1. Dotted curves display the
values of Table V of the analysis of R. A. Amdt and M. H. McGregor LPhys. Rev. 141, 873 (1966)g.

constant has to be greatly increased in order to get any
reasonable result for the singlet-odd states. We also
need to modify the parameters for the singlet-even
state slightly. The potential parameters are listed in
Table I. All states have a "mathematical" hard core
of r,=0.074 F, i.e., we set our wave function to be zero
inside this region and start our numerical integration of
our diBerential equations at r, .

The phase shifts calculated from the potential are
compared in Fig. 1 with "experimental" phase shifts.
The agreement may be described as adequate. We have

TAsLE I. Parameters for potential model Mi. r, =0.074, p in
units of reciprocal nucleon Compton wavelength.

not attempted to obtain a very precise 6t, since our
potential is only a model of the sip-boson OBEP and
our concern was to determine if such a potential would
give encouraging results for nuclear matter.

In order to compare with C. Wong's work. ,
" we

also 6x g 2=14.0, m =0.147 nucleon mass, m~ ——1.051
nucleon mass, and r,=0.001 F, all very close to C.
Wong's values. We then adjust the remaining three
potential parameters to reproduce his scattering data
for the 'So state. Table II shows the parameters for
this model which is assumed to act in the 'So state only.
We designate this model by M2 and the full-potential
model of Table I by M1.

Singlet
even

Singlet
odd

Triplet
even

Triplet
OBd TABLE II. Parameters for potential model M2. r, =0.0001 I",

M in units of nucleon mass.

p~
ga
pv'

gv
ps
gs'

0.147
14.0
0.8085

34.0
0.598

15.3

0.147
14.0
0.8085

74.0
0.588

15.4

0.147
14.0
0.8085

34.0
0.588

15.4

0.147
14.0
0.8085

34.0
0.588

15.4

gs.

M
Mv

14.0
0.147
1.0508

Predetermined

gs~

gv
~s

2.42
42.24
0.40

Adjusted
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3. NUCLEAR-MATTER CALCULATION

Using potential model M1 we then calculate nuclear-
matter properties by means of the reference-spectrum
method developed by Bethe et a/."For the 6rst-order
calculation we fo}low quite closely Razavy's outline. '
We diGer from him in that we calculate the hole
potential energy for only an average collision mo-
mentum kp and that we do not attempt separation in
any angular momentum state. The basic quantity
involved is 6", the reaction matrix in the reference
spectrum, given by

.2-
rn"=0.9 k -" l.36 F"

F

k, =0.75

5 r (F)

Pro. 2. %ave defect for the singlet S state.

calculate the 6 matrix for the particle states. Let
(v'+ko')

(ko[Gr."~ko) = 4 r (ko»)&Ld»,
m~

(3.1) 2k p'
lf»particle(k )—41 5 2 (kplG~" Iko). (3 3)

3g2 even I
where the subscript I. denotes the contribution from
the Lth partial wave @I, is the unperturbed wave
function, Xl, is the wave defect, and

We compute 5'&'*"'"for two kp's; namely, for kp —y.5k ~
and kp ——2k~, and we fit

for holes, and

y'= 2' g' —kp' (3.2) W'""Oia(kp) = A+8' k'p (3 6)

p'= 3kp'+ (3A—0.6)k»'

for particles. The gap d and the effective mass m* are
two parameters which should be generated self-consist-
ently if higher-order terms are to be small.

The total wave defect

U(ko) = (A'+~p0. 6k»oB')+ (-'jib')koo (3.7)

by a parabola. Then the single-particle potential energy
for particle state is, as shown in Razavy, '

1
P (2L+1)i~XI,(kor) Pl. (cos8)

kpr L

satisfies the equation

m»P = L11(8'iV/2k') P'
Pl' f

IULv'(06)k ]—U).
41.5 kg'

(3.8&

(3.9)

(y' 6')I "=—m*VQ" (3.3)

"E.C. Ridley, Proc. Cambridge Phil. Soc. 53, 442 (1957).
M. Razavy and D. %. L. Sprung, Phys. Rev. 133, 8300

i1964).

This equation is solved by Ridley's method. "'4 Before
solving this differential equation, we must erst decide
on an approximate expression for y'. The expressions
(3.2) used by Bethe et al. are meant to take the off-
shell propagation e6ect into account, and are tailored
for a hard-core potential. In Fig. 2 we show a plot of
the 'Sp-state wave defect X versus r for our nonstatic,
soft-core potential, and in Fig. 3 we plot the square of
the Fourier transform of the wave defect X. We see that
our important intermediate states are in a momentum
region comparable to that for a hard-core potential,
and therefore we conclude we may use the same ex-
pression as Bethe et ul. 12 for y'.

Once the G~ matrix is obtained, the mean single-
particle potential energy for the hole state m is given by

U„= (2k p'/3o»o)(kp ——(+0.3)k» i
Gs

I kp)

X41.5 MeV. (3.4)

Here 6 denotes the sum of all the partial waves,
including their appropriate statistical weights. We then

For a given k~, we choose a guessed b; and m;* in Eq.
(3.3) and see if the outputs 6» and tn»p are consistent
with the input. If not, we repeat the cycle. The average
energy per particle is given by

E=T+-,'U = —,', (k'/M)k»o+ -,'U„. (3.10)

.05

.04
a

[Xrl'Ij
~03

S
,02

.OI

0 I.O f 2.0 3,0 40 k F'
kF

Pro. 3. Square of the Fourier transform of the
@rave defect for 'So state.

The above procedure forms a major cycle in our compu-
tation. Ke execute major cycles for kp ——1.25, j..36, and
1.50 F—'. In Table III we show the erst-order contri-
bution to the G matrix from various partial waves.
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States

1S
1p~
1D
1p
'G4
8P

8D
8P8
8G4
8S1
8D
3p
8PQ
8D8
8G8
8P4
8H4

Total

W& (Mev)

—32.30
+ 8.50—5.29
+ 1.79—0.64—8.97
+21.43—5.67
+ 0.84—0.19—43.41
+ 2.98—9.43—1.18—0.08
+ 0.28—0.62—0.06
—72.02

TABLE IQ. Partial-wave contribution to the G
matrix for kg =1.36 I' ~.

where
f(ass) =&(ass)/&1(s 23), (3.15)

P, (rss) = drll)12(~12+8)13),

values of k', and interpolation is used to obtain UN at
the values of k' needed for the second-order corrections.
Results of this calculation are included in Table IV.

The above consideration of the second-order correc-
tion does not include the three-body cluster effect
except for the fact that Rajaraman's prescription" is
used in calculating the particle potential energy.
Bethe," however, suggested, that this eGect be in-
corporated in the calculation by evaluating

(ks(G~f(r) (ks)&

for all states, where f(r) is the so-called "suppression
factor, "given by

where

(k') 5's, (k') dk',

e(k') =e" for k'(ks
= (e~ e")es/e—~ for k'~& k)

(3.13)

and Pe, r~(k') is the weighted sum of squares of Fourier

transforms from the wave-function defects in different

states. In our case, only contributions from singlet S
state and triplet 5-coupled state are calculated, contri-

butions from other states being relatively small,

Therefore, we have

~, ,~(k') =». (k')+3D'o. 2(k')+F. . '(k')3, (3.14)

where F is the Fourier transform of the appropriate
wave-function defect, and the notation follows that of

Bethe et al."
Us(k'), the reference-particle potential energy is as

given in (3.7). The nuclear spectrtun U~(k') for the

particle states is calculated explicitly at four different

Having obtained the 6rst-order result G~, we then
proceed to calculate the second-order term in

G"=G'+O'L(1/e") —(Q/e") jG'& (311)

where e" is the reference spectrum, e~ the actual

spectrum, and Q is the Pauli operator which ensures

that all the intermediate states are projected outside

the Fermi sea. As in Bethe et uL."e~ and e~ are given by

e" ~(ks,k')

=2/T(k')+U" "(k')—T(ks) —UN(k())j, (3.12)

where T and U are kinetic and potential energies'

respectively, and A'0 is the average relative momentum

of hole states. The calculations follow closely that of

Bethe et at. ,
'~ where the total second-order correction

is given by

n(r„) f3 &n =[4' 0'n&(r&, ,r„,r„))—,

'912N13+'913Nls 8)23(2312+Nls 2N12gls)
C(—+0)—

N128313+N122323+Nsllss 2N12N232331

28 12 1 t 12 &

TABS IV. Nuclear-matter calculation results.

1.25 F 1

1.36 F &

1.50 F-~

B/A
(1st order)

Ms4' hc MP by (MeV)

0.80 0.70 0.83 0.50 -10.0
0.90 0.70 0.83 0.64 -13.25
0.80 0.65 0.77 0.53 —8.75

2nd order
without
3-body
e8ect
(Mev)

-4.60
2%72

-5.66

2nd order
@pith

3-body
e8ect
(Mev)

-1.37
+0.82
-1.30

"R.Rajaraman, Phys. Rev. 129, 265 (1963),
"H. A. Bethe, Phys. Rev. 188, B804 (1965)."p. C. Bhargava and D. W. L. Sprung, Ann. phys. {N.Q.) 4p,

222 (1967).

as in Bethe."81 and l' are the normalized wave-function
distortions for hole-hole and particle-hole interactions,
respectively. These are calculated by the modi6ed
Moszkowski-Scott separation method'~ in which both
the wave-function distortion and its derivative are
de6ned to be zero at the separation distance. We solve
this second-order differential equation by a variation of
Ridley's method. "The suppression factor f(r) is then
calculated at three particle momenta (3, 4, and 5 F-')
representative of the region of wave number where the
wave-defect Fourier transform is largest. We 6nd that
f(r) varies only slightly in this region, and the result
at 4 F ' is used for our calculations. In obtaining this
suppression factor, we use only the i' and 8) for the 'Ss
state; these functions represent the angular averages
of the total l and 81. The procedure follows closely that
adopted by Bhargava and Sprung. '7
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4n-

Vg ——— sin'(ksr) Vg (r)dr
ko'

(3.16)

in nuclear matter. Here the V~ in the integral denotes
the long-range part of the potential, and d the sepa-
ration distance. The two potentials may have very
diGerent short-range correlation, thus producing difer-
ent values for the dispersion term. Difference in binding
energy is then mainly attributed to the difference in
the dispersion term. An estimate of this dispersion" term
E~ is given by

harp
En ~'~ (2h U) Xs,'dr

&0' 0

—=ttLs(26U)D.
(3.17)

Here hU is the difference in the single-particle po-
tential between an average excited state and an
average state inside the Fermi sea, ko is the average
va, lue of the relative momentum k, p is the nuclear-
matter density, and X is the wave defect. Thus the
difference in the binding energy per particle in a
nuclear-matter calculation using two diferent po-

E
MeV

Fzo. 4. Binding-energy
curve.

tO

I I0 L2 l3

-Io-

kF(F )
l

l.4 l.5

'4 S. A. Mosskowski and B. L. Scott, Ann. Phys. (N. V.) ll,
65 (1960).

The over-all effect of f(4) is to lower the particle
energy spectrum, thus making a recalculation of the
second-order correction necessary. The results are
tabulated in Table IV. The Gnal. binding energy of the
nuclear matter calculation is shown in Fig. 4. Also,
in Table V, we compare our results with those of
Sprung et al.," using the Reid soft-core and Bressel-
Kerman soft-core potentials. They are in reasonable
agreement.

It is also interesting to employ the simple potential
model M2 to estimate nuclear-matter properties by
means of the Moszkowski-Scott separation method. "
This will allow us to compare the binding effect of a
velocity-d. ependent potential with C. Wong's static
potential. ' We follow C. Wong's procedure and use
the same notations. It is expected that two potentials
yielding comparable two-body scattering data will also
produce comparable Grst-order Born term

TABLE V. Comparison of binding-energy and saturation results.

Potential

Reid'
Bressel-Kerman'
M1

Z/A at
saturation

(MeV)
Saturation (ky)

(F ')

1.40
1.50
1.33

a These results include a third-order correction term and are quoted from
Bhargava (see Ref. 22).

tentials which produce the same phase shifts is

AE= DER) =~~~ (26.U) AD

=26.25AD
(3.18)

TABLE. VI. Comparison of static and velocity-dependent
three-meson potential models. Fermi momentum kg=1.36 F ',
relative momentum k0=0;75 F '.

S (250 MeV)
fg

V)
D

C. Kong's F„~i
—23.75 F

2.67 F
0.000 rad
1.06 F—460.1 MeV F
0.0622

Model M2

—23.58 F
2.78 F
0.019 rad
1.04 F—462.8 Me& FI
0.0179

if AU is taken to be 70 MeV. Comparison of our results
with C. Wong's is shown in Table VI. We observe that,
relative to C. Wong, we have an extra binding energy
of )AEo~ =1.2 Mev. We must note, however, that
comparison in the 'So state alone may not be very
conclusive because of the dependence on ro and thus
the added arbitrariness. Also, all we have seen is that
perhaps we shall get more binding, but nothing is said
of the saturation problem. Moreover, we have not
considered the interference terms in the separation
method.

4. DISCUSSION

The Schrodinger equations (2.6)—(2.8) for the triplet
states in general have a singularity. (The singlet
case presents no problem. ) In particular, let us examine
the uncoupled triplet equation (2.8), which has the
structure

a(r)u"+b(r)u'+c(r)u=0. (4.1)

Suppose a(r) vanishes at a certain point r=re, the
precise location of which depends on the potential
parameter used. It can be seen by usual series solution
method that ro is a logarithmic singularity. With the
potential parameters we use, this point r=ro occurs
at about 0.19F for the'E~ and 'F~ states, whereas for the
SD~ and '63 states this occurs at r0=0.11 F.

The singularity is unphysical. It arises because we
have expanded the potential to the p' term, resulting
in a particular type of velocity dependence. Had we
expanded our potential to the p4 term, we would have a
fourth-order differential equation which would have a
singularity presumably at a smaller rs. U we use the
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originally nonlocal potential, we have actually an
integrodi6erential equation. Even in the singlet '50
state, however, the solution of this integrodifferential
equation would be lengthy.

In our numerical computation, we ignore this
regrettable singularity. Fortunately, the singularity
does not seem to be too serious, since the results are
not sensitive to the mesh size d (variation around
5~0.01 F, say). We cannot, of course, reduce the mesh

indelnitely. One reason why the singularity is not
serious is perhaps because the logarithmic divergence

is relatively weak, and therefore the singular admixture

in our solution remains finite and small, unless we get
really close to the singular point. Another reason may
be seen if we note that the singular point ro occurs at
small distance (never farther out than 0.49 F). In this

region, the wave function is still very small, and cer-

tainly much smaller than that in the asymptotic

region. Thus a little change in the wave function in this

innermost region due to a change in the mesh around

the singular point will be covered up in the asymptotic

region, thus producing no difference in the phase shifts.

For nuclear-matter calculations, we are confronted with

a bound-state problem: The magnitude of the wave

function at large distance is not greater than that in the

inside region. Actual computation indicates again,

however, that even here the difference in the wave

function due to a change in the mesh is tolerable, and

the situation is further helped by noting that the

interesting quantity, the 6 matrix, is

where f is the actual wave function, and @ is the

unperturbed wave function. For the S state, p is just a

sine wave. For most collision momentum, sin kr is

quite small for small r and thus, essentially, (p—P) is

reduced greatly and the integrand, in this region where

the singularity occurs, has only a small contribution

to the 6 matrix.
In 6tting the phase-shift data we try to achieve only

a qualitative agreement. Ke choose g '=$4.0,
=O.f47 nucleon mass, and my' ——0.8085 nucleon mass,

as predetermined in potential model M1. That we have

to make ad hoc adjustment for the singlet-odd states

is perhaps because we have not included enough mesons

and. thus we do not have enough adjustable parameters.

It could also be due to our ignoring the quadratic

spin-orbit term. Our fit to the 'D2 and 'E2 state is

especially poor. Bryan, in his investigation of OBEP
and velocity dependence, seems to have this difhculty

also.
The values of the meson-nucleon coupling constants

given in Table I do not, at 6rst sight, appear to be in

agreement with values determined from nucleon form

factors, particularly for the vector mesons. They a]so

appear to differ from values of the co, p, and p coupling
constants found to fit nucleon-nucleon scattering in
certain recent analyses. "While Table I gives gz' ——34.0
(or 74.0 in the singlet-odd state), typical values are
g„2+g~' 4, g,'-1. However, we must recognize that
the p meson has derivative as well as direct coupling,
whereas we use an effective" vector meson with only
direct coupling. If the ratio of derivative to direct
coupling for the p is about 4, the strength of the leading
terms of the nucleon-nucleon potential generated by
the p corresponds to the exchange of a meson with only
direct coupling with a coupling constant greater than
the actual direct p-coupling constant by a factor of at
least 20, but depending on the spin state of the nucleon
system. In other words, roughly speaking, if g,' 1
and f,/g, 4, an effective equivalent direct coupling
constant for p has a value dependent on the state but

20. Moreover, the p is an isovector particle, and,
apart from the use of a much stronger coupling in the
singlet-odd state, we have attempted to fit the data
with a single isoscalar vector meson. For this single
particle representing both p and co—p, it is then reason-
able that g' should be around 30.

In the Bryan-Dismukes-Ramsay static potential, ~ a
zero cutoff is used, i.e., V= 0 for r &» 0.54 F.Our velocity-
dependent potential extends to almost r=0 and yet we
find their parameters also give us reasonable results.
It seems we should actually use a smaller gr because
we have the static repulsive vector-meson term con-
tributing to r(0.54 F as welL (Of course the scalar
meson and the pion also contribute at small r, but the
vector meson dominates here. ) The fact is that our
velocity dependence actually has an attractive effect."
This is also evident in the comparison of our M2 model
with C. Wong's static potential. The long-range part
of the potential determines mainly the phase shifts,
whereas the short-range part is important in determin-
ing the dispersion term in the separation method. At
short range, our potential model M2 is softer than C.
Wong's potential, producing a smaller wave defect
and thus more binding energy, as actually shown by
our calculation.

Qualitatively at least, we see the one-boson-exchange
potential model can lead to reasonable results in
nuclear-matter calculation, so far as the binding energy
and saturation density are concerned. Ke also esti-
mated the nuclear compressibility according to the
results of this calculation. Sy definition, " the nuclear
compressibility is R'O'E/8R' evaluated at the equi-
librium radius, where E is the total binding energy per
nucleon and R the radius of the nucleus.

Extending this definition to an infinite, noncharged

'9R. A. Amdt, R. A. Bryan, and M. H. McGregor, Phys.
Letters 21, 314 (1966); G. Kopp and P. Soding, ibid. 23, 494
(1966l."D. Kiang, Phys. Letters 24$, 132 (1967)."%'. J. Swiatecki, Proc. Phys. Soc. (London) A63, 1208 (1950).
This definition is by no means the only one.
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medium, we get the compressibility of nuclear matter as

k p'(O'E/Bk p')

evaluated at the saturation Fermi momentum.
Our graphical estimate, from the binding-energy

curve, gives a value of about 400 MeV. This is in
disagreement with values generally quoted. However,
until a value of nuclear compressibility is better
determined, one can really say very little about this
rather rough estimate.

As we observe in Table IV, the self-consistency in our
reference-spectrum parameters is only modest, but
sufhcient to reduce second-order terms. We can claim
that our results are good up to second order and
accurate to within 1 or 2 MeV. Bhargava and Sprung"
have found in their calculations that if a third. -order
correction is included (estimated in our case to be 1—2
MeV in magnitude), diBerent spectrum parameters
yield almost the same binding and saturation. Thus we
argue that a modest amount of self-consistency should
be suQicient in this qualitative consideration.

In dealing with the three-body eGect, we have
followed Bethe's prescription. " Subsequently, both
Day," and Kirson23 made improvements on Bethe's
solution of the Fadeev equation. However, we have
not recalculated f(r) with Day's more accurate
prescription, trusting that it will not change our
qualitative conclusion, since Day's solution coincides
with Bethe's solution within the repulsive core in which
the suppression due to three-body cluster is most
important.

More recently, Bethe'4 pointed out a discrepancy in
the solution of the three-body problem, which would
result in less suppression of the repulsive core than
previously calculated. Although this effect is significant

"B.Day, Phys. Rev. 151,826 (1966).
~' M. Kirson, Ph.o. thesis, Cornell University (unpublished)."R. Rajaraman and H. A. Bethe, Rev. Mod. Phys. 39, 745

(1967).Ke are grateful to Dr. D. %.L. Sprung for discussion of
this point.

with a core of infinite height, it may well be of minor
importance with a soft core like M1. However, since
we do not wish to make a precise quantitative con-
clusion on our nuclear-matter calculations, we will only
say that the binding energy curve shown in Fig. 4 will
be pushed up somewhat, if the three-body problem is
treated properly. This also applies to the results for the
Reid potential and the Bressel-Kerman potential that
we have quoted from Bhargava. "

S. SUMMARY AND CONCLUSION

Ke have studied a nucleon-nucleon potential based
on the one-boson-exchange model. This potential has a
specific type of velocity dependence, which occurs not
only in the central-force part, but also in the tensor
and spin-orbit parts. The radial dependence of the
velocity-dependent part is also Yukawa.

We have 6tted qualitatively the potential parameters
to the two-body scattering data. In view of the com-
paratively few parameters we have, our 6t is fairly
satisfactory. The Qt may be improved if we use, for
example, a six-pole model.

Our nuclear-matter calculation indicates that such a
potential gives saturation at reasonable density. The
potential we use nevertheless possesses a very strong
soft core, and, from the curve for the Fourier transform
of the defect, Fig. 2, we see that it is in some states
almost equivalent to a hard core of 0.3 F.
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