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distributions rather well, whereas only the (d,p) fsts
angular distributions are fitted by the calculations, and
these require a 5 F cuto8 radius. In Fig. 2 the shapes of
measured fst~s transitions from the (d,p) and (p,d)
reactions are compared with those from frts transitions.

From Figs. 1 and 2 it is apparent that the forward
angle J dependence is signi6cantly less in the present
data than in the "Fe(p,d)"Fe reaction. This may
simply reflect the difference in the Q values between the
studied (d,p) and (p,d) reactions. However, if the Q
dependence is predicted correctly by the DKBA calcu-
lations, these data strongly support the explanation of
the forward angle J dependence in terms of con6gura-
tion mixing effects since the DWBA predictions for the
nonconfiguration mixed frts transitions closely agree
with experiment while the fsts data are only fitted where

the transferred neutron should be well described by a
single-particle wave function (though one should note
that a 5 F cutoff radius is needed to fit the fsts data,
while the fs&s data is fitted without a cutoff). It is also

apparent from the data that there is a residual J
dependence which is possibly a consequence of the D
state of the deuteron as has been suggested by Johnson
and Santos. ' Since the calculations by Johnson and.

Santos' were not able to reproduce the full J dependence
observed in the 1=3 (p, d) reactions, it will be of par-
ticular interest to see whether their method of calcula-
tion can reproduce the present data, in vrhich con-
Gguration mixing effects are of lesser importance.

The authors thank Dr. D. A. Bromley for helpful
discussions concerning this manuscript, and Dr. B.
Zeidman for his kind loan of the 'Ti foil.
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The total particle-particle S~ matrix of 0'f) for spin J=1 and excitation energies between 15 and 27 MeV
has been calculated in the eigenchannel reaction theory for several parameters of the Saxon-Woods potential
and the two-body force. The many-body problem has been treated in the 1-particle-1-hole approximation.
The photon channels have been included by perturbation theory. Surprisingly, the most important structure
of the experimental cross sections is reproduced quite well in this simple approximation.

l. INTRODUCTIOÃ

HE proper theoretical treatment of the nuclear
continuum has been one of the important chal-

lenges to nuclear theorists in recent years. Attempts
have been made by various groups' " to solve the

~ This work has been supported by the Deutsche Forschungs-
gemeinschaft with a contract for studies in Nuclear Structure.' R. H, Lemmer and C. M. Shakin, Ann. Phys. (¹V.) 27, 13
(1964).' W. M. MacDonald, Nucl. Phys. 54, 393 (1964);56, 636 (1964).' C. Bloch and V. Gillet, Phys. Letters 16, 62 (1965); 1S, 58
(1965).' J. Raynal, M. A. MelkanoG, and T. Sawada, Saclay Report,
1967 (unpublished).' H. A. Weidenmuller, Nucl. Phys. 75, 189 (1966).' B. Buck and A. D. Hill, Nucl. Phys. A95, 271 (1967).' M. Danos and W. Greiner, Phys. Rev. 146, 708 (1966).

'H. G. Wahsweiler, M. Danos, and W. Greiner, Phys. Rev.
Letters 17, 395 (1966).' H. G. Wahsweiler, M. Danos, and W. Greiner, Phys. Letters
23, 257 (19e6}.' V. Gillet, M. A. MelkanoB, and J. Raynal, Nucl. Phys. A97,
631 (1967).

problem at least for that case where only one nucleon is
in the continuum, i.e., below the tw'o-nucleon threshold.
Since a nuclear reaction can be described only as a
particular continuum state of the nuclear-system target
plus projectile, it is clear that unambiguous statements
about the target structure can be made only by a correct
treatment of the continuum problem.

The calculations in the present paper are performed
by applying the methods of the eigenchannel theory.
The formal aspects of this theory have been presented
earlier. ~ "In this paper, 6rst, we supplement the earlier
treatment~ by giving the details necessary for an actual
calculation and, second, we discuss the results obtained
in a computation of the 1 compound system 0"in the
1-particle-1-hole approximation. Thus, our calculation
encompasses the I"+p and the 0"+n reactions as

»M. Marangoni and A. M. Saruis, Phys. Letters 24B, 218
(1967).

"M. Danos and W. Greiner, Z. Physik 202, 125 (1967).
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well as the reactions induced by photons incident on 0".
Our results indicate that the main features of the
photon-absorption process can be reproduced by an
appropriate choice of the nuclear parameters.

The basic idea of the eigenchannel theory is to con-
struct, at a given excitation energy of the A-particle
system (i.e., the system target plus projectile), a com-
plete set of scattering states, the eigenchanngel states,
which diagonalize simultaneously the nuclear Hamil-
tonian and the 5 matrix. If at that energy there are E
open "experimental" channels, then the 5 matrix is an
SgEmatrix and there are E eigenchannels. Because of
unitarity the eigenvalues of the 5 matrix can be written
in terms of real phases 8&"& as e"""'.If the channels of
the actual many-channel problem are decoupled the
system ls icduccd to thc sln1plc case of thc scattcrlrlg of
particles by a real potential. Then the eigenphases 5&"~

go over into the potential-scattering phases, and the
eigenchannels become indentical with the experimental
channels. In general, the eigenchannels are linear super-
positions of the experimental channels such that there
are standing waves in all experiment channels which all
have a common phase shift, the eigenphase. Denoting
the amplitudes of the expenmental channels c in a given
eigenchannel p by V, &"&, the 5 matrix is given by

, —P P' i~)eQii(")P", (r)

Thus it can be easily computed once the eigenchannels
are known. Therefore the central point is the problem
of 6nding such an eigenstate of the Hamiltonian which
is an eigenchannel rather than a superposition of
eigenchannels. This problem was solved by employing
a search which leads directly to the eigenchannels.

In the present paper, as in the other calculations, the
proton and the neutron states were treated inde-

pendently since the Coulomb energy is much too large
to be neglected; and the center-of-mass (c.m.) motion
has not been properly taken care of. Therefore, the
results wiQ be uncertain to some extent because the
spurious states are contained in the nuclear wave func-

tion. The accuracy of the results is also affected by the
size of the set of basis states. actually used in the com-
putations and by the magnitude of the matching radius.
These points will be discussed below in detail.

This calculation is, strictly speaking, incomplete in
that it neglects the more complicated reactions involv-.

ing the emission of o. particles, of deuterons, or of an
unbound proton-neutron pair."To that end one would

have to include many-particle —many-holi states in thc
nuclear wave function. These components would also
lead to 6ne structure in the cross sections. " Such a
calculation is in preparation.

The photon channels are treated, as usual, by
perturbation methods. The electromagnetic interaction
induces a transition between the ground state and a
general scattering state, This is permissible since, in
contrast to: incoming particles, photons interact with

the nuclear system only weakly. A direct inclusion of
photon channels into the 5 matrix thus is totally
unnecessary.

The paper is organized as foQows. In Sec. 2 the de6ni-
tions of all relevant quantities are given and the
expressions for the particle cross sections in terms of the
eigenchannel parameters are written down. It turns out
that the form of these expressions is completely analo-
gous to the form of the scattering cross sections for
potential scattering. The photon absorption process is
discussed in Sec. 3. Some care has to be taken in the
evaluation of the density of the 6nal states because, in
general, the final state contains more than one open
channel and the momenta of the outgoing particles in
the different channels are, in general, different. The
procedures of the actual calculations and the choice of
the model parameters are described in detail in Sec. 4.
This section also contains the discussion of the diferent
parameters which aRect the accuracy of the calculations
and a description of the tests which were performed to
check the degree of validity of the results. Finally, the
results are discussed and compared with experiment
in Sec. 5.

f(8)=is'i9, p(21+1)'~'(1—e"")Tio(8). (2.2)

5~ are the scattering phases which here simply are the

eigenphases of the one-dimensional 5 matrices, one for
each angular momentum 1, and X denotes the wavelength

of the scattering particle. By applying the addition

theorem for spherical harmonics, one obtains

de/dQ, =K' P B~r,(cos8), (2.3)

with

oo l+I
(21+1)(2l'+1)

l=o"l'=) /—LI

XL-(gg'00[ L,O)j sin8, sin8, . cos(8,—&i.). (2.4)

"J.M. Blatt and L. C. Biedenharn, Rev. Mod. Phys. 24, 258
(1952).

2. PARTICLE-PARTICLE REACTION
CROSS SECTIONS

In this section we give the expressions of angular
distributions, partial and. total cross sections for particle-
particle reactions in terms of the eigenphases and the
eigenvectors of the 5 matrix. We closely follow the
treatment of Ref. 13.

Let us 6rst recapitulate the case of elastic scattering
of a single spinless particle by a central force (potential
scattering). There the particle cross section do is

d~=)f(8)) dn, (2 1)

with the fol1owing scattering amplitude:
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Then the integrated cross section is given by

&0=~X2&0

The cross sections thus can be readily calculated if the
eigenphases (scattering phases) of the S matrices are
known. In the general case of interacting channels, the
cross section is given by an analogous expression which,
besides the eigenphases, also contains the amplitudes
V.&"&. We now turn to the description of the general case.

A. Nuclear Wave Function

We begin by considering the region r&e of the
ordinary space where the inQuence of the nuclear inter-
actions is non-negligible. There we describe the A-par-
ticle system by an expansion into particle-hole con-
6gurations. As stated in the Introduction, we shall con-
sider only the 1-particle —1-hole terms. Since the space
r& u is 6nite, we have to dea1. only with discrete states.
Thus the 1-particle —1-hole basis functions can be put
into the form

I n,n&, j,j zm, ";JM)) =p (—)'~ "

X (j,j&M+m —mI JM) I (1, )sj,M+m)*

X I (loess)j pm)r. 'u„.i.;.(r-.)
Xrs. 'u~„t»„(rz) I r,m ")*Iram, ") (2.6).

Our nomenclature corresponds to that used by Gillet. ""
Quantum numbers with upper-case subscripts or super-
scripts refer to particles and those with lower-case sub-
scripts or superscripts refer to holes. Since the proton
and neutron radial wave functions may diGer strongly
in the continuum, we do not use the isospin formalism,
but treat neutrons and protons separately. The kets in
(2.6) containing r characterize the charge of the nucleon.
n is the radial quantum number. This completes the
definition of the set of basis functions in which the
Hamiltonian will be diagonalized.

In deriving the cross-section formulas (see Sec. 2 C
below), we shall need a wave function in which the E
orthogonal eigenchannel functions have been superposed
in such a way that they asymptotically represent an
incoming plane wave plus outgoing spherical waves.
For well-known reasons it is advantageous to do this in
the channel spin representation. Thus we introduce the
channel spin s by coupling the spin s& of the scattering
particle to the nuclear spin j, of the (A —1) particle
system:

X I j.u+~)*I slav). (2.7)

The channel spin then can be coupled to the angular

"V. Gillet, thesis, Saclay, 1962 (unpublished)."V. Gillet and N. Vinh Mau, Nuci. Phys. 54, 321 {1964).

momentum l~ of the particle to give the spin J of the
compound system

'/sic, =P (lgsM pu—I JM)+sa~a I i&sr v(—fl&) (2.8)

In, n&,. j,jism, ";JM'))

S

where

i.s —( )8+s~+&&+i&L(2j~+1)(2s+1)]1/2

P +aelgjg Jslgs &parA un~lgjg(r~), (2.10)

ja

j~
(2.11)

The recoupling coeKcients E fulfil the orthogonality
relations

Z +nelj +nslj' 'fijj' p

(2.12)

Q +aslj If as'ij ~as' ~

However, we will not define the "experimental
channel" c in the channel spin representation, but we
shall characterize it by the quantum numbers o|, I&,
and jz. The "channel function" f, is introduced by

In,n~, y,gym, ; JM)) =u„„(r~)P„(2.13)

where u denotes the same radial function as in (2.10).

B. Eigenchannels of the 8 Matrix

Now we turn to the asymptotic region r&a. For the
convenience of the reader, we will collect a few relations
concerning the eigenchannels and the S matrix which
wi11 be needed later. They a11 result from the unitarity
of the S matrix.

The vth eigenchannel V ~»~ "of the S matrix S for
a compound state of angular momentum J is defined by
the eigenvalue equation

S~V~ "=~„~U~"
) (2.14)

where &„~=e"'&("' and the real quantity 8J'"& is the vth
eigenphase of the S matrix. There are as many eigen-
phases as there are open channels and the V,~ " form a
quadratic matrix. Equation (2.14) is, explicitly,

Sa'l~'jg';algjg & a'lg'jg'
a'lg'jg'

=e"'""'V . s" (2 15)

Finally, we define the internal function of the (A —1)
system:

y, =r, 'ul. i...(r,) I r~m, ")*Irzm,"). (2.9)

Here 0. denotes the set of quantum numbers m, l j,m,".
Now the basis functions (2.6) can be rewritten in the
form
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The coefBcients V,J" are orthogonal and can be
normalized to unity. They can be assumed to be real.
In terms of the VJ "'s and 8(')'s the 5 matrix is given by

Sa'lA' jA'; alAjA p ValAjA e 'Va'lA' jA (2 16)

In the channel spin representation (&tsEA}, the
S matrix is given by

S ' alAs'&aA,sZr &&asiAj ~a'&A'j';alAj ss.a's'lA'j' (2 1E)

The recoupling coefficients E are defined in (2.11).
In accordance with the definition (2.14), the correctly
normalized nth eigenchannel wave function in the
asymptotic region is given by

@J,v —Q 22' —&I2V J,vie isZ&»1 eilZ&»0 ]&t (2 18)

where &I, is the channel function of channel c introduced
in (2.13) and o. denotes the relative velocity of the
particle in this channel. The ingoing and outgoing
radial functions I, and 0, are dered by"

I,*=O,= )Gi(k,r)+2F&(k,r)js '"'

+exp)i-(k, r 22E2r g—, ln2k—,r)$. (2.19)

Here, Ii g and G~ are, respectively, the regular and the
irregular solution of the radial differential equation,
i.e., they are the Coulomb functions in the case of
protons and the spherical Bessel and Neumann func-
tions multiplied by k,r for neutrons. The Coulomb
parameter q, and the phase ~, are given by

g, =Ze2/ile„M, = p ar tca(ng, / )22. (2.20)

Because of (2.19) the asymptotic eigenchannel func-
tion (2.18) can be brought into the form

Z, vvp p lisValA -jA Jv(Gi (ka, p) sin(4 v MalA)

+F (k r) cos(B &" — )}P j . (2.21)

The radial parts occurring in (2.21) are real and the
eigenchannel functions are standing waves in all experi-
mental channels. They thus resemble a superposition of
single-particle radial functions for a real potential. The
amplitudes V.J " can now be determined by equating in
the asymptotic region the form (2.21) of the nuclear
wave function to that obtained by the diagonalization
of the nuclear Hamiltonian in the basis set (2.6).Let us
write such a state as

v4 Al 'A '"F22 22A
' J JA722„' J3f))&» ~ (2.22)

a~AlAjA

Finally, the amplitudes V of (2.21) can be obtained by
normalization:

V.~ "=C.~ "/l&E'g,'G G Vp

2 —g(C J,v)2

(2.24)

(2.2S)

C. Formulas for the Reaction Cross Sections

The diferent possible particle cross sections are
deined by an experimental situation in which an in-
coming wave exists only in one experimental channel
and outgoing waves exist in all channels. The situation
can be characterized by the quantum numbers asN. n
indicates the target nucleus and the charge of the pro-
jectile, s is the channel spin, and p, its projection.
Asymptotically, for large r, the properly normalized
wave function which describes the process is given by

—1j2~$lco&zAQ. 8EA@+
PiseA

+2~ Za&a' Qa's'Vv', asa(ev22)pA

X@j.„.,"a'&p. . (2.26)

&Ivs& has been defined in (2.7) and &p in (2.9). By
expanding the incident particle wave in terms of
asymptotic eigenchannel functions, one obtains for the
scattering amplitude

Qa's'a'ass(E v ~)=, Z Z Z 2
J )l' span'

X(2E+1)'l (Es0jli Jj&)(E's'222'j&'i J222'+j&')

X/8 hs:8&P Sa s Pa, l
—jFP *, (jjv&jv) v (2.27)

where the dependence of SJ on the eigenchannel
parameters 6&"& and V~" can be seen from (2.17) and
(2.16). The partial cross section for the reaction

O,s —+ n's' follows from

the particle continuum states obey the boundary condi-
tions of the uth eigenchannel.

The normalizations of the wave function (2.22) and
of (2.21) are different because (2.22) contains open as
well as dosed channels and the particle radial functions
are normalized to unity in a sphere of radius a, while
(2.21) contains only the open channels and the radial
parts are normalized to unit Qux. To obtain continuity
of the nuclear wave function at r=a we replace in
(2.21) the V.'s by unnormalized coeKcients C,~ ". By
equating the thus modified expression (2.21) and the
expression (2.22) at r=a and integrating over all
coordinates except r we obtain the matching condition

2, 'i'C, J'
"LGs(k,a) sin(bq&» —M,)

+F,(k,a) cos(&l~ &") M,—)j=g A,~'I,&"&(a). (2.23)

The index w on the particle-hole functions indicates that

'2 E. Vogt, Rev. Mod. Phys. 34, 'j23 (1962).

2

ZIQ-"';-. (~,«)l' (228)
dQ 2s+1 ar '
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Using the proper statistical weights, one obtains for a
process where the channel spin is not observed

2$+1
do ~ =g do. ,'., (2.29)

~'~ (2$&+1)(2j,+1)

s& denotes the spin of the scattered particle and j the
nuclear spin of the target. Inserting (2.2g), (2.27),
(2.1'I), and (2.16) in (2.29) and expanding the angular
distribution in terms of Legendre polynomials, we
6nally obtain

2ÃX 2

Z(2J+1)
(2$&+1)(2j.+1)

XZ J1 R—eS~&y ~&;sl

2' 2

Z(2J+ 1)
(2$&+1)(2j,+1) s

Xg I 1—g(V &,
s ")' cos28 s&"&j (.2.34)

3. PHOTONUCLEAR CROSS SECTIONS
&ma x

As already mentioned in the Introduction, the photon
channels can be treated by perturbation methods. Thus

X~ ( o &) (2 30) photon emission and absorption processes are described
as transitions between, say, the ground state of a
nucleus and a particular eigenchannel state. A transition
involving a linear combination of eigenchannel states,
e.g., the process 0"(y,p&)N"* is then described by a
suitable superposition of the matrix elements for these
eigench ann els.

Thus, we want to compute

P +Br,(n's';ns)
dQ (2sg+1)(2j,+1) z,-o ~'e

where

g Br,(n's'; ns)
e'e

= E z(2J~+1)(2J2+1)
+1J2 &PS

Xsinls &"» sinls &"" cos(8s &"»—8$ &"»)

o~——(2n/h) p@(2s hare'/c) I
MI' (3 1)

Or, (n,J&v&,J2v2)

—( )ja-ll2 Q Q zr+l&—
&&&

XO'z(n, Jxvx, J2v2)0~1 (n', Av&&Jmvm), (2 31)
for the absorption cross section. '~ Here, the subscripts
& refer to the photon polarization and, specializing"to
electric dipole transitions,

llPl lgl2 3II= (4s'/3) I (fI vFgyy I i&, (3.2)
XL(2E&+1)(2l$+1) (2j&+1)(2jr+1)j"
X (l&l200

I LO) 8'(J&Jpj &j 2, Lj,)
XW(l&l2 jiju,' L~p) Ve&,p ,s'"Va&,p,

s'"'. (2 32)

The sums over v~ and v2 go independently over all
eigenvectors of the S matrix. Equation (2.30) gives the
angular distribution for a process 0.~0.', where e
characterizes the charge of the particle as well as the
charge and excitation of the residual nucleus. This
formula gives the elastic scattering cross sections and
the various particle-particle reaction cross sections. In
(231) the eigenphases occur in the same manner as the
scattering phase shifts do in (2.4).

By integratin~ (2.30) over the solid angle, one obtains

sX '(2j+1)
0a'a=

z (2sg+1)(2j.+1)

XP P I 4. &&v&,y —S.v; .g; I'. (2.33)

Summing over the final target states leads to the total
cross section for bombarding an initial target state a.

@re 2

0' P P Bp(n'$'; ns)
(2$,+1)(2j.+1) a

where the state
I f& is, say, an eigenchannel state of the

form (2.21). In (3.1) and (3.2) the density of the 6nal
states p~ and the normalization of the 6nal-state wave
function

I f& must be deaned together in a consistent
manner. We do it by using the eigendiBerential method
of Weyl. According to that method a continuum state is
made normalizable to unity by integration over a 6nite
but small energy interval hE. We shall denote such a
state by I f). Then the density of states is simply

ps= 1/hE. (3.3)

~~M. Danos, Photonuclear Physics Lectures, University of
Maryland, 1961 I,'unpublished).

As long as hE is very small the radial wave function is
modi6ed only at very large radii. Thus the modi6cation
of the wave function needed for convergence of the
normalization integral is con6ned to extremely large r,
say to r&b, so that all calculations for the matrix
elements and the diverse matchings to be discussed can
be performed with the nonmodiled form of the wave
function.

In the asymptotic region, but before the Weyl
modifications set in, the anal-state wave function has
the form

If&= lf&=$' '2 «, ' 'IVw, (r) &„tr (b (3.4)
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which, except for the normalization constant E, is an
abbreviated version of (2.21).

For the Weyl function we introduce the notation

element M„ is given by

M~= (&/3) 'Lxpprk Z(C~)'?' '(+ '"IrVq+&li). (3.12)

w, (r) =W. dE w, (r) . (3.5)

Here the normalization constant 8', is chosen such that
for the nonmodi6ed region of the Weyl function there
holds

w, (r) =w, (r) for r &b. (3 6)

Then
~ f) goes over to

~ f) upon replacing w, by w, in
(3.4).The normalization condition for the wave function
(3.4) thus becomes

%.=P M„%.", (3.13)

we have for the differential cross section

do /dQ ~%.*%.=+(%.)Pz~%.)Pz. (3.14)

We now turn to some examples of partial cross sec-
tions. We begin with the differential cross section of a
process leading to a anal state specified by o,. Writing
0' " for a wave function (2.22) in which the summation
over o. has been omitted, and introducing the notation

1=gf) =Er-P P ..-'(V,)P(w, lw, ). (3.7)

o =4~'(e'/kc)(k(o)+~M„~' (3.11)

where, using the wave function (2.22), the matrix

This completes the general formulation.
We now go over to the details. We begin with

Eq. (3.5). In the region r=b the function w, (r)
has already the completely asymptotic form w, (r)
= sin (k,r+ b ——,l7r)/r. The addition of the logarithmic
Coulomb phase in the case of charged particles is of no
importance in the present context. We therefore can do
the matching (3.6) using this asymptotic form of w, (r).
This then leads to the equation

W.=M„e/(yk'kP) = 1/AE. (3.8)

Here M„~ is the reduced mass, and we have used the
abbreviation &=AEM,.p/(k'k'). It has the physical
meaning of defining the energy interval of the integra-
tion in (3.5) in terms of the momentum variable, i.e.,
if the limits of the integration are k~ and k~, then
kp ——k)(1+y). With (3.8) we have for the normalization
of the Weyl functions

(w. ~
w. )= (prkk'/2M„e) (1/AE) . (3.9)

Finally, we obtain for the over-all normalization
constant

¹

= -'prk (1/AE) .

We now turn to the detailed form of the matrix
element (3.2). Because of the normalization (3.6) the
matrix element computed with the Weyl function.

~ f) is

the same as that computed with the unmodified function

~ f).We thus can insert (3.4) in (3.2), or more precisely,
the equivalent inside solution (2.22) supplemented with

the normalization constant (glVs, „) '. Here lit's „ac-
counts for the diferent normalization of the eigen-

channel functions for r&u and r)u and is given

by (2.25).
This way we 6nally obtain for the total dipole

absorption cross section

For the coeScients of the angular distribution we
obtain

q(+ IPzl'F )=pc(e'/&c)(k(o)Z 2 2 cos(&~'"' —~~'"')

(do./dQ)dn=4orq(@. ) Pp Le )

=4m'(e'/hc)(h(o)g
~ g e'"'"'V ~' "M„~ '. (3.16)

lj v

4. SOLUTION OF THE NUCLEAR PROBLEM

A. Single-Particle Wave Functions

The radial single-particle wave functions N„~;(r) are
obtained from an optical model, i.e., by solving the
differential equation

d'N„2M„d
+ e„

dr' A'

l(l+1)k'

2Mredr'

—V(r))m„=p. (4;1)

The potential V(r) is taken to be real and of the Saxon-
Woods type including a spin-orbit term and, in the case
of protons, a Coulomb term. The charge distribution is
assumed to be homogeneous so that

k ' 1 de(r)-
V()=V. ()-~l (1 )- +V... , (4.2)

(2Mc r dr

X V«,' "M„V«.p' "'M„.(—)('("('+')L3(2L+1)(2j+1)
X (2j'+1)(21+1)(2l'+1)J'IP(ll'00) LO)—,'L1+ (—)z]

X (I.101 ( 11)(2s+ 1)W (l'sL1; 1l)W (j,sj/; p 1)

XW(l'sj j', ; 1-',). (3.15)

The constant q converts the angular distribution (3.14)
into an absolute cross section. The summation over the
channel spin s can be performed explicitly. This way the
product of three Racah coefficients in (3.15) reduces to
a product of two Racah coeKcients. Integrating over
the solid angle we have for the partial cross section
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FIG. i. Position of the
bound proton and neu-
tron states for the po-
tentials A and 8 given
in the text, compared
arith the experimental
level scheme. Potential
A yields a good 6t to
the experimental level
scheme above the Fermi
surface; potential 3 fol-
lows from neutron scat-
tering.

MeY

, p«~~~~~
Q'p

2~1)2; n—
1~~; n

- 0,390
—0.970
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- 4.064
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1' „~~~~ ~~~~ ~1622
Pf/g 3 I

lp3)f, ; p -14.04'
p
' '. n= -14253

1pty2 p---- ——-725&

23 2~p~m m m

~gp

@
'&42; n

- 010
-0.60

- 3,27
-4.14

FERN SURFACE

1pg2, n

1p3/2 p------ -12.0$7
1plp'

-12.21
)p

1p3y&, n
1p1$;n

-16.469
-1$.67

jp, p~ ~ -10.3$

18~;p — - - - 094

»1//2; n— - 2.075

4.0M

1pg;n -21.S1

(B) (exp.)

Voo 1= (Ze /2~o)L3 —(&/&o)'j, for r&I4

=Zes/r,

Ro denotes the radius and Z the charge of the residual
nucleus, M is the particle mass, and y is a constant.
Further,

/(r) = Ll+cmI (»—)4)/&13-', (4.3)

where f is the surface thickness parameter of the Fermi
distribution.

The wave functions of the 0" compound system
were computed with two different sets of potential
pal ametel sq

Eo——3.15 F, &=0.65 F, V,= —53 Me~, y= 20, (4.4a)

Ro=3.15 F, i=0.65 F, V,= —50MCV, y=35. (4.4b)

illustrates the density of positive-energy states which

arlscs wllcll lls111g tllc value (4.5) foI' thc lllatc11111g

radius e. A axed boundary condition can be represented

by a horizontal line whose points of intersection with the

cotangent-shaped curve determine the discrete particle

energies for the states with different radial quantum

numbers.
Suppressing the radial quantum numbers, there are

10 t-particle-1-hole configurations contributing to the
compound states of 0'6'4" which we take into

account:

(1) (d3/2ps/2) s ) (2) (ds/2ps/2) (3) (31/2P3/2)

(4) (ds/2p 1/2) e l (5) (3I/2/I/2) n y (6) (d3/2/ 3/2) s 1

(~) (d5/sp8/2)s ~ (8) ($1/2ps/2)y & (9) ('d8/2pl/2)s y

(~0) (&l/2PI/2)r.

These two sets of parameters have the following
characteristics. Both sets yield the correct position of
the 6rst level above the Fermi surface, i.e., of the
ids/2-neutron state (see Fig. 1). The set A reproduces
the energies of the bound states, i.e., the s-d shell levels,
reasonably well, including the 1.s splitting, while the
set 8 has the correct I s splitting for the p shell and
agrees with neutron scattering data. "

In the calculations we use for the particle energies
directly those given by the optica, l model. However,
the hole energies are taken from experiment as is
customary in particle-hole calculations. This is essential
in order to obtain the correct pa,rticle thresholds.

The boundary surface was placed at

(45)

In Flg. 2 the numericaQy obtained logal ltlimic
derivative for ds/2-neutron states (set 3) at r=/3 is
plotted as a function of energy &&0. This examp1e

13 F. Bjorklund and S. Fernbach, Phys. Rev. 109, 1295 (1958).

%e shall use the above numbering of the channels

throughout the rest of the paper. So, e.g., c=6 will refer
to the d8/2/3/2 proton channel.

40-

q -I0-

30 50 HeV

-20-

+0

Fxo. 2. Numerically obtained logarithmic derivatives of the d3/&

radial vrave functions for neutrons in 0'6 (potential 3) at 12 F
versus energy 3 (3&0).
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O'63-

E=20 MeY

-2-

90o oo

FxG. 3. Example of the behavior of
the eigenvalues of the many-body
Hamiltonian (more accurately T~ ——E&—E) as a function of the common
phase 8 which, together with the
excitation energy E, determines the
boundary conditions for the particle
continuum states.

-6-

In the expansion of the nuclear wave functions (2.22),
the particle states up to c=30 MeV frere included in the
actual calculations.

The hole states w'ere computed with boundary condi-
tions at in6nity, i.e., with exponentially decaying tails.
The empirical thresholds for the various particle
processes which have been used to 6x the hole energies
are listed in Table I.

3. Energy Matrix

The effective two-body force which is responsible for
the residual interaction is assumed to be of the form

can be cast into the form

Vba;s~='(Vo/4~) (—)'"+"V~M))

Xg~j)bgbjs Q Q (lJ~OO[XO)(lbls00[XO)

Jo ~b g gb

XGq"" ""(28+1)»l~ —,
'

j)b "l)) —,
' j))»

'.X S J . .X S J.
X N,bbzl bgs(1/)')d», (4.8)

V(1,2)= VoJ(rqm)Lab+a~(1) o(2)+u,~(1) ~(2)
+a.,e(1) e(2)~(1) ~(2)j, (4.6)

J(r») = 8(rg —rm) . (4.7)

Then the matrix elements of the residual interaction

where e acts on the charge states of the particles or holes.
In our actual computations we employed a contact force

160-
'&»))

Q0-

aoe-

2
3
7
8

10

Name of the Configuration
residual representing the
nucleus residual nucleus

Ni5
015
N15

O15

Pl/3

P&l&

P3/3

P3/3

Type of
particle

0
PreV)

12.21
15.67
18.35
21.81

ALE I. Energies of the hole states.

40'

00 i

14 I6 I8 20 22 24

5
6
I

26 MeY
=E'

Fro. 4. Energy dependence of the eigenphases 8&") of the 1
compound system. The parameter choice is that of potential 3
and a zero-range force with a strength of —1000 MeV F3. This
combination is referred to as set III below. The numbers on the
curves label the channels presumed dominant close to the thresh-
olds. The enumeration is explained in the text. The positions of
the thresholds are marked by arrows.
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y,
"" y(9)

3 3

('~. . r'
f

'l
l

J2 23 J 24 ]1 25 26 27MeV

~ E
h.t~ ~

~

~ I

C
/

The first value agrees with the standard model of Ref. 6.
Since the oscillator well which is equivalent to our
Saxan-Woods potential has a spacing Ace=16 MeV
(length parameter P= 1.61 F), the value (4.12a) is close
to the one used in particle-hole calculations for 0"
(Vo/4rPs= —11.46MeV)." The second value (4.12b)
has been tried in order to obtain better agreement with
experiment.

C. Search for Eigenyhases

The nuclear eigenvalue problem is completely speci-
fied if the asymptotic wave numbers k, and the common
phase shift 8 are given specific values. Then the
boundary conditions for the single-particle functions of

l

(22 2526
1 =E
l

(
aw

l i y(3)

23 24

y(3) y(3)
3 ] ~ 9

I
~O~

~ ~ ~ ~
~ ~ ~ ~ 4selS+~~ ~~ ~~

27 MeV

Q16 t
eo-

60-

40-

20-

Pro. 5. Examples of the behavior of the~amplitudes V,&")

as a function of the energy.

mb

t I l ~ s s I I a

HeV

where the exchange terms are

Gem"m' = (2—bm„~, ')ao —36 „,a,
—36 „;a,—3(2—6 „„,)a.„

Gr " = —6 „,„,ao—(2—8„„„,)a,
+ (2+6 „,)a,+ (4—56 „,)a„,

(49)

eo-

60"

40

20-

and 9= (2@+1)'Is.The complete energy matrix is thus
given by

&sn;.~= 6.s~~nLe~ —e.j+~sr;.~, (4 10)

where the e's are the independent particle energies dis-
cussed in the last section. The exchange mixture in (4.6)
is taken to be of the Meshkov-Soper type";

0

' eo-

40-

MeV

- 25
mb

- 20

up ——0.865,

u, =0.135,

20- 5

0 s s s e I

g l6 I8 20 22 Zj 26 gey

TOTAL PHOTONVCLFAR CROSS SE;CTION

Fzo. 6. The total photonuclear cross section of 0"for the three
different parameter sets defined in the text, corn ared with the
total y-absorption data of %ycko8 et al. (Ref. 22 . The scale on
the right-hand side of the lowest figure is taken from Ref. 22.
Here, and in the following figures, the computations for set I have
been done only above i9 MeV.

For the strength of the zero-range force, two values
were employed:

(4.12a)Vp= —650 MeV F'

Vp= —j.000 MeV F8.

'e S. Meshkov and C. W. Ufford, Phys. Rev. 101, 734 (1956).

(4.12h) so O. Bohigas, in Proceedings of the Inlernalgonal Conference on
ItINclear Physics, Gatljnbnrg, Tennessee, Z966 (Academic Press Inc.,
New York, 1967).
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100-
mb

6 80-

60-

40-

20-

- 30

j 10

FIG. /. Comparison of the theo-
retical total photon absorption cross
section (set III) and the measured
data of Burgov et cl. (Ref. 23). The
experimental scale is on the right.

tf
t'

I I

14 15 16
~ t

17 18 79 20 21 22 23 24 2526
E, hfeY

the various channels can be calculated and the corre-
sponding particle-hole functions can be constructed. For
the states appearing only in closed channels arbitrary
boundary conditions can be employed.

At a given energy. E of the compound system the
wave numbers k. in the different experimental channels
c are given by

E= (h'/2M, ~)k.2+Q„ (4.13)

where Q, is the threshold energy. Thus, given an energy
E the energy matrix (4.10) can be computed for any
phase 8. By diagonalizing these matrices one then
generates the eigenvalues Eq and the eigenvectors A
(2.22) as functions of 8. Finally, the eigenphases 5&"&

are found as the solutions of the transcendental con-
sistency equation

plus the energy of the free particle, which can be read
oG a plot of the kind of Fig. 2 as a function of the
logarithmic derivative. Each open channel thus dis-
appears at a particular phase shift. Switching on the
residual interaction only shifts the energies somewhat
and removes the level crossings.

The energy dependence of the eigenphases of the 1
compound system of 0"is shown in Fig. 4. The param-
eters here are those of (4.4b) and (4.12b). The step
width was about 0.25 MeV for the greatest part of the
displayed energy range. The numbers on the curves
indicate the channel which presumably is predominant
near the respective thresholds and they correspond to

mb

60-
g16 )-

T),(h) =Ey(8) —E=0. (4.14) 40-

Figure 3 gives an example for the behavior of Tq as a
function of the phase b. We show a plot for the 3 states
in 0"since they are less involved than the 1 states. E
is equal to 20 MeV at which energy four of the six 3
channels are open. It is obvious from the figure that
there are four eigenphases.

The "kinematics" of the plot (Fig. 3) is the following.
Since the logarithmic derivative is a periodic function
of 8 with a period x, the topology of the plot is that of a
cylinder. The eigenvalue curves are thus interlaced
helices which do not cross as they "wind their way up. "
This is simply a consequence of signer s no-crossing
theorem: At any fixed value of 6 the eigenvalues of the
Hamiltonian with an overwhelming probability are non-

degenerate. Therefore, a no-crossing theorem holds also
for the eigenphases with the same kind of validity as for
the eigenvalues of any Hamiltonian. The number of the
eigenvalue lines equals the number of open channels, as
can be seen by tracing each line "backwards. "This is
most transparent before switching on the residual
interactions. Then each channel consists of a particle in
the continuum together with an unperturbed residual
nucleus in some discrete state. The energy of such a
system then consists of a fixed energy of the hole state

0
MeV

=- E

~mb II

40-

0 I i ~

q 60- III
"mb

40-

20-

a I

MeV

-mb
-30

-20

0
l4 f&6 1S 20 22 t 24 26 MeV

(gn) (7,P~2

TOTAL (g,n) CROSS SECTION

FIG. 8. The total (y,n) cross section, The arrangement of the
figure is the same as in Fig. S. The experimental curve gives the
(y,Zg} data of Hayward and Stovall (Ref. 24}.The (y,pn} thresh-
old is indicated.
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)00-

Qt& f d eo-

60-

40-

&00-

&mb
80-

60-

40-

MeV
~.E

each channel caused on the average a decrease of the
eigenphases by 0.9'.The second parameter is the match-
ing radius. This parameter determines the channel
orthogonality and also the orthogonality of the wave
functions used to obtain the inside solution. As can be
seen by considering the character of the radial functions,
orthogonality in the inside region between a bound
state computed with boundary conditions at infinity
and a continuum state is most dificult to fu16B near
threshold; there the matching radius would have to be
chosen larger than at other energies in order to achieve
the same degree of orthogonality. In any case, it was
found that decreasing the matching radius a from 12 to
11 I" caused an average increase of the eigenphases

by 0.3'.
A further test of the accuracy of our calculations is

provided by the scalar products

P J,vP' J,v~

0

20-

40-

I I t I t I
MeV

=E

- 20

- 16

72

- 8

which should be zero for v& s '. In the present case their
magnitude turned out to be 0.03 or less on the average
except for small regions immediately above thresholds
where they sometimes were considerably larger.

The eigenvectors V " of the S matrix are obtained
simultaneously with the eigenphases by making use of
the continuity of the nuclear wave function at r=u
t see (2.23), (2.24), and (2.25)g. They are smooth but

0 I I

14 16 I8 20 22 24 26 Me V

-=E

TQTA/ (y, p) CROSS SECTION

FIG. 9. Total (&,p) cross section. The experimental curve is due
to Morrison fR. C. Morrison, Yale University, thesis, t965
(unpublished); also see Ref. 6g.

mb

O16)- ]60-

40-

0

the enumeration introduced in Sec. 4 A. The threshold
energies are marked by arrows.

In the numerical search procedure the 8 interval from
0' to 180' was repeatedly divided into halves up to an
interval length of about 1.4'. Since it is easy to deter-
mine how many zeros of Tz are contained within some
6 interval, empty halves could be skipped. FinaBy the
eigenphases were determined by interpolation within
the relevant 1.4' intervals. The interpolation was carried
out such that the corresponding values of

~
Tq~ are

smaller than 1 keV. This accuracy exceeds by about a
factor of 10 the accuracy of the single-particle con-
tinuum energies which were taken from an interpolation
formula.

The accuracy of the eigenchannel method depends on
two parameters. The 6rst is the magnitude of the func-
tion space. Its influence on the accuracy is here the same
as in any shell-model calculations. It was found for the
present calculation that a reduction of the function
space by using three instead of four radial functions in

II
mb

20-

0 r I a

6
IIImb

MeV

-' mb
- I6

- j2

-8

0
I4 I6 I8 20 22 24 26 MeV~E

O"(y, n. ) 0"(p. s.)
FIG. 10. The partial cross section of the photoneutron reaction

leading to the ground state of 0".The experimental curve is due
to J.T. Caldwell et a/. , Phys. Rev. Letters 15, 176 {1965).
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mb

eo- I
0161

g 60-
0

40-

mb
F80.

, ea

40

Me V=E

other eigenvalues and consequently has a series of
crossings. Figure 5 shows that this state maintains a
high degree of purity in between the crossings and
"switches over" in a rather small energy interval. The
bottom part of Fig. 5 demonstrates how the eigen-
channel p=3 "loses its identity. "After the first cross-
over, which here accidentally is very close to the
threshold, the coniguration c=3 switches over to the
eigenchannel v= "/ (top part of Fig. 3) while the eigen-
channel v=3 becomes a mixture of several configura-
tions, the 1argest of which are plotted in the figure.

As is evident, on the whole the energy dependence of
all quantities is rather smooth. No violent Quctuations
are apparent, in particular around the giant resonance
peaks, i.e., around 22—23 MeV.

20-

r I

Mey
=E

5. RESULTS AND DISCUSSIOH

Results for three diferent sets of parameters shall be
compared with experiment:

mb- JIl
~40-

l6 18 20 22 2& ~ Mey
=E

Osi( p )N/s~~ s 1

Pro. 11. The partial cross section of the photoproton reaction
leading to the ground state of N". The experimental curve shows
the relative yield at 90' obtained by ¹ %. Tanner et a/. , Nucl.
Phys. 52, 45 (1964).

complicated functions of the energy E and it seems not
to be worthwhile to exhibit them in detail. %e give,
however, some typical examples. In Table II are listed
the eigenvectoxs of the 5 matrix. The excitation energy
is 18.25 MeV, i.e., just below the thresho1d of the
channels involving the p3/I proton hole state, and the
parameter choice is that of (4.4b) and (4.12b). At this
energy four of the 10 1 channels are open. The scalar
products 6,„' in decreasing order are 0.039, —0.014,
0.010, 0.004, etc.

The eGect of the noncrossing theorem is illustrated in
the top part of Fig. 5, taking as an example the channel
(sr/3PI/I)„, i.e., the channel c=3. As can be seen in
Fig. 4, this is the clearest case of an almost undistorted
eigenstate, which goes against the general trend of the

mb

120-
6

100-

mb
120-

60- 60-

(I) Spin-orbit force which gives the correct splitting
of the d shell (7= 20) and usual strength of the contact
force (—650 MeV F')—(4.4a) and (4.12a),

(II) Spin-orbit force which gives the correct splitting
of the p shell (y= 35) and usual strength of the contact
force (—650 MeV F')—(4.4b) and (4.12a),

(III) Spin-orbit force which gives the correct splitting
of the p shell (y= 35) and a strong contact force (—1000
MeV F')—(4.4b) and (4.12b).

To begin with we shall consider the photodisintegra-
tion processes. VVe will plot the experimental cross
sections only on the figures corresponding to set III
which seem to be most consistent with the experimental
results. For sets III and I the calculation was done in
0.25-MeV steps, for set II we have employed 0.5-MeV
steps.

The absolute magnitude of the theoretical y-absorp-
tion cross section integrated to 27' MeV„turns out to be

Tmz, E II. Eigenstates of the 5 matrix for the 1
at 18.25 MeV (4 open channels).

C0.

20-

C0-

20-

P
$(I)

c=@4
5
9

10

1
20.29'

-0.9873
0.0084
0.1577

—O.OM3

2
57.99'

-0.0286
0,4943

—0.0508
0.8674

3
59 90'

0.0205
0.8878
0.0477

-0.4573

90.00'

0.1517
—0.0284

0.9860
0.0624

0 I I I I I I I I 0 I I 3 I 3 ~ . I I I

IC 16 18 20. 22 2C MeY 1C 16 16 20 22 2C &eY

SEI' 1l AHD V&IKO CQWRGURATIOhfAL &ACE

Pro. 12. This 6gure corresponds to Figs. 10 (II) and 11 (II),
respectively. The only di6'erence is that the configurational space
was limited to the (dI/3p3/3) and (d3/I/I/3) neutron and proton con-
5guration which predominate in the main peak. The similarities
with Figs. 10 (II) and 11 (II) will be noticed.
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N (p, t;) Qtg angular distributions ever, fl'om a (ds/sos/s) configuration with (st/sps/s)
admixture. Instead of the small peak seen in case I
now one observes a broad shoulder. In this respec««
result resembles that of Ref. 6.

In case III, 6nally, the main peak occurs at the right
position. The experimental curve is that of %yckoG
eI, c1.~ The main features are reproduced by the theo-
retical curve; it should, however, be kept in mind that
the energy resolution of this particular measurement
was not too high. The same theoretical curve has been
plotted in Fig. 7 together with the experimental results
of Surgov et ul."This figure seems to be even more con-
vincing. The theoretical ratio of the 22.2-MeV peak to
the peak at 23.4 MeV is j..9, i.e., it is much closer to the
e p ime t 1 at 1.3 f r the heghts of the 22.2- and
24.3-MeV peaks than the corresponding values from
Refs. 14, 4 or 10. Furthermore, our results seem to
indicate that some fraction of the dipole strength of the
experimental 23.3-MeV peak can already be explained

by I-particle-1™hole continuum calculations.
Figure 8 gives the results for the (y,N) process. It is

seen that the theoretical main peak is always split into
two peaks and there is a small peak between 23 and
24 MeV. The experimental data are from Hayward
and Stovall. '4

In Figs. 9-11 we have plotted (y,p), (y,ns), and

(y,ps) cross sections, respectively. It should be men-
tioned that tile 1'atlos of the (p,p) to (Q,N) cl'oss sec'tlolls

(integrated from 15 to 27 MeV) turn out to be 2.5, 1.9,
and 2.1 in the three di8erent cases I-III.

0- l s s

30 904 1$04 E, Melt'

TOTAL CR'OSS SggPON$

FIG. 13. Comparison of theory (set IG) and experiment for the
coefBcients ag in a Legendre-polynomial expansion of the angular
distribution of y rays in the reaction I"(p,yo}0'6 assuming pure
dipole radiation, i.e., kr(p, ys)/dDcc1+uspslcos8). The data were
obtained from Earls st al. (Ref. 25).

tlttsgp, ~yy»
Pf fp, pt)Nt5

~ooioeoo N (pzpf)P5 5"

about 2~ times as large as the experimental value. ~'

Considering the height of the main peak the enhance™
ment factor varies between 2 and S.

Figure 6 gives the total dipole absorption cross
sections for the parameter sets I—III. In case I the main
peak occurs 1 MeV too low. It has a shoulder on the
high-energy side. There is a second well-developed peak
at 24 MeV. The ratio of the two peaks is 8, whereas the
experimental ratio is 1.3.

In case II the main peak is still at the same position
as in case I but its shoulder has developed into a
separate peak. Both these peaks in II result from a
(ds/sos/s) coniguration with a strong (ds/sPI/s) admix-
ture. Still, the inhuence of the other con6gurations is
very important as will be demonstrated below. The
main contribution in Fig. 6 (II) at 24 MeV resuits, how-

» R. L. Bramblett, J. T. Caldwell, R. R. Harvey, and S. C,
Fultz, Phys. Rev. 133, B869 (1964).

i
t"

0 s I I s! i I

8 20 22

+ (p,n)05

t4 t6 t8 20 Z2 A Ã gyy

Fxe. 14. Predicted inelastic particle-particle cross sections in the
channels with J~= i for protons incident of¹'.The lower part
of the fIgure shows the experimental (p,w) cross section of Barnett
and Thomas (Ref. 26}.

ss J. M. Wyckoif, B. Ziegler, H. W. Koch, and R. Uhlig, Phys.
Rev. 137, B5/6 (1965).

mg
¹ A. Burgov, G. V. Danilyan, B.S.Dolbilkin, L.E.Lazareva,

snd F. A. ¹iholsev, Zh. Eksperim. i Teor. Fiz. 43, /0 (1962)
)English transl. :Soviet Phys. —JETP 16, 50 (1963)g.

si E, Hayward and T. Stovall, Nucl. Phys. 69, 241 (1965).
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As already mentioned, the configurations (d~/2P3/2)
and (d3/2pg/g)constitute the major part of the wave
function. To illustrate the effect of the minor compo-
nents, we show Fig. 12 where they have been omitted
from the calculation. Evidently they redistribute the
dipole strength between the different peaks without
affecting their positions.

In Fig. 13 we compare the a~ coefficients of the angular
distribution I+a2P2(cosa) for "N(p,yo)"0 with experi-
ment" without, however, correcting for admixture of
quadrupole radiation. The deviation from the experi-
mental results is similar as in Ref. 6.

Because of the large difference in threshold energies
the complete treatment has been carried through
treating protons and neutrons as different particles,
i.e., the isospin formalism was not employed. It is of
interest to note that in the giant resonance region, i.e.,
at 21—23 MeV, the main configurations in the eigen-
channels with large dipole moments are very pure 7=1
states; the T=O admixture is there only of the order
5-20% in amplitude.

For completeness we show the proton-induced particle
cross sections for the parameter set III in Fig. 14 to-
gether with an experimental curve for the "N(p,u)"0
reaction. "It should be kept in mind that many angular
momenta of the compound system contribute to the
experimental cross section while the theoretical curve
contains only the contributions of the 1 states. It is
thus not surprising that the experimental cross section
shows more structure than the theoretical curve. Our
result accounts only for one peak each in the regions
around 16, 17, and 18.4 MeV, respectively. Taking an
over-all look at the several cross-section curves one
notices that they cannot really be represented by a
superposition of Lorentz lines. This is in fact gratifying.
As it has been known to electrical engineers for a long
time, '~ and as nuclear physicists are beginning to realize,
there exists an essential difference between the regions

where only one channel is open and where more than
one channel is open. In the language of electrical
engineering, the former region corresponds to a two-pole

'~ K. D. Karle, N. W. Tanner, and G. C. Thomas, in Comptes
Rendls dg Congres' International de Physique XNcleaire, II,
edited by P. Gungenberger (Centre National de Recherche
Scientifique, Paris, 1964), p. 385.

~6 A. R. Barnett and G. C. Thomas, in Comjtes Rendgs Congres'
International de I'hysiqee Xucleaire, II, edited by P. Gungen-
berger (Centre National de Recherche Scientifique, Paris, 1964),
p. 387.

"See, for example, W. L. Kveritt, Comnwnication Engineering
(McGraw-Hill Book Co., New York, 1932).

network built of essentially lossless components: The
only damping is provided by photon emission, which in
that energy region is usually very small. Such networks
can have only resonances. Qn the other hand, at the
opening of a second channel the system becomes the
analog of a four-pole network. The output load, i.e.,
the second continuum, now adds additional damping to
the network and as a consequence it becomes a filter,
which in addition to simple resonances may exhibit a
more complicated behavior, such as pass-bands and
stop-bands of varying shapes (not every filter trans-
mission curve is nicely symmetric, as anyone who has
tried to tune up an IF-strip can testify). Since the
present case has up to 10 open channels it corresponds
to a 20-pole network and quite complicated cross-
section shapes have to be expected.

Finally, we may state that our results show more
structure than those of other continuum calculations. ' '
This is the main difference between these calculations
and ours. Some of the fine structure may simply be
calculational "noise." Recall, for example, that the
orthogonality of the computed eigenchannels was not
complete but of the order of 1% (Sec. 4 A). Since the
cross sections result from coherent superpositions of all
the eigenchannels, clearly, artihcial fluctuations in the
cross sections are to be expected. On the other hand,
the broad features, e.g., the splitting of the main

peak, should not be affected by these uncertainties.
Indeed, our curves reflect a large part of the experi-
mentally observed structure, in particular in the total
photon absorption cross section. Undoubtedly the
2-particle —2-hole and higher configurations, as well as
ground-state impurities, are indispensable for the
explanation of the remaining discrepancies between
theory and experiment, both with respect to 6ne struc-
ture and absolute magnitude of the cross sections.
Anyway, it seems to us that one can account for the
main features, and perhaps even for some of the 6ne
structure already in the 1-particle —1-hole approxima-
tion, simply by the choice of the model parameters and

by a careful treatment of the continuum. A calculation
with inclusion of more complex configurations in the
nuclear wave function is in progress. Furthermore, the
inhuence of quadrupole radiation will also be tested.
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