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Nuclear Scattering in the Random Phase Approximation
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A simple extension of the random phase approximation {RPA) is described that includes scattering
channels of a single nucleon. Coupled equations are derived for the single-nucleon amplitudes that describe
the scattering states of the nucleon by an assembly of identical nucleons. These equations reveal that the
exclusion principle is taken into account by antisymmetrized interaction matrix elements plus the appear-
ance of the projection operator 1—pp (Joo is the single-particle density) into unoccupied single-particle
states in the compound nucleus. The use of the RPA also introduces the effects of long-range correlations,
the well-known "backward-going graphs" of many-body perturbation theory, in the scattering problem.
The system of equations thus obtained contains no parameters beyond those describing the two-body
matrix elements that generate the Hartree-Pock 6eld that serves as a zero-order approximation to the
excitations considered within the RPA. The scattering solutions of' these equations are illustrated with a
soluble model. It is shown that the presence of correlations in the wave functions of resonance states can
influence their particle decay widths considerably. The important practical problem of angular-momentum
decomposition of the coupled-equation system is also discussed.

plasma oscillations. 4 However, this approach will allow
us to include for the compound system the effects of
long-range correlations, i.e., the well-known "backward-
going graphs" of many-body perturbation theory and
to study their effects on the widths and positions of
nuclear states embedded in the single-particle con-
tinuum. In this manner, we are able to treat resonant
states and bound states on precisely the same footing,
and to exactly the same approximation, within the
RPA; no special assumptions have to be introduced for
the resonating states, such as a weak coupling to the
continuum or a "joining radius" dividing configuration
space into inside and outside regions to de6ne these
states.

Since the Hartree-Fock (HF) approximation for
single-particle motion is at the root of the RPA treat-
ment of nuclear excitations, this approach has the added
attraction of providing a self const'stent treat-ment of the
scattering problem. The average field that scatters the
incident nucleon turns out to be the HF potential (this
point has airea, dy been emphasized by Villars'), which
in turn is determined by the same two-body interactions
that lead to the formation of the resonant (and bound)
states in the model. Thus this approach contains no
parameters beyond those associated with the form of
the two-body interaction employed in determining the
HF 6eld.

After introducing the necessary dehnitions and
notation in Sec. 2, we derive the usual RPA equations
in Sec. 3, but using the "mixed" representation intro-
duced in Sec. 2. Kith proper boundary conditions,
these equations describe the scattering of a nucleon by
a target system of A nucleons. We study this scattering
by examining the wave function of the system of 2+1
nucleons above threshold for particle emission. In fact,
since we determine the energy spectrum of the com-

1. INTRODUCTION

S CATTERING calculations based on an extension of
the nuclear shell model into the continuum region

of single-particle states have been quite successful in

describing many features of nucleon scattering by
nuclei. ' In this model, nuclear states that lie above the
nucleon-emission threshold, and are therefore particle
unstable, are treated on an equal footing with bound
states. One problem that arises immediately in such an
approach is the question of properly antisymmetrizing
the incident nucleon with the target system.

The general problem of antisymmetry in nuclear
reactions is discussed in Ref. 2. One method' is to work
in the configuration space of all particles and anti-
symmetrize the full wave function by "brute force. "
Alternatively, one can introduce creation and destruc-
tion operators for particle states as in conventional field

theory and develop Chew-Low —type equations for the
scattering amplitudes. ' Both of these methods are quite
general. In this article we present a discussion of nucleon

scattering by systems of identical nucleons that is more
restrictive in that it rests on a simple extension of the
method of linearized equations of motion, or the RPA,
which has been studied in connection with nuclear and

4 D. Bohm and D. Pines, Phys. Rev. 92, 609 (1953);R. Arvieu
and M. Venbroni, Compt. Rend. 250, 992 .(1960); M. Baranger,
Phys, Rev. 120, 957 {1960};G. E. Brown, J. A. Evans, and D. J.
Thouless, Nucl. Phys. 24, 1 (1961).
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pound system, our equations below this threshold also
describe the bound states of the 2+1 system. In this
last case, they reduce to the usual RPA equations
written in the more complicated mixed representation.
Section 4 presents an alternative derivation of these
equations based on time-dependent HF theory, and
Sec. 5 gives an exact solution for a "schematic" scat-
tering problem.

where the angular brackets denote an average with
respect to the HF vacuum

I 0) and where P and P' stand
for &a,i) and {x',i'}, respectively.

Acting on the vacuum with LAp, Apt), one gets
exactly

I:&,&"jl0&=~ & l0)=b, ,'(.&").&.»I0)
=(~p ~p'&Io& (2./)

«om Eq (2.6). The well-known quasiboson approxi-
mation is obtained by assuming that thc relation

L&p,A p'$~8;;.&a(x')at(a)) (2.g)

is still valid when acting on states other than the
vacuum IO). The quantity &a(x')at(a)& is directly re-
lated to the single-particle density operator po(a', x) of
the compound system. We have (using Lb,btj+ for the
anticommutator of b and bt)

po(x', x)=Q t(x)iP&a') &
= &b&a) bt(x') &

= r, (*I'&&'I*&=Lb(*),b (")~„(2.9)c„t=at(p) if k= p is unoccupied and unbound,
=a„t if b=~ is unoccupied and bound,
=b; if A=i is occupied and bound.

&") ..th.t

«*') '( ))=Q(*')f'(*)&=L ( '), "{)j
=b(~-x')- p, (a',~)=(1-p,)„.. (2.10)In the usual RPA approach one considers the equa-

tion of motion for thc particle-hole operator A;t
=g ~b;t, expressed in the occupation number repre-
presentation of Eq. (2.1), and in a basis consisting only
of bound states. However, instead of the operators (2.1),
we can also introduce operators in the coordinate
space x of the particles

Equation (2 10) will be important for the developments
in Sec. 3. It is clear that j.—pp is a projection operator
Hlto unoccupied single-pRrt1cle stRtes of the compound
nucleus, since pp= pp~ and pp =pp.

The total Hamiltonian H of our system is given by
a sum of one-body kinetic-energy operators T and two-
body interaction energy operators 8' in thc usual
fashion,

.t(*)=Z &. (*)..t+ ..'(*) t()d,
(2.2)

%e introduce a set of creation operators cI,~ corre-
sponding to a complete set of one-particle states

I k&. In
what follows, it will be convenient and useful to identify
the wave functions (xlk&= q~(a) with the HF orbitals
as our basis of single-particle states. The state obtained

by fiihng the 2+1 lowest orbitals then corresponds to
the HF ground state IO). It acts as a vacuum for the
particle and hole operators for which wc adopt the
notation

b&*)= Z "*(.)"t=Z. & )b',
k,occ

yt&g) =Q yg~(g)cgt=at(x)+b(x). (2.3)

Of course we have also

a(~)I0&=b(~)Io&=o (2 4)

This leads us to consider the pRltlcle-hole creRtlon

operators 2 p~ =at(x)b t in a mixed representation, where

the particle is written in the space representation (the
most convenient one for visualizing the scattering
process) and the hole in occupation number space (the
simplest one for bound states). The commutation rela-

tions of the operators A and A~ are

so that, for example, the usual Geld operator for
creating a fermion at the point a (with specified spin
and isosplll) reads

U=&&&=5 Z (T'+«), (2.13)

3'-=Z F~:clotcI: = ««':p(x)K(x,x')p(x'):, &2.14)

~=l Z (»'I&l»'):"t" t. ', :

H=P Tp(cItc(+ ', Q (»'IW-I»')cgtcptcpcg. (2.11)

Ke may "order" H with respect to the HI"-vacuum
I0) and write instead

H = U+sc+vp, (2.12)

where U is the HF ground-state energy, 3'. is the one-
particle HF Hamiltonian, and 'N thc residual inter-
action. More precisely,

L~p t,~ptj=L~p, ~pl=0, (2.5) x:4«~)ut&y)(*yl ~I*Y)p(y'g&*):, &2.1s)

LA p,A pt$= 5;;.(a(x')at(x) & (a(x')at&x)&b;tb;. —
—5; at(a)a(a') (2 6)

where the operators inside the colons: ~ . ~ - Rre no~
ordered, and where EI, are the HF single-particle
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energies. If k, l refer to the HF representation vre have
the relation

Let us 6rst deGne two in6nite matrices Ig axnxd Q
through the commutator relations

where

~„=g„z„=T„+P (kilWlli),
s Occ

(kil Wlli)=(kilWlli) —(kilwlil),

(2.16) LA, ,a)=P (Z,„A„+Q,„A, )+Z,

IAp~, &j=g( Qp„—*A, Ep,—*A,t) Rt—, (3.5)

i.e., just the antisymmetrized. matrix elements of the
two-body interaction W. The last term in Eq. (2.16) is
the HF single-particle potential.

It is only possible to diagonalize K in the occupation
number representation since the HF 6eld is nonlocal in
coordinate space. Hovrever, we will use the fact that the
operators X and VP can also usefully be expressed in
"mixed representations, "vrhich are obtained by replac-
ing some of the 6elds Pt and glg by their expressions in
terms of the ct and c.

vrhere the operator R is ordered with respect to the HF
vacuum I0) and does not contain any operators A or
At. Linear equations are obtained for Ap and Apt by
neglect&ng R and Et.

Multiplying the Kqs. (3.5) (with E and Rt sup-
pressed) on the left by the HF vacuum IO), on the
right by A t

I 0), we obtain the relation. s

((Ap, H)A t&=(Ap(II U)A t—)=PI'p~(A, A t), (3.6)

3. LINEARIZED EQUATIONS
(A.fop, H j&= (A.A pe) =g Q„(A.A, t). (3 &)

Follovring closely what one does in the usual RPA,
let us de6ne an infinite set of operators 0),t..

O),t=g (f."A t g "A )—

We next consider the expectation values of the
linearized commutators (3.5) between approximate
eigenstates

I fo) and Oqt
I fo) of the system. This

procedure yields

dyl f,"(y) '(y)V —g "(y)k o(y)j

where the eigenvalue index X still has to be speci6ed.
We now de6ne the approximate ground state Ifo),

with energy Eo, of our compound system, by the
conditions

=Goy'Vp
~

8o I I A p' elO~'l0 o&=2 (—Qp, *o,"—Pp„'w, ")
7

O~IA&=0.

We also assume that the states

(3.2) (3.S)

&)O& I A) = (II &o) I go&=0g after intro
dunng the auxibary amphtudes

IA&=o,'ly, & (3.3) &p"=(Al A po~'I go) =g

(gaol

LA, ,A„tjlgo&f.&,

are approximate eigenstates of our system with eigen-
values Ez. These approximations are expressed by the
relations

LP,ogtg gogo' (3.4)

coupled with (3.2), where os,=E&, +o is theexcitat—ion

energy of the state X. By doing so, one hopes to include
in the ground state I glgo) the most important part of the
long-range correlations, i.e., the ones corresponding to
the well-known "backvrard-going graphs" of pertur-
bation theory.

To the index ) will correspond, in general, a spectrum
with a discrete part and. a continuum part. The discrete
part corresponds to bound states of the A+1 system;
the continuum part describes the scattering of a nucleon

by the A target particles.
We have now to 6nd the equations obeyed by the

amplitudes f,"(y) and g;"(y).

wp"=(AIAptatlfo)=gg "golLA, Aptjl|//o&. (39)

~p"= ~,"(x)=P (A pA. t)f.~

wp" ——w;"(x) =p g.&(A.Apt)

g '(x) fg;"(x )X=(x'x )gx— ', ,
'

(3.10)

The quasiboson approximation (2.8) replaces in (3.9)
the commutators of A p and A by their Hp expectation
values and provides us with the relations
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If we insert into (3.8) the relation (3.10) and use

Eqs. (3.6) and (3.'7), we obtain

g l (A, (H—V)A J)f.i+(A&A.H)g."3=»os', (3.11)

(A—.A,H)*f."

(A&—(H &)A—.t}'g."j=»i()p", (3 12)

where ~=Eq—Eo measures the excitation energy of

the state ).
The matrix elements appearing in Kqs. (3.11) and

(3.12) refer to expectation values with respect to the

HF vacuum. %e obtain in the mixed representation

p= {x,i), n= {y,j)

(A,(H U)A„t)—= dx'dx" (1—po)..
x Lx(",")~„+("jl wl'"') j
X(1—po).-.—h,,(1—p )*,&', (3.»)

(ApA H)= dx' dx" (1—po).*

x(1—po)." (x'*"
I wlij) (3 14)

For local two-body interactions W(x, x'), the matrix

elements appearing in Eqs. (3.12) and (3.13) are

(x'jl Wlix") = oo,*(x")W(x', x")(o,(x') —()(x'—x")

dy o '(y) W(x', y) (p'(y), (3 13)

(x'x"
l
W l

ij)= W(x', x")

XL(p,(x')(;(x")—o;(x")v;(x') j. (3.16)

We now have all the ingredients for Eqs. (3.11) and

(3.12), which become

(»+E,—X)i;"(x)

dx' dx" (1—p,)„L(x'jlWlix")i, ) (x")

(o)),—E;+X)ii);"(x)

+(xx"lWlij)u)P(x")$, (3.17)

dx' dx" t -(x'jl Wlix")wP(x")

—(x'x"
l Wli j)i);"(x")](1—p,).„(3.18)

where again the amplitudes i);i(x) and n);"(x) appear

only, and understanding the operation Xi)(x) to mean
J'dx'X(x, x')i)(x'), etc.

An important simpliGcation has been introduced into
these equations by the fact the R is the HF Hamil-
tonian. For then 1—

po and X commute, L1—po,X)=0,
and we have

dy dx dx (1-p.)...X(*,*-)(1-po)..f i(y)

dx' X(x,x') i);"(x') (3.19)

since (1—po) is a projection operator. Thus, no factors
appear on the left or right of X in Eqs. (3.17) and
(3.18).

The coupled equations (3.17) and (3.18) are the RpA
equations of motion written in a mixed representation.
We notice that the amplitudes i),i(x) and m;~(x) appear
naturally in this representation instead of the original
amplitudes f;i(x) and g,~(x) of Eq. (3.1). This is con-
nected with the operation of the Pauli principle, exclud-

ing from f and g by means of the projection operator
f—pp those states which are already occupied in the
ground state of the compound system, but which would

appear in the expansions of f(x) and g(x) in a complete
set of single-particle states.

Equations (3.17) and (3.18) depend on the one-
particle density that is generated by a given two-body
interaction lV in the HF approximation. One knows,
furthermore, that the stability conditions' on the HF
are closely connected with Eqs. (3.17) and (3.18). One
should therefore use the full (nonlocal) HF Hamiltonian
3C in a discussion of the scattering problem also. In fact,
po is precisely the quantity determined in the HF
method, so Eqs. (3.17) and (3.18) extend this method
quite naturally to scattering problems. %e also noted
the important simplification, Eq. (3.19), that the HP
method introduces.

It is clear from their derivation that Eqs. (3.1/) and
(3.18) are completely antisymmetrized, except for the
violations of the Pauli principle incurred through use of
the RPA. The form of the interaction terms in these
equations is especially interesting if 5' is a local two-
body interaction. For instance, the right-hand side of
Kq. (3.17) then reads:

Right-hand side of Eq. (3.17)=

Z f« « () n) w'(x "p )— ., '"
X {(p,*(x")Lo) (x')i) "(x")—q, ;(x")i)/"(x')j
+~ "(x")fo,(x') (p;(x")—o;(x")o,(x')j) . (3 20)

~ D. J.Thouless, Nucl. Phys. 21, 225 (1960).
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VVe comment on the normalization of the states
Ig}=Oqtlge}. The scalar product

dxrlx'P f "'*(x')(1 p)—~ f "(x)

—g "'*(*')(1—po)- gP(x)j
4l.;"'*b)s"b)—~ "'*(x)~"b)3 (3.»)

is obtained using the quasiboson approximation again
and the fact that 1—po is a projector. Notice that this
scalar product can also be expressed in terms of the
amplitudes e and m. The normalization condition is then
obtained by prescribing (3.21} to be either b~q or
8(X—X'), depending on whether X labels a bound or a
scattering state.

Finally, if we suppress the amplitudes w(x) in
Eq. (3.17) we recover the one-particle-one-hole Tamm-
Dancoff approximation (TDA). The equations for the
amplitude e;"(x}are

(r0),+E —X)e "(x)

dx'dx" (1—p,)...W(x', x")&,e(x")

X t lp;(x') eP(x")—p;(x")e;"(x')j (3.22)

origin of the density operator in the problem. The
appearance of the density operator in scattering
problems has been noted previously. ' However, our
results difFer in detail from those given in Ref. 2 in that
the density operator of the compound nucleus and not,
the target nucleus appears in our case.

The discussion so far has not distinguished. between
bound states and scattering states of Eqs. (3.17) and
(3.18).To distinguish between these, we recall that the
separation energy of a particle in a HF state q;(x) is
8;=—

I E; I
(Koopman's theorem), leaving the residual

nucleus with a hole in state i, Thus, when ~},&—E;=5;,
Eq. (3.17) de6nes a scattering problem for all such
channels i. Notice in passing that the thresholds for
inelastic scattering to excited states of the target are
determined by the hole energies F.; in Eq. (3.22). These
energies are determined in principle by the HF Geld BC

and cannot therefore be adjusted to 6t experiment as
in the calculations under Ref. 1.Disagreement between
the calculated and experimental positions of such
threshoM energies in the present treatment of the
scattering problem will stem from the failure of the HF
6eld to provide an adequate description of the target
nucleus. At large distances, the amplitudes e;"(x) will

have outgoing waves in all the open channels, in addi-
tion to incoming waves in channels specihed by the
scattering process one wants to study. By contrast, the
amplitudes teP(x) do not give rise to any particle Qux
at infinite separation since we always find req+ IE;I
positive in Eq. (3.18).However, the wP(x) do affect the
amplitudes eP(x) through their mutual coupling in
Eqs. (3.17) and (3.18).

Fg(x) = A' p;*(x')W(x,x') lr, (x') (3.23)

that appears in a11 discussions of high-energy particle
scattering. Yo this term the exclusion principle adds an
"exchange" term and also a term depending on the
density operator po. %e have already discussed the

6 J. Raynal, M. A. MelkanoG, and T. Sawada, Nucl. Phys.
A101, 369 (1967); B. Buck and A. D. Hill, ibid. A95, 271 (1967);
C. Blech and V. Gillet, Phys. Letters 18, 58 (1965); C. A. Caine
and R. H. Lemmer, Laboratory for Nuclear Science Technical
Report No. 78, 1964 (unpublished}.

if we use Eq. (3.20}. Equations (3.22) are in the sub-
space of one-hole-one-particle states since the ground
state

I fe) is reduced in this case to the HF vacuum
I 0).

In structure, this set of equations is similar in form to
the coupled equations studied by Melkano8, Raynal,
and Sawada, s and by Buck and Hills (without, however,
identifying K with a self-consistent Hamiltonian). The
efFect of the exclusion principle is seen to be rather
complicated. If one ignores antisymmetry, as is usually
done for high-energy scattering, only a term of the form—P, F@(x)eP(x) survives on the right-hand side of
Eq. (3.22). This term exhibits the familiar form factor

4. TIME-DEPENDENT DERIVATION

Before discussing some general features of the solution
of Eqs. (3.17) and (3.18), it is instructive to present a
direct derivation of these equations based on an exten-
sion of the time-dependent HF approximation to
scattering problems. This derivation makes clear that
the excited states Oqt lpe} of Sec. 3 are associated with
density oscillations about the equilibrium density po of
the ground state. Changes in the density with time
obey the equation of motion'

s(~/») p(l) = I:5CLp(l)j,p(t)l, (41)

where X is the time-dependent version of the HF
Hamiltonian introduced in Eq. (2.12). Its dependence
on the density p(t) appears through the HF single-
particle potential 'UI, ~, where

5C= Z (&sr+'Uw): cstci:,

v. =Q (I I'IN"Ill') p, , (t), (4.2)

and p»(1)=(p»(1)li, t«lan~(~)) is explicitly time-
dependent through the HF ground state

Ignis(t)}.

We
achieve a linear form of Eq. (4.1) by writing p(t)

~ J. Goldstone and K. Gottfried, Nuovo Cimento 13, 849 (1959).
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[Xp&"j= dh'X(x x') p '&'& —E p &'&

= (X—E~)p.;&" (4.5)

= po+p&'&(t) and only keeping terms linear in p&'&(t).

One 6nds that

i(&l~t)p»"'= LX p'" j»+[&" pol~i (43)

where now X=X[po) is the usual time-independent HP
Hamiltonian and the time-dependent part of the HF
potential is given by

»&"'=2 (&&'Itl«')P s '"(t) (4.4)

In the approximation (4.3), the amplitudes ps&&'& can
only involve the creation or destruction of particle-hole
pairs, i.e., if / is a particle state, 0 must be a hole state
and vice versa. As in Sec. 2, let us reserve the index i
or j for holes in the occupation number representation.
Then there are two cases to consider in Eq. (4.3): (i)
0=x, a particle state; l=i, a hole state; and (ii) k=i, a
hole state; I=a, a particle state. The commutators are

surface and holes below. Thus p„(') absorbs the projec-
tion operator 1—po onto unoccupied particle states in
its de6nition.

The complexity introduced by the exclusion principle
is doubled by the use of the RPA in our coupled equa-
tions. However, it may be worthwhile to keep such
complexities if long-range correlations in the system
are important. One knows that such correlations play
an important role for y-ray widths of particle-hole
excitations. Similar sects can enter for particle-
emission widths of eigenstates i&to,) lying in the single-
particle continuum.

5. SCHEMATIC MODEL

Generally, we have to resort to numerical methods to
study the solutions of Eqs. (4.7) and (4.8). However,
the so-called schematic model introduced by Brown
et at.' can be solved exactly for its scattering amplitude
within the framework of the set of coupled equations
for s;(x) and w;(x). We introduce the approximation of
the schematic model, i.e., separable matrix elements

I
'U "&,pof*'=2 'U*s"&(po)s — dx'po(x, x')'0 ' ' (xg wiih)=(h" iN i'j)=~lD, (x)D,(") (5.1)

ch' ch"(1—po) „.
X[(x'ji Wi ix")p, -;&'&

+(x'x"
i Wiij)p; -&'&) (4.6)

if we choose intermediate states in either the HF occupa-
tion number representation i,j, , or the coordinate
representation x, and note that (po)s;= l&», Xs;——E;hs;
in the former representation. Similar expressions are
obtained for [X,p&»);, and ['U&",poj;,. We insert these
expressions into Eq. (4.3) and look for solutions of the
type p"&(t) = p&'&"e '"&'+c.c. of frequency &oz. Then one
has

where, in our representation, D;(x) is proportional to
the dipole operator integrand xy;(x) for 7-ray absorp-
tion. The connection with the usual amplitudes D;
de6ned, for example, in Ref. 8 is D;= J'Ch &p *(x)D;(x),
where m is a particle state above the Fermi surface. The
coupled equations (4.7) and (4.8) can be solved without
further approximation. Dropping the index ) on v and
m for clarity, we have

+C;( ) l&, (1—p )D., rt 0+ (5.2)
oo+E —X+irt

(&o&,+E—X)p &'&" w;= —C;(&o) ) D (1—po),
o&
—E;+X

(5.3)

dx' dh"(1 po)„[(—x'jiWiih")p; t"&"

+(*'h"I~I'j)p -"'"j (4&)

(oo&
—E'+X)p *'""

cx' dh"[ —(h'g wi ih")P .„&»~

i (*'*"Ile)p - "'"—j(1—po) ' (48)

which are precisely equivalent to Eqs. (3.17) and, (3.18)
if we identify p

&'+ as s;&'(x), p
&'»' as w;"(x). We

emphasize again that these equations are only consistent
if p„.(') refers to states with particles above the Fermi

(&o+E;—X)so;&+&=0 (5.4)

at energy &o+E;. The function C;(&o) in Eqs. (5.2)

o G. E. Brown, L. Castillejo, and J. A. Evans, Nncl. Phys. 22,
1 (1961).

since v; must satisfy outgoing-wave boundary condi-

tions at in6nity. %e reserve the index i for the initial
state of the target (described as a single-hole state in our

model). Then s; only has incoming waves in channel

j=i. These are contained in the potential scattering
wave function I,&+' of the HF 6eld
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and (5.3) is given by and E„are negative numbers for bound states),

C'(~) =Z ~x' Ln (x')+~ (x')3D (*') D„; D„,
~' oo+E;—E +iri i co—

) E;)+ (
E [

=Dg; 1—XQ D, (1—po)Dy
Go+E K+'of)

a —(E]—o

—D- D~(1—po)
eo Eg+K— '

(5.5)
in-g. do D. b(eo —iE;i —o), (5.9)

where De.;=J'N~&+&(x)D, (x)dx is proportional to the
amplitude for the incident particle of momentum k,
making a transition into the hole state i. The full-
transition amplitude for particle scattering follows
immediately from the asymptotic behavior of e; in
Eq. (5.2):

T;;=Tash;;+AC;((o)(N; —,(1—pp)D;), (5.6)

where THp is the potential scattering amplitude of the
HF potential, and I;& ) an incoming-wave solution of
K at energy o&+E;. Eq. (5.6) is exact; we study the
resonance behavior of the scattering cross section by
looking for poles of T;; in the energy variable ~. Apart
from possible single-particle resonances in the HF Geld
amplitudes Tnp and (I;t &,(1—po)D;) we see that the
poles of T;; are contained in C;(&u). These poles satisfy
the relation

Q

where the prime in the 6rst sum restricts e to bound
states; e labels continuum states of X and I' denotes a
principal value integral. An imaginary part appears in
the pole whenever one or more open channels are
present. Notice that there is no contribution to the
imaginary part from the second term in Eq. (5.8)
which reQects the sects of correlations. The widths of
resonances in the schematic model are still changed,
however, by the introduction of correlations, since the
energy eigenvalue assumes a different form (see
Eq. (5.12)j. The dispersion relation (5.8) completely
uni6es the determination of the resonating and bound
states in the RPA and their mutual e8ects. Roots of
Eq. (5.8) that lie below ~E;~ (the lowest-hole state)
are automatically divested of an imaginary part, since

(1—p,)D;
oo+E; K+ig—

in P
Q

doXD '8(&o—IE;~ —o)

=in P XD (s, (,on (5.10)

D, D;(1——po), (5.7)
co—E~+K

which is independent of the initial conditions contained
in the label i on C;(oo). Equation (5./) is simply the
dispersion relation for the eigenmodes of Eqs. (4.7) and
(4.8) that endows these modes with an escape width if
the energy of the mode happens to lie in the single-
particle continuum, s» —E;. We make Eq. (5.7) more
explicit by introducing the complete set q q(x) of states
of 3!.The projection operator 1—

pQ only allows un-
occupied states to appear (we call these e) so that

~, (5.8)
oo+E) E+iq co—E+—E„&

which is precisely the RPA dispersion for the schematic
model, but where the sum on unoccupied states e in-
cludes an integration over the single-particle continuum
of the HF 6eld. This second feature introduces the
decay of the eigenmodes. For example (recall that E;

&»= Eo+Z.(1+n'Zo') '

(~/~) =Zg, (1+~~Z,2)-~, (5.11)

(sum on states co—I E;
~
&0 only —i.e., the sum includes

only open channels). The imaginary part then grows
according to the sum on the right-hand side of Eq. (5.10)
as more channels open up.

If we make the still more special assumption that the
bound particle-hole energies ~E„—E, ~=Eo are de-
generate and suppress the contribution from the
principal value integral in Eq. (5.9) we regain the
degenerate schematic-model results: For S bound
particle-hole excitations, S—1 stay degenerate at EQ,
and one moves to a&= Eo+Z, (we write Z,=P„XD„P)
if we suppress ground-state correlations (the TDA
result), or to t»=(Eo'+2EoZ. )'" if we include them
(the RPA result), provided co so obtained lies below the
erst threshold at

~ E;~ for particle emission. For oo) E;
the eigenvalues are complex: %e replace co by co—iy and
6nd (&o=g j eyea &De-Is& Ij)
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in TDA, and

{E2 ~P+2g+ (1+~2+ 2)-1}1/2

(y/s) = (Ep/(pTn~)ZpZ, (1+m'Zp')-' (5.12)

We have neglected contributions coming from
principal-value integrals like that in Eq. (5.9) in RPA.
The coupling to the continuum via the imaginary
terms in Kq. (5.8) is seen to "renormalize" the particle-
hole matrix elements between bound pairs by a factor
(1+m'Zp')-'(1 and electively makes these matrix
elements weaker. The energy shifts away from Ep are
correspondingly smaller. In the RPA we also obtain
the usual factor Ep/(dTn/, multiplying the particle width

y of the TDA, as in the case of dipole transition rates.
This factor decreases the particle width if the level ~ is
pushed up, increases it if co is pushed down. We also see
from the second term in Kq. (5.6) that the strength of
the transition into the resonance states through the
factor (u, & &(1—pp)D;) is cut down by the exclusion
principle, in that fewer particle-hole transitions are
allowed by the projection factor (1—pp).

6. DISCUSSIOH

We have seen that the extension of the usual RPA
equations to cover scattering problems is straight-
forward and leads to coupled equations similar in
structure to those obtained for nucleon-nucleus scat-
tering when antisymmetry is ignored. The exclusion
principle introduces important di6erences in detail that
are partly carried by the projection operator 1—pp in
Eqs. (3.17) and (3.18). The procedure gives a unified
treatment of bound-state and scattering-state problems
within the RPA method. Starting from a Hartree-
Bogoliubov basis instead of a HF basis, one can extend
the method to treat two quasiparticle excitations within
the RPA framework instead of particle-hole excitations.

In actual calculations we would have to introduce
states

~ f(,) carrying a good angular momentum. This is
easily accomplished by writing

0(,t~~= P dr r'{f;,(P~(r)(a(;t(r)b, t (~/'

i, lj p

g' (/"'(r)—Lb'a4(r)3-M( —)""},(6 1)

where lj are the partial waves which couple with the hole
states i={n;l;j;} to a total angular momentum JM'.
The operators a(; t(r) and b;„,.t are defined by (r(( is the

s component of j)

a(;„t(r)=P R„(,(r)a„(, t+ dpR, (;(r)a,(;„~,

where E. ~; and E,~; are radial wave functions for un-
occupied bound states (((lj) and continuum states (clj),
respectively. The hole operator b;„,.t is

b; t=(—.)/+ 'c„.(. . (6.2)

The meaning of the operators a(; t(r) and a(; (r) is
clear: they are simply the creation and destruction
operators of a nucleon at radial position r= ~r~, with
angular momentum (lj(r(). Their anticommutator is

L« -(r) «/-'(r') j+
= b(( b(( b~~ t(b(r r')/r' p(—((r,r')],—(6.3)

where

/, (,")= Z R. ;()R.,(")
fl ~OCC

(6.4)

is the radial density matrix for nucleons with a given l
and j.

The expression (6.3) replaces Eq. (2.10). Otherwise
the derivation of coupled equations of fixed JM proceeds
as before and gives radial equations for f~(r) and g~(r)
Lor, rather, their counterparts p~(r) and u J'(r)]. From
their construction, these equations should not contain
any spurious resonance excitations, contrary to the case
of the TDA equations (3.22), which will contain
spurious center-of-mass excitations. It is not clear
whether the center-of-mass motion in the scattering
problem is completely accounted for by using the RPA
equations, however, since in addition to resonance
scattering, these equations also give rise to a back-
ground of potential scattering from a HF potential
fixed in space and additional corrections may be
necessary. This point is under investigation.

HF potentials are now available for several nuclei,
including O' . Work is in progress to obtain numerical
solutions of Eqs. (3.17) and (3.18) for 0", based on an
extension of the numerical methods described in Ref. 9.
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