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Isosyin Invariance and the Pairing-Force Problem
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The isoscalar pairing-force Hamiltonian is studied 6rst in the BCS-like approximation, including neutron-
neutron, proton-proton, and neutron-proton interactions. Constraining (8) and (T2), we 6nd a class of
BCS-like wave functions which give the sauce minimum energy; they differ in the expectation value of
7;, —T& (T,) &~ T. For the limit (T,)=T, the minimum occurs at zero neutron-proton interaction. The
residual interactions, those neglected by the BCS approximation, are treated by the quasiboson approxi-
mation. The spurious effects of number and isospin dispersion are identi6ed. A procedure for explicitly
displaying the number and isospin dependence of the energy is given, together with one for obtaining
excited states with all possible isospins. Finally, as an example, the degenerate case is worked out, and
agreement with the exact solution, including ground-state neutron-proton correlations, to the order con-
sidered, is demonstrated.

I. INTRODUCTION

~ 'HE isoscalar pairing-force problem has been of
recent interest. ' ' In this paper, we study the

pure pairing-force problem by starting with a BCS-like
6rst approximation, ' ' which includes both neutron-
neutron, proton-proton, and the neutron-proton inter-
actions. The residual interactions are handled by means
of the quasiboson approximation. ' "The first of these
steps, the BCS approximation, breaks both number and
isospin conservation. The terms necessary to restore the
conservation are, of course, in the residual interactions.
We can examine how and to what extent the number
and isospin invariance is recaptured, using the quasi-
boson approximation to deal with the residual inter-
actions. Here we concentrate on the isospin problem, the
number problem having already been treated by such
methods. "

We begin in Sec. II by linearizing the pairing Hamil-
tonian, subject to the constraints that the average
number of nucleons Ã and isospin T is 6xed. For a
separable pairing force we show that there is a class of
BCS solutions with the same energy but which di8er
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only in the average value of the isospin projection T,.
These values vary from T to —T. The solution with
maximum projection T,=T has no neutron-proton
pairing. By using the variational method in Sec. III,
we are able to demonstrate that the same conclusions
hold also for the most general pairing force. When T, is
constrained rather than T, the BCS solution obtained
is the one with no neutron-proton pairing, as pointed
out in Sec. IV. The isospin invariance, while not exact,
holds within the order of the BCS approximation. To
improve on the invariance, one must improve on the
approximation. We go on in Sec. V to examine the
residual interactions by means of the quasiboson
approximation. The method of solving this boson
Hamiltonian is outlined in Sec. VI. In particular, the
dependence of the boson Hamiltonian on E and T' is
derived in detail, Eq. (74). Although this dependence
is not manifestly isospin invariant, we show that the
energy of a general isospin-invariant Hamiltonian will
have the same Ts dependence, Eq. (78). The reason
that it does not appear invariant, at first sight, is
twofold. First, the expansion is made in a preferred
direction in isospin space: namely, the direction in
which T,= T, but T = T„=O. Second, terms of smaller
order have been discarded. With these additions, in
Sec. VII, the invariance is made obvious. In Sec. VIII
we examine the boson eigenfunctions, showing that
the correct correlations are introduced to make them
eigenfunctions of N, T„and T' to the boson order. We
also see that not only are the excited states with the
isospin T of the ground state given, but also those
with isospin 7+1.Finally, we work out, in detail, the
degenerate case, e;=t., and compare with the exact
solution. We 6nd, in Sec. IX, that the correct ground-
state energy is given by the boson approximation, and
also the low-lying excited states agree in energy and in
angular momentum and isospin structure. Finally, in
Sec. X we show that the neutron-proton correlations
introduced into the ground state by the boson approxi-
mation, agree to leading order with those present in the
exact ground-state wave function.
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II. SCS APPROXIMATIOH FOR A SIMPIE ISOSCALAR PAIRING HAMILTONIAN
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The isoscalar pairing Hamiltonian that we study is

&= Z e[oj '~j-+bj.'bj-l —k Z G '{[Z(—1) "~Joj--'3[2(—1)" "'o'-- oj - j
+[K(—1) bj-'bj--'XZ( —I)j' ™bj-bj- 3+2[2( 1—) ~j-'bj '—XZ( 1—)" "'bj -~'- j) (1)

The a's are neutron operators and the b's are proton operators. The Hamiltonian consists of two parts: a single-
particle energy term and a pairing interaction between pairs of nucleons coupled to (1=0, 2'=1). The G;; =G;;
are the coupling constants of the pairing interaction.

The BCS solution, with which we begin, can be obtained by three equivalent procedures: the BCS variational
method, the Bogoliubov elimination of dangerous terms, or the self-consistent solution of a linearized form of the
Hamiltonian. The last of these methods provides a more intuitive presentation of one of our principal results. There-
fore, we begin in this way.

The linearization of this Hamiltonian consists of replacing it by the quadratic form obtained after replacing
products of operators by their ground-state expectation values:

HZ= Q Bj(ajm ajm+bjm bjm) 2 p Gji (+[aim aj m ( 1)™t—jnj'+conj( 1)" m'aj m a;.m. j
+D;.b; .(—1) ™b„,j+b, ,j(—1) ™bj.b;.j+2[(—1) ™~j.b;= b.,,;.+b.„,;( 1) -'—bj. .oj.„.j)

—2Q Gjj[Q o;m o;m(pnj+Qpraj)+P bjm bjm(pyj+spnj)+ojm bjm(2pny, j)+birn +jm(kpnvi)fa (2)

where the 8, p are the ground-state expectation values

b.. =&2(—1) ".-' ='&=&2(—1) " — . )

bn. j=&Z(- I)™bj.tbj .t&= &Z(-I)™bj.b;.&, (3a)

b.,.;=&2(-I)-";-'b;--'&=&2(-1)™b;--;-&,

average number of single-particle levels (2j+1),which
we shall take as large. To simplify the discussion we
drop these Hartree-rock energies, although the same
conclusions would be reached were they included.

Dropping the small Hartree-Pock terms from HJ.
gives us a Hamiltonian we denote as Hl.'. This simpliied
form, Bl,', can be usefully simplified by using as
additional notation the gap parameters,

p. .j= &oj-'~j-& a

p, ,;=&b;.tb;.&,.-,.;=&;-'b;-&= &b;-";-).
(3b)

~ i=2 Gjj b .j,

To carry out the self-consistent program, the b's and p's

are &nally to take on the numerical values that are ob-
tained by taking the expectation values, (3a) and (3b),
in the ground state that follows from the linearized
Hamiltonian. In the above, it has already been ex-
plicitly assumed that this ground state has spherical
spatial symmetry, so that the p, ;, p~,;, p„~,; are in-
dependent of m.

There are two kinds of interaction terms in HI,.The
terms that. involve the 5's correspond to BCS pairing.
The p-dependent terms are the Hartree-Pock re-
normalizations of the single-particle energies,
Actually, as we shall see in detail later, the p's are an
order smaller than the b's and. of the order of other
neglected terms. I"or now, we can note that p~,;, for
example, can be rewritten, to make comparison with
the b's more obvious:

1
&(Z oj-'oj-)&.

2j+1
Very roughly, the b's are greater than the p's by the

~.nj=Z Gjj b.n.j ~

Then Hl, ' becomes

&r'=Z ~j(&j '&j +» '» )

—spy [(—1)~"a ta „t+(—1)~"a aj j
—s Z ~nj[(—1) "»-'».—'+(—1)

—Z ~.nj[( 1) "~j-'»='+(—1) "bj=oj j (—3)

The diagonalization would be made much easier if the
ab-coupling term, the last term in Eq. (5), were elimin-

ated. To do this, we introduce a new set of fermion
operators, a, 5, which are rotated in isospace:

cim=cosatai Gjm sUlataj bjm a

b; =sin&i aj +costi b; .
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Hr, '=P ej(aj 'aj +b; '5; )

——,
' P A.-jL(—1)~"a ta. „'+(—1)~"n a.„)

A second constraint is required to 6x the expectation
value of the isospin projection, T,. The usual treat-
ment' ' has done this by adding a term —X,T,. How-
ever, T, in the present notation is

TI= 2 g cos2$j(cjtn Gjm 5jm ~jm)
+-', P sin2yj(aj t5j„+Sj taj ), (12a)

—Z ~-.-. U—1) " t5 =+(—1) "5-- -]
and so contains a term that couples a, b. Instead, it is
more expeditious to enforce the further constraint by
using instead of T, the operator 0,

where the new gaps are

5@=cos Pj b, j+sin Pj 6»—sin2$j2»,
6sj= sin~pj 6,+cos'P, 6»+sin2$j 6„»,

6;sj——~~ sin2$j 6„j—~ sin2$j 5»+cos2&j 5„».

(Sa)

(Sb)

(Sc)

&= g P(Xaj ~sj) = 2 Q(4jm +jm &jna»'m) y (12b)

in the addition to Hl, ' of —X,f-. The signiicance of this
operator 0 will become more apparent when we discuss
the self-consistent ground-state solution.

The effective linearized Hamiltonian 3'.I,,
The coupling is eliminated by choosing the p; so that
~a$j 1s zero:

1s

BCy.=HJ.'—XgN' —X,q-,

cos2@j/sin2$& = z (6»' Anj)/~e»' (9)
BCr,=g(ej X~ —', X,)—uj-uj„+Q(e; Xjj+—', X,)b,-„b;„

The discussion of Eq. (9) is especially obvious for the
special case of separable coupling constants, G;p= g;g; .
Then, since it is seen directly from Eq. (4) that the
L4j/gj, 6»/gj, and 6„»/gj are independent of j, the
tan2$j are independent of j, or

Pj=y+e;', s .
The choice of e;WO actually leads to nothing new, but
only to rearrangements of the aj, 5; or changes of the
choice of phases, none of which aGect the ground-state
solution or the consequent eigenstates of HJ.'. Then, we
can take

(10)

A special, but much discussed, case of the separable
coupling constants is that of equal coupling constants,
gj=+G=gj. Actually, this same result of Qj=$ will
be shown (Sec. III) to follow in the more general case,
but we put that point off to develop the argument for
the simpler cases irst. Ke turn to the self-consistent
ground-state solution.

The self-consistent solution of the transformed Hl, '
must be subjected to two sets of constraints. Since
the linearized Hamiltonian is not number conserving,
the ground-state expectation value of the number opera-
tor is constrained to equal the physical number of
nucleons. To do this by the usual Lagrange-multiplier
method, one adds to the Hamiltonian Hl, ' the number
operator multiplied by a Lagrange multiplier —X~X.
The number operator N in the u, b representation has
the uncoupled form

~=K(&~ '&~ +5j '&~ )=Z(&a+&sj) (11)

—-'gh .L(—1)j-"a "a. t+(—1) "n „a ]
—IZ»jt( —1)' "»Jsj- '+(—1)' "5j=h 3

~;j=g Gjj'(P(—1)'--bj, 5j, „,).
(14)

The problem is, then, completely reduced to the solu-
tion of two separate BCS problems, which are by now
very well known. The familiar solution is

I+&= II LU.-+(—1) "I'.-A-'aj-J3

X[U;j+(-1) -Vsjsj.ts; .t) ~0), (15)

where ~0) denotes the particle vacuum, and the Usj,

Since there is no coupling between the a, tj the ground-
state solution is simply the product of the ground-state
solutions of 3'.g, g and KJ.,g. The self-consistency re-
quirements on 6-;, h» are easily met since with such
a product solution

(5j„taj „t)=(aj Jj )=0,

and only terms quadratic in the a's or b's separately
diGer from zero. Then, inserting the expression for
5„j,6», 6„»written in terms of the a, 5 representation
into Eqs. (Sa) and (Sb) for 4sj, hsj, we obtain

j4 =Z Gjj'(Z( —1)" "'o'-'o'--'),
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V-; obey the self-consistent equations

2(ey —XN —~~X,)Us V; =5; (U- 2—V-, ~)

U;P+ V;,"=1, (16a)

Equations (17) and (19), provide the physical inter-
pretation of r as the isospin quantum number T.
Henceforth, we shall use T instead of r.

The expectation value of the energy, (%~P)%'),
becomes

~.-;=+ G;,'(2j'+ 1)U.—,'V.—;.;

and the U'q;, Vg; the similar equations

2(e X—~+~X,)Ur7 Vs = As 2(Us, 2—Vs 2)

UrP+Vr, '=1,
65 =Q G;; (2j+1)Us; Vsp.

(16b)

It might be remarked that the Hartree-Pock terms in
Hz„Eqs. (2), contain a coupling between a and 5 which
at first sight does not appear to be of the same form as
that introduced by the pairing term, Eq. (8). However,
with the wave function of the form given in Eq (15),.it
can be shown that this coupling also vanishes.

The Eqs. (16) differ slightly from those usually
written by the omission of the small Hartree-Pock re-
normalizations of the single-particle energies, the p s
of Eq. (3b). These omissions can be shown not to change
energies or wave functions, to the order considered in
this paper, because they are small terms that cause only
small shifts about a stationary minimum point.

Ke return now to consider the constraint introduced
by the r" o erator. The ground-state expectation values
of f- and, are simply related by

T.= (4'i T.i%')= cos2$(V ari%') = (cos2$)r. (17)

Further, the expectation value of T' is

(+ I
~~

I +)= r2+ t
N' —Z (2j+1)(Vs/+ V&p) mj. (18)

Now we shall assume, for order of magnitude purposes
that r is of the order of E, the number of nucleons, and
that both these are of the order of the number of single-
particle orbits, Q=p;(j+2). The term in square
brackets in (18) is, then, an order smaller than the
6rst term. They are of the same relative order as the
omitted Hartree-Fock corrections to Bl,. As we shall
see, the quasiboson treatment of the residual inter-
actions will give corrections of this same order, so
that here we need keep only the leading term:

72~r2 (19)

1 he A.~, A.„are determined by the two constraints on the
expectation values of the number and the r" operator:

(~(P+2f))= 2(Ã+2r) =p(2 j+1)V-J2,

(16c)
(~(N—2r))=2(A"—2r) =P(2j+1)V&P.

(+I&l+)=Z(2j+1) (V.—,'+V- )—Z(2j+1)G;;
X(Vn,'+Vr, +Vs,'Vrf) ,'—P-G,y(2j+1)(2j'+1)

X (Uaj VajUej'Vaj'+ UsjVKjUr7j'Vbj') ~ (20)

It is important to note that this energy is independent
of qh as are also the equations for the U, V's. The value
of T, canbe6xedbychoosinggtEq. (17)7—T&T,&T.
The statement that (4'~&

~

4') is independent of P, or of
T, for fixed r, is the statement of isospin invariance
within the BCS approximation. It is, of course, not an
exact invariance; 4' is not an eigenfunction of T'
exactly.

As a practical procedure, the discussion in terms of
the total isospin quantum number and an angle P is
unnecessary if all we want is the energy. Namely, it we
pick &=0 we have the solution for T,= T. Then,

~a&.= ~u&

~~&= ~w,

The wave function 0' is reduced to a BCS product form
for the neutrons and the protons separately. In this
approximation, there is nothing gained from neutron-
proton pairing. However, for the same T, but

~
T,

~
& T,

the neutron-pairing is very important, and, in fact, is
just what is required to make the energy T;independent.
Establishing that there is an energy minimum at
p;=/=0 is very important to the progress of our
development because it is about this point that we

expand in the quasiboson approximation.
The constraints used above for the isospin are not

the only possibilities. Thus the use of T, instead. of 7.

has been noted. One could also employ 12. We shall
show later that they do not lead to anything new.

III. VARIATIONAL SOLUTION OF THE
GENERAL PAIRING HAMILTONIAN

In the previous section, we investigated some pairing
Hamiltonians with separable coupling constant by
linearizing the Hamiltonian. This linearization pro-
cedure is equivalent to a variational method, but we

chose the linearization for pedagogical reasons. For
the general pairing problem with nonseparable coupling
constants it is, however, more convenient to use the
variational method directly.

The variational wave function is similar to but not
the same as the form (15) discussed above;

+= II (U=~+(—1)' "V.-~o -'~~--')
jtn&0

X(Us;+(—1) "Vssbi~4-~)10), (21)
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and the a, b's are related to the original set by the
j-dependent isospace rotation" written down in Kq.
(6). Here, however, the U@, V;;, U~;, Vq;, and the

Q s are independent variational parameters, subject to
the normalization constraint

physical number of nucleons Ã:

X=(vlNl%)=P(2j+1)(V.-,'+V- ).

The isospin constraint consists of the requirement

(22)

U-./+Vga= US/+Vs/=1

The expectation value of the energy is to be varied
subject to constraints. The expectation value of the
number operator is to be held fixed and equal to the

T=(+lrl+)=k Z(2j+1)(V-'—V-.P). (»)

Employing the Lagrange multiplier formalism, we see
that the quantity to be varied is

(4'lH —7Ã—7,r" l+)=8
=Q ((e, Xz—', X—,)—(2j+1)Vof+-(e, Xz—+2K,)(2j+1)Vs'7—

L P(2j+1)G&(V14+Vr4+V-2Vs 2)]

—(-,' g g;; (2j+ 1)(2j'+1)l (U.-;V.-;+U»V»)(U.-;.V„,yU», V», )+cos2y, ;.

X(U-;V-„—U-;V-;)(U-„'V-; —U-; V-;)]), (24)

where Q,y ——P;—Q, . It is worth noting in passing that
the dependence on the P; occurs only in differences
between these angles; this independence is a statement
of the isospin invariance of the eQective Hamiltonian.

We erst consider the angular variation. If all the

p;,' were independent, then the condition that h be at
a minimum would be determined by

0=88/8$, ; =siGy(2j+1)(2j'+1) sin2$y

X(UBjVaj UbjVbj)(Ucj'Vaj' Ubj'Vbj') ~ (28)

Putting aside trivial solutions, we deduce p, ,'=my-, x.
For the same reasons given in the previous section the
choices e,,'40 lead to nothing new and we can restrict
ourselves to P,@=0. Actually the P,;. are not all in-
dependent of one another and the variation should be
restricted by that dependence. However, a restricted
variation cannot give a lower minimum than an un-
restricted variation. Since the point P,; =0 is allowed

by both the restricted and unrestricted variations, we
see that it is the minimum point in either case. We
have, then, the same conclusion as that arrived at for
the separable-constants case, g, =g. Again, the energy
is independent of P or T„and the special choice &= 0
is available (as it was for the simpler case).

Variation with respect to the other parameters
(V-, , Vr„) leads to the usual BCS equations. Dropping
the small Hartree-Fock terms, the second square
bracket in (24), we obtain equations of the same form
as those given in (16). The energy, E= (4'lHl%'), has
the same form as that displayed in Eq. (20). Before
going on to study the quasiboson expansion we turn
back to consider other prescriptions for the isospin
constraint.

IV. PRESCRIPTIONS FOR ISOSPIN CONSTRAINT

An alternative' ' isospin constraint is based on re-
quiring that the physical value of the 2 component of

"C. Bloch and A. Messiah, Nucl. Phys. 39, 95 (1962).

isospin be given by

T.= (4'l T, l@')=-,' g cos2$ (2j+1)(V-,P—Vs,s). (26)

The effective Hamiltonian one works with is then

IJ—) gX—),T, . (27)

X (U;,' V.-,'—U;; V-„')

+'A, sin2&; (V,-P—Vrj) =0. (28)

One solution of these equations is obviously P, = Qp =0.
This solution is just that discussed above for the special
case &=0, T= T,. However, there are other solutions
to the Eq. (28), and one must ask whether they lead
to lower-energy solutions. Ke answer this question. in
the negative by a somewhat devious but succinct
argument.

Suppose that by constraining (T,) a particular set of
Q;, V~„V» is found that gives an energy minimum
E(T.).This defines LEq. (21)]a definite %.Now, we can
take V-„'&~V»' for each j. This follows simply by
noting from Eqs. (22), (24), and (26), that if there were a
solution with V-„'&V5, there exists another solution
with the same energy (X and T,), which has Vs/'= V,-P,
V@"——Vs/, and @,'=@,+-', m. Given this 4' we define
a r'.

r = 2 Z(2j+1)(Ve' —Vs~') (29)

%e note that r»&T,. Next we carry out a variational
calculation, constraining the expectation value of v". so

One can ask whether this constraint, compared to that
based on 0, permits a wider variation that will result
in a lower energy. %e will show that this is not the case.

Variation of the e6ective Hamiltonian with respect
to @, leads to the condition

(U=~V=~ Us~Vs~)Z»—n2(4,—4,') G (2j'+1)
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that (%~ v
~ 4)= r,' the minimum energy so reached we

call E(r). Since this variational function %' includes 4,

E(r) &E(2.)
We know, however, that for a given v= 7 we can still
choose $ so that r cosP= T„since r &~2',. Thus, we see
that the variation with the r and. T, constraints overlap
in the region of the minimum and that the T, constraint
will lead to the solution p;=0; this is the conclusion
of Ref. 3 for the single j-shell case. It is to be noted
that this conclusion follows only for an isospin-invariant
Hamiltonian.

Having dealt with the T, constraint, we take up the
T' constraint and dispose of the question with a similar
argument. The effective Hamiltonian is now taken as

P—Ii~P—I r'r'

and creation operators that diagonalize the linearized
Hamiltonian:

a = Us a „—(—1)~"V; a

A =Uk&(—1—) "Veh (31)

The actual writing out of the Hamiltonian is made
somewhat simpler if we make use of the operator
combinations

ez~(j,j')= g C(jj'J; m, m'M)a; a;

tI(j) =—~..o(j,j),
Spy(j, j')= Q C(jj'J;mm', M)Pr~P, ~,

~(j)=-64,o(j,j), (32 )

eg~(j,j') = Q C(jj'J; m, m'M)Pp a;~,

to include the constraint

T'= (4) f'( 0')= x P cos2@ ' (2j+1)(2j'+1) and
t'-(j) —=&o.0(j j)

&-(j)=Z aj-'a~-

X(V-'—Vs')(V —Vs' )+{Z(2j+I)

XDV- +Vs ')——:(V.-'+Vs')7& (30)

&s(j)=Z pr-'p~

r+(j)=Q a;„p;,
(32b)

The term in curly brackets in (30) can again be neglected
relative to the 6rst or leading term for the reasons we
have already discussed in Eq. (18). The variation of
P;; leads to a set of conditions which are satisfied by the
P;=P solution already discussed. This may, however,
not be the only set of solutions of these relations.
Rather than investigate the existence and extremal
properties of all these possibilities, we give a proof that
is sufhcient to eliminate them for all cases of interest
to us here, Suppose there is a solution to these T'-con-
straint equations that is not already contained among
those obtained via the r constraint. Say it is a 4 with
V-„;Vs;, p; s, giving an energy minimum atE(T). Again,
we order V;,"&Vs/, and define a r=(%~8)%); then, 'it
can easily be seen that z'& T'. Variation constraining
the eiqiectation value of 0 at r will give us an
E(r)&E(T), since 4' is contained within the possible
variations of C. Now, we add the physical statement
that the energy is an increasing function of the isospin-
as we shall see in detail later —for the cases of interest
here Then, E(T. )&E(r)&E(T),so that no lower-energy
solution is obtained. by the T'-constraint procedure.

r (j)=Z -p~-'a~

%e shall also use as notation the gap parameter

&;=G Q(2j+I)U@vs;, Lii, GQ(2j+I) U&;V s(33=a)

and the single-quasiparticle energies

E- = L(e—Air —-'X )'+A-'yn
E,J L(~~, g„+i~)~)a+A, mja'2 (33b)

The Eqs. (16) are solved by

U-.;=L=;+-', (;—X~——',X,)/E.-;)"',
V-. =

I
—-'(' —~ —-'&„)/E.-3' '

U» =Lk+2(~~ ~~+5&.—)/E»3'" ~

v» =L-.—k(~~—~~+ 2&.)/E»1'"

together with the requirements

1= GZ(2j+1)/Eo' 1= GZ(2j+1)/Es'

V. QUASIBOSON APPROXIMATION —;(x+2r)=z(2j+1)v.-p, (34b)

%e turn next to the examination of the residual
interactions so far omitted in the BCS approximation.
Ke will work only with the simplest of the pairing
Hamiltonians (G,y=G) to make a little easier the
exposition of this messy problem.

To begin this, let us write the Hamiltonian in terms
of the Bogoliubov-Valatin quasiparticle annihilation

-', (X—2T) =Q(2j+1)Vs/.

Then, the effective Hamiltonian

R=H —XNN —X,9=R,-+Rr+R,-s (35a)

splits up into three parts. The 6rst part is the effective



ISOSP IN I NVARIANCE 865

Hamiltonian for the u fermions, and is

XI——[g(e;—X—~~X,)(2j+1)VzP —(As~/2G) —G P(2j+1)V»4]+P E»Ãs( j)+~G P [(2j+1)(2j'+1)]'i~

X U»~V»'[8~(j) CLt(j ')+S(g') C(g)7 kG Z [(2j+1)(2j +1)]'I'(U»'U»'2+ V&PV»'~) Ctt(j)(K(j ')

+GZ [(2j+1)Ji'(U»'s V&P)U»'V i'[(Rt(j)97s(j)+Ko(j )8(j)7—2GZ [(2j+1)]'+U sV s'~

X[8(j)+St(j)7—2G[g U»V@K;(g)]'+2GQ V»4K~(j) (35b)

The effective Hamiltonian for the b fermions, BCs, has the same form as K» except that a ~ 5, n ~P, 8~ S, and
and (—X,) +(+X-,). The interaction part of the effective Hamiltonian, K-s, is

X,-&=[—G g(2j+1)V»2V&p]+G p [(2j+1)(2j'+1)]'I2 U»Us;V»'Vsp[8t( j)8t(j ')+8(j ')8(j)7

—Gg [(2j+1)(2j'+1)]'~2[U»U&yU» Usp+V»Vs;V» V&p]8t(j)8(j')+Gg [(2j+1)]'~ U, Us-
X(8 (j)[UzpV&pr (j')+VapU&pr+(j')7+[Up@V&pr+(j')+Vo, 'U&pr (j')]8(j)} Gp [(2—j+1)' 2]V;;V»

X{8(i)[U» V»'r+(i')+V» U~;.r (i')]+[U».vs; r (j')+ V.; U» r+(i')]8(i)) GZ (2j—+1)'& V2V»»

XfUo-~Vr»'[@(j)+Ci' (j)]+V»Us~k(a(j)+(8 (j)])—G P [U.-;Vr„r+(j)+V ;Usr (j)7-

X[U.p«pr (j ')+V-.i'«pr+-(j ')7+G r. V-.J'VsP[&-(j)+&pU)].

Some of the terms are readily recognizable. The sum of
the constant terms from K-„3'.~, 3'.-g is just the mini-
mum expectation value of K, dered in Eq. (24).
The terms from X-, Kg,

Z E-.;~-.(j)+Z E-;»(j),

are the single-quasiparticle Hamiltonians. The re-
mainder is the residual interaction between the quasi-
particles. It is this residual interaction that we wish to
study in the quasiboson approximation. In this way
the rather formidable and opaque residual inter-
action will be turned into something manageable and
understandable.

%e develop the quasiboson expansion following the
work of Beliaev and Zelevinsky. ' Two ideas are im-
portant in this development. The first is the expansion
of the Hamiltonian and various dynamical variables
in powers of operators that obey boson commutation
rules. The second is that this expansion in powers of
boson operators is also an expansion in inverse powers
of 0=P;(j+-,). This expansion is derived by Beliaev
and Zelevinsky on a basis of satisfying commutation
rules between the two-quasiparticle fermion operators
given in Eq. (32). Their results can also be shown to
follow from a diagram summation procedure. The lowest
order corresponds to summing bubble diagrams (as
shown, for example, in the paper of Baranger'). The

higher-order terms correspond to various interactions
between the lowest-order, bubble diagrams. %e do not
demonstrate these here since we need only the low
orders. To summarize these points: %e use only the
lowest-order terms explicitly, and take over from
Beliaev and Zelevinsky the description of higher orders
as higher orders in 1/Q.

The expansion of the two-quasiparticle operators in
boson operators to lowest order is

Uj') ~. (j,j')I 1+~,']'",
~U)= ~o.oU,j), —

~~(i j') ~ f3~~(i j')[1+~1,p]'", (36a)
&(j)=—&0,0(j,j),

&~(2 2 ) ~ C&~(J 2 ) ~(j)=~o,o(j j) ~

Since the operators 6, and S have the symmetry
condition

~. (j,j')=(-1)-"-'~. (j',j),
(36b)

@z~(j,j')=(—1) " '+~~U' j)
their corresponding boson approximations, Az~(j,j)
and Bzjr(j,j'), resPectively, also have these symmetry
conditions. The boson operators obey the familiar
commutation rules

[A J~(j j'),A g.~'(k, k')]= [B,jr(j j'),a,,~,t(k,k')]
= &&& &~~ [1+5;;.]-'[87e, ~ +( 1)~'+~5;a.b;.& ]—
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[~z~(j',j'),~z br'(&, &')7=4m ~~br &;b~; b . (37)

In these commutation rules the C bosons do not have

the delta-function term corresponding to exchange, as
do the A and 8 bosons, since the related 6's are bilinear
forms of two different kinds of fermions, n's and P's.

The single-quasinucleon operators are bilinear in the
bosons and have the closed-form expansions

&-(j)= 2 D+&;; 3~~~'(j,j')&~~(~,~')+ p c, t(j,j)c, (, ,'),jI,J,M j' J'M

~s(j)= Z [~+a;7~. t(j,j')~. (j,j)+ p c, t~,',,)c, (,',,),j',J,M j'~ JM

+(j)= Z [&+~ '7'"(—&)' " '~ '(jj')c (j',j)+ p [&ps,J 7'&'c t(j,j')a (jj'),
j',J,M j~JM

'-(»= ~ ['+"'7'"(—» ' '~ '(j'j» (j,j')+ Z L&+&-3"'&. '(j j')C. (jj').
j',J,M j',J,M

As an illustration, as well as for subsequent use, let us apply this procedure to write out the number operator ¹

Ã-Z(~; t~;.+b; 9;.)=P(~,.ta,.+5,„tr, ).

In terms of the quasipartides it takes the form

~=Z(»+~)(l'.-, +l';)+Z(2j+~) "[~=,~.-;«'(j)+«j»+~-;~-;(~ (j)+Wj))7

+Z [(U-.'—I'.-')&-U)+(Ub' —l'b')&t U)7. (39)

In the quasiboson expansion this becomes

&a= [Z(2j+&)(l'.-'+ ~bP) 7+{2L2(2j+&)7'"LU'. l'- (~'(j)+~U))+ U» ~»(&'(j)+&U))7}

+{ Z [(U.-, l".,'+~. —l .-)~—.'U,j')~. (-j,j') +(~.-, l ., +~-,'-l -)f. 'V-,j'-)~. U,~')7
j&ji,JM

+ Z (~.-'—l' +~»"—~-"X'-'(i,i')~ (j j')} (4o')
j,j~,JM

The erst or constant term is just E, the expectation value (O'IVIES); it is of order Q. The second term, which we

will denote as N~, linear in the boson operators, is of order 0'I' assuming that the boson operators themselves have
m.atrix elements of order 1. The third term, quadratic in the boson operators, is of order 1; it will be denoted Xo.
We have dropped terms of higher order. In shorthand form,

We shall make particular use of N~.

P~ ——E+¹+Pb. (4Oh)

¹=&iL2(2j+&)7"{&el'e[~'(j)+~(j)7+Ub;&s,[&'(j)+&(j)7}

Similarily, the boson expansion of the 7 operator is

&B [Q —',(2j+&)(&.-,'—&b,')7+{2[2(2j +&)7'12[&z;l .,(~'(j )+—~(j )) &bjvbj(—&'(j )+&(j))7}

(40c)

+{ Z B(~e—l'=~+&-.~' —Ve)~~~'(i j')~~~(i j')—k(&sP—i bP+Ub~" —l'»")&~~'(j j')&~~U j')7
j& j', J'M

+ Z (U-' ~ ' ~b~"+l'»")C~~'(gg')C~~(&~a')}
j,jI,JM

and in shorthand form

ra= &+6+7"o,
" =Z [-'(2j+&)7"'[&-.i'- (~'(j)+~V))—&»l' (&'(j)+&V))7.

(4»)

(41c)
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The eGective Hamiltonian 3'. in the boson approximation takes on the form

j&j'J,M J+O
(E~)+E@.)A gM (j,J')A g~(2,J')+

j(j',J,N'; J&0
(Ea;+Es,')Bz~'(j,j ')Bzm(j,j ')

+ g (E„+E»')Cz~t(jj ')Cz~(j,j')+P 2E„At(j)A(j)+P 2E»Bt(j)B(j)+P(E„+E-»)Ct(j)C(j)
j,j';J,M; J&0

+G Z [(j+1)(j'+ 1)]'"U-.'V.-"L '(j)A'(j')+ U')A(j)] — 2 H j+ )(2j'+1)]'"

XPU-, ~U@'~+V, 'V -']At(j)A(j')+G g P(2j+1)(2j '+1)'~ UsPVsp PBt(g)Bt(g')+B(y')B(g)]

—G p [(2j+1)(2j'+1)]'~'(UrpUi,"+VspVr,"]Br(g)B(j)+Gp p(2j+1)(2j'+1)]'~'U„U»-V„'V'»-'

X[Ct(j)C"(J'')+C(g'')C(j)] Gg [—(2j+1)(2j +1)] ~ /Us;Ur&Us; U pr+V+V &rV-&, V- »]C (tj)C(j). (42)

IJB +B+~N+B+4' ) (43)

thus emphasizing that it is for K and not B that the
variational problem has been solved.

VI. DIAGONALIZATION OF egg

The main task is to write the effective Hamiltonian
(42) in diagonal form. The terms involving the JWO
bosons are already in diagonal form. The eigenbosons
are Az~t(j,j'), Bzjr (j,j'), and C&~ (j,j') with cor-
responding energies (E~+E-„.), (Eb;+Es,'), and
(E-„+E»'), respectively. These eigenbosons obey the
canonical equations

&~a,Az3r'(j,j')]=(Ee+E.; )Az~'(j,j'), -(44)

wit4 similar equations for the others.

The constant 8 is just the minimum expectation value
of 3C that we had before Eq. (24). In the expansion,
only terms up to and including order 0 have been kept,
and higher-order terms are explicitly and implicitly
dropped. To keep the order idea clear, it is useful to note
that the gap parameters 6 are of order GQ, as can be
seen directly from their de6ning equations. The e; are
assumed to be of this order (GQ) because, if they were
an order larger the interaction would be handled as weak
coupling which is uninteresting, while if taken an order
smaller the problem wouM reduce to the degenerate
case. The XN, X, are seen directly from Eqs. (16a) and
(16b) to also be of this order.

It is worth noting that there are no linear operator
terms in BC~. This is an immediate consequence of the
fact that we are expanding around an extremal.
Turned around, this is a demonstration that we have
carried out the variational problem correctly. The
absence of linear terms is true for the effective Hamil-
tonian but not for the boson approximation to the
Hamiltonian H~,

The J=O bosons, unlike the J/0, are coupled by
the interaction, and so the diagonalization is appro-
priately more complicated. It is immediately seen from
the form of X& $Eq. (42)] that there is no coupling
between the A, 8, C, 7=0 bosons so that we can assume
the eigenbosons are of the form of the simple linear
combinations

A.'=k Z L~, "'(A'(j)+A(j))+~.~' '(A'(j) —A(j))]

LK~,A„t]=Bg„A„t,

together with the normalization equation

EA.,A']=1, (47)

furnish a set of linear equations suRicient to determine
the a„&+), a„~ ', and the eigenvalue Bz„.These equations
are

G(2j+1)"'Z(~j '+ 1)—'"0»"+'

+2E ~&»'+' (4«)

@~,.o»'+'= G(2j+ 1)"'(Ue' Ve')Z—(&j '+ 1)"'—
X(U-~"—V.-~")~.~" '+2Ew~. ~' ' (48b)

Q a»&+'a»&-&=1, Bg„/O.

This is a very familiar procedure and needs no further

B'= 2 Z I:4 "'(B'(i)+B(j))+4~' '(B'(j)—B(j))]
=-'Z L '+'(C (')+C( ))+ ' '(C U)—C(j))].

(45)
The eigenequations (for the A case)
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discussion here except in the special case of a zero-
energy eigenvalue. "

%e examine these and show that there is one and
only one zero-energy solution of Eqs. (48a) and (48b).
From (48), with 8~,„=0, one has 2GQ(2j'+1)Us& 'V-; '/E; )0; (52c)

mediately from the gap equation (34b). On the other
hand, the bracket appearing in (52b) can be seen, after
using the identity Us&s+ Vs&s= 1 and the gap equation,
to be

. &'+' =GL(2j+ 1)'"/2E.-&] Z(2j'+1)'"o.&"+'
~

o„;—=GD2j+1)' (U-.,s—V-.; )/2E.,]
Xg(2j+I)'/'(Us, ,' Vs,,s)&r

from which it follows that

a„;&+&=e+(2j+1)'"/Es;,
&s & &=»s (2j+1)'"(U- —V-')/E-

where n+, e are constants independent of j;
I+= sG Z(2j'+I)"'~.&"+&

(49a)

(49b)

(50a)

(50b)

(51a)

then, Eq. (52b) requires that I =0. The quantity I+
does not vanish; it is not further determined by the
above equations but by a commutation relation between
the zero-energy eigenboson and the conjugate boson
which will be introduced and discussed later in this
section. In summary, the u»& ' vanish and the u„;&+~

have the unique form given in (50a). There is, then, one
and only one zero-energy solution to the A equations.
The same conclusion follows for the 8 equations.

The C bosons have a set of equations similar to (48):

8,,„c„;& &= —G(-2j+I)'~'(Us&Usg+ Vs; Vs&)

XQ(2j'+1)"'(U 'Us'-+Vs'Vr')c "+'

n = sG Q(2j'+1)'"(U-„" Vs,—")u„'. (51b)

Inserting (50) into (51) leaves us with the relations

+(E.+Es&)~ &'+& -(53a)
8s.„&:„;&+&=—G(2j+1)'Is(Us;Us; —VgVsg)

XP(2j'+1)'I'(U;; U-;.—Vs; Vs; )c„
N, LI —;GQ(2j'+ I)/E-., ]=0, (52a) +(E=&+Es&)c.&& ' (53b)

e LI—-,'G Q(2j'+1)(U-"—V-")s/Es& ]=0. (52b) Q c„g&+&c„;& &=1, 8s„/0. (53c)

The bracket in (52a) vanishes, as can be seen im-

"In order for the eigenbosons to be stable, their eigenenergies
must be real. Writing the right-hand side of Eq. (4ga) as
g; 3f;; (+)a„j'(+) and of Eq. (48b} as gj 3f;; ( )a„pt ), these
energies P„mill be real if both M(+) and M( ) are positive definite.
(See Ref. 14.} Since both of these matrices are separable except
for a diagonal part, the eigenvalues of each satisfy a dispersion
relation. For M(+) this relation is

~„)p} G~(2J.+~},
while for M( & itis

Since the quasiparticle energies Z-; are positive, the functions
f&+, f& & must decrease monotonically as && decreases from zero;
that is,

f"'(0)&f'"(~)&0
for

0&~ X&~ —~.
Using the gap equation PEq. (34b)j we can evaluate f&+&(0):

I ( =0)ZG"'+"= ;I2E-;

this shoves that X=O is a solution, but, according to the above in-
equality, there cannot be any negative X solutions to this disper-
sion relation. Likewise, for f& &(0),

f& '(0) =G Z 2E . (I-4~.'V-') & G 2
OP aq'

and so there cannot be any negative X solutions to this relation.
This proof also follows for the more general separable pairing
force, Gj; =g;g;. Thus the A eigenbosons are stable, and by
similar arguments, the 8 and |"eigenbosons are also seen to be
stable.

However, there are no analogous zero-energy bosons-
that is, at zero energy, independent of the parameters of
the Hamiltonian and constraints. A particular one of
these C eigenbosons does go to zero energy at the T=0
limit, which we will see in detail later.

The two zero-energy bosons are well known in the
literature, where they are frequently designated the
"spurious solutions" related to number dispersion. In
fact, the bosons can be seen from Eqs. (40c) and (41c)
to be proportional to the linear terms ¹&=s(¹+2&r),
Ns& ——s(¹—2'Pr) by recognizing the identities

2U@V@ A,/E-, &2U—s—;Vs-; =As/Eg;.

One of the C eigenbosons will be seen to be the boson
approximation of the isospin operator T; it is this
eigenboson whose corresponding eigenenergy goes to
zero at T=O. The existence of these three eigenbosons
can be inferred also from the commutation rules related
to certain exact conservation laws, as will be shown
below. However, for a system with p di8erent j orbits,
there will be 3(p—1)other eigenbosons with 7=0, which
can only be obtained by solving the linear equations
(48) and (53). From now on we shall designate these
eigenbosons as

A„,B„,C„; &&=1 (p—1).
The employment of conservation laws to get some of

the eigenbosons is very instructive, although it cannot,
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R= (const= 8)+X(+
1V'= (const= X)+¹+¹+

Then to order 0'" the commutator relation is

(55)

(56)

of course, give us anything beyond that derived from
the above eigenequations. %e vrant to discuss from this
viewpoint the eigenbosons related to the number and
isospin operators, and to Gnd out hovr the Hamiltonian
depends on them. To make this as simple and physical
as possible we take the (a,5) representation to coincide
with the (a,b), the usual (neutron, proton) description,
by choosing the isospin rotation angle g equal to zero.
Then, for example, 0= T',. %e shall use this special
choice throughout the remainder of the paper although
it could all be done more generaQy.

The exact conservation lavrs that vre want to use are
number and isospin conservation. These can be stated
as the commutator relations:

[H,1VJ=[P,T,]=[B,Tg]=0 (54a)

or, for the effective Hamiltonian,

[R,Xj=o; [x,f',)=0, [R,f'~)= wX, f'~. (54b)

How are these to be stated in the boson approximations
Let us begin vrith the 6rst of thes"---number con-

servation. The number operator has been written as a
sum of terms [Eq. (40)).The first term is a constant X,
the second, the linear term¹,is of order 0'", and the
third, the quadratic term¹,is of order i; higher terms
are dropped. The effective Hamiltonian 3!is similarly a
sum of terms; a constant, the quadratic terms of order
0, and neglected higher-order terms. Schematically vre
write these as

Terms of order 1 have been dropped. Then from Eq.
(45), used in order 0'", and recalling that X, is of order 0,

[R+1f/+) Ag TQ+ ~ (63)

In analogous fashion vre can also obtain the Hermitian
conjugate relation

[X+1TQ ]—+XgIN (64)

We immediately see, then, that f'& is proportional to
an eigenboson of K& with eigenenergy X,. The com-
mutator (f's+, PN ) can be evaluated from similar
arguments. Starting from the exact relation [T+,T )
=2f'„ the order 0 gives us

[TN+, TN )=2(D terms of T.)=2T. (65)

For the special case T~ 0, since E —& X» (lI,N—,X,)—& (XN+ 1sX,), and so X,~ 0. We see then from (64) that
the eigenenergy approaches zero. In fact, T& is the C
boson that takes on zero energy at T=0—as vras noted
above.

Having deduced these eigenbosons, we must next
explicitly display how 3'.& depends on them. The T&+,fI1 dependence is straightforward. The T&+/(2T)'",
fN /(2T)'" are normalized conjugate eigenbosons,
corresponding to the nonzero eigenvalue )„' they appear
in 3!~ just as do the J/0 A qjft discussed above. The
dependence is then

becomes, to order Q'" (which is all that we shall

require),

f'N+=g(2j+1)'I'[U»V»C"(j)+V»U»C(j)). (62)

[X1,%1)=0. +(X,/2T) f'N TN+. (66)
Since X2 differs from 3'.& by a constant, which of course
commutes vrith ¹,we have

[RNP1) =0. (58)

Thus, E» is an eigenboson corresponding to zero eigen-
energy.

Very similarly if we vrrite

T,= (const = T)+T,1+1',0+ ~ ~, (59)
we can deduce a second eigenboson of zero energy since

[RN, T,1]=0. (60)

These two eigenbosons commute vrith each other,
[P1,T,1)=0.

To use the third commutator relation vre vrrite out
1'+ in its boson expansion. Thus it is easily seen that T+,

T+=Z oJ-'b1-= Z(2j+&)'"

X[U„;V„et(j)+V„;U„t'-(j))

+Z[U-'U +(j)-V- V -(j)), (6&)

The display of the P1, f', 1 dependence is more com-
plicated because they are zero-energy eigenbosons, and
a more circumspect approach is necessary. "The form
of the dependence can, however, be easily understood on
general grounds. Since 3'.z must be quadratic in the
boson operators and Hermitian, and since P1 and P,1
are themselves Hermitian (and the only zero-energy
eigenbosons), the part of XN containing these eigen-
bosons can only have the form

~N+1 +MNT~ tl+1+~TTs1 ~ (67)

%e can go a little further on general grounds by noting
that in the effective Hamiltonian [Eq. (42)) there are no
terms coupling A and 8, A and C, or 8 and C bosons,
so that the A, B, and C parts are separately diagonaliz-
able. There can, then be no A, B cross terms. This turns
out to require that &or ——4coN, and (67) can be rewritten
in a more transparent form, separated into a neutron

"D. J. Thouless, Nucl. Phys. 22, 78 {1961); D. J. Thouless
and J. G. Valatia, ibid. 31, 211 (1962).
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term and a proton term: where

where

A

ppW x'+pp~, F,

pp~ = (ppr+ pp~r)/2 ~

N„r=-', (Ng+2T. g), N~r=-', (Ng —2T,g). (69b)

Q; (2j'+1)(U, '—V; ')U; 'V,"
F„=

4 Z~(2j+1)U ~'V.~'

g[Z~(2j+ 1) U-~' V-~'j[«-'+ 1j

(72b)

To determine the co's it is convenient to introduce the
variables canonically conjugate to N„& and E». These
variables, X'„and X„, are de6ned by the following
conditions:

[N„r,X )=1=[N~gg~g,

[N,&g,]=0= [N.&g„j,

[X&,~„j= 2a)„N„g,

[X~,g ~g = 2cp~N, g,

(Ma)

(70b)

(70c)

(70d)

&.=Z ~.s(B'(i )—BU)).
(71)

Only the combinations (A(j)—At(j)), (B(j)—Bt(j))
appear since the (A(j)+A~(j)), (B(j)+Bt(j)) com-

mute with N„~ and N~~. When (71) is inserted into the
commutator equations (70), a set of simultaneous

equations for the x's and the oi's is obtained. The results
of this calculation, which is outlined in Appendix A, are

*-~= L2(2j+I)]'"(~-/&-~)
X[(U„P—V„)I'„+U„;Vgj, (72a)

together with the requirement that all the other com-
mutators vanish, including those with nonhero-energy
eigenbosons. To fulfill these conditions explicitly, we

write X'„g~ as a linear superposition of the J=O A
and 8 bosons, respectively:

&-=z *-~(~'(j)—~ U))

together with a similar set for x~y, &o~ obtained by e~P.
If instead of working with (N„~,N~~) we want the alter-
native linear combinations (N~, T,~), the corresponding
conjugate bosons are

2„=-,'(X„+X„), X.=(X.—X„). (73)

We have thus determined explicitly that the part of
K~ that depends on the number and isospin bosons¹,T y, T~+, and T~ 1s

(ppn+ pp~) (4'+ Tsi )+ (&~—~~)NsTss

+ (Xr/2T) T~ Tg+. (74)

The remaining parts of X~, involving the other eigen-
bosons, commute with ¹~,T,j, T~+, and T~ . The
number and isospin dependence of X& is then displayed
completely in (74). This result is not in the least trans-
parent. Especially obscured are the simple isospin pro-
perties of the original Hamiltonian. We show in the
next section that we do have just the form resulting
from an isoscalar Hamiltonian.

VII. ISOSPIN PROPERTIES

To understand the isospin and number dependence
obtained in Eq. (74), let us go back and analyze the
expansion of a general isospin-invariant Hamiltonian
H. To make the number and isospin dependence clear,
we make explicit the dependence on these variables

H =H(N, T').

The expansion of H around the mean values of ¹ and
T' is given by the Taylor series

8 „8 1 8'
H(N T') =H(1V T')+ H(N T') (N N)+ H(N T—') (T' T')+ H(N T') (—N N)'— —

BS 8(T') 2 BN'.
8 8

+ H(N T') -(T' T')'+ —H(N T') (N N)(T' T')+. —(75)—
2 8(T')' BN 8(T')

Recall that we have already seen the expansion of ¹ in decreasing order of 0'~';
A

N N=Ng+Np+—
We can also see that on inserting the boson expansion in

T'= T,'+'p(T+T +T T~),
we have

T'=(T+T„+T„+)'+', (T~++ . )(Tg + )+2(T-g + )(Tg++ . ).
Thus, collecting terms according to orders of 0'~',

T'—T'=[2TT,gj+[2TT,p+T,g'+ ,(Tg+Tg +Tg Tg+)]+— (76)
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the first term on the right side being of order Dii', the second of order Q. The constant term H(N, T') can also be
expanded in powers of O'I'

H(N, T') =H4+Hi+
B4 is of order Q2, II~ of order Q.

Inserting these expansions and collecting according to orders of Q'j', we have, up to orde«,

BH4) „BII4
H(P, T') =H4+ iNi+

BN 3 B(T')

(B+4) BH4
2TT„+ H,+~ ~N,+ — (HATT.O+ T,i'+ ', (Ts+T-s +To Ts+)j-

k BN ] B(T')

which can be rearranged into the form

]. B'II4 O'H4
+ —- NP+

2 BN' B(T')'

B H4
2T'f', ii+ 2Tf',i-Ni, (78a)

BNB(T')

BH4 BH4 . „BH4)„„1O'H4
H(N, T') =H4+Hi+ T + (Ni+Na}+ 2T — i(T,i+T.o)+ — — Ni'

B(T') BN BT'i' 2 BN'

BII4 B II4 „BH4 „BII4
+2T' T.ii+2T ¹f'.i+ fa Ta+ (78b—)

B(T'} B(T')' BNB(T') B(T')

The variational energy E is de6ned LZq. (20)g as the expectation value of H in the ground-state variationai «nc-
tion, which is the boson-vacuum state. Ke have, then,

BII4 BH4 BII4 „„1O'H4«+E.=«+Hi+T + (Ni+No)+2T (T.i+T*o)+
B(T'} BN' BT' 2 BE'

BH4 B H4 B H4+ — +2T' — (f;i')+2T (NiT, i)+ (Ts Ts+). ('78c)
B(T') B(T')' BNB(T') B(T')

BE4 BE4
2T =X,.

BN B(T')
(79a)

Sy detailed calculations, outlined in Appendix A, we
see that

B'E4 B'E4 1 BE4= T' +— -=-,'(s& +re,),
BN' B(T')' 2 B(T')

T =
~ 07~—CO~

BNB(T')

P9b)

The various expectation values in the boson vacuum,
appearing in Eq. (78c), are not zero because the operator
products are not in normal form; they contribute terms
of order Q. Then E4=H4, but IIg di8ers from E2. In
fact, these order-Q correction terms are part of the
zero-point energy corrections.

This general result can now be applied to our pairing
problem. In any such variational problem, the 6rst
derivative of the energy with respect to a constrained
variable is equal to the corresponding Lagrange multi-
plier. Then, for general reasons, or by detailed calcula-
tions, we have

Then, to order Q,

H(N, T') = (E4+Ei)+X+(Pi+No)+&, (Tsi+ T*o)

+(~-+~,)(4Ni'+ T.i }+(~—~n)NiT*i
+0,/4T)(T.+T. +~. T+). --

Finally, to order Q,

X(P,T') =H(P, T')—X~X—X,T.
= (E4+Eg—X~N—X,T+ ', X,)+ (a) +a)„)-

X(iNi'+T i')+(~~ ~,)%T.i-
+(X,/2T) TIi 1'~+. (80)

This is in agreement with the operator equation (74).
In this way we have demonstrated how the isospin
invariance looks when expanded in orders Q'".

Having started with an isospin-invariant Harniltonian
and kept the isospin invariance in each order we have
ended up with all expressloil (78b) 'tllat ls llot manifestly
an isospin invariant. The reason for this, as we have
seen in detail, can be traced to the asymmetry in the ex-
pansions of T, as against f+, T . To this can also be
traced. the fact that P~+, Ts appear as conjugate
nonzero-energy bosons, while f',i enters as a zero-
energy boson. Actually they must aO be treated to-
gether. Discarding a piece, say r,j as a "spurious state, "
would ruin the invariance in the order considered.
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We have considered the f'+, 2', P„and P depend-
ences in the boson approximation and related these
dependences to derivatives of the variational energy
E(E,TP). Nothing further is really learned than is
already known from E, given as a function of Ã and 2'.
The 6rst derivatives are known on general grounds, to
be given by the Lagrange multipliers which are deter-
mined simultaneously with the determination of K
The second derivatives can, for a pairing Hamiltonian,
be written as functions of the already determined U, V's.

VIII. WAVE FUNCTION IN THE QUASIBOSON
APPROXIMATION

%e come now to consider the eigenstates of the
Hamiltonian rather than the effective Hamiltonian we
have worked with before. In the quasiboson approxima-

To know the energy to order 0 we need to know the
e6ect of¹p,T p.

Rather than handle this directly, it is convenient to
transform these XgEp X T p terms away and work with
the transformed Hamiltonian. That is, following Unna, "
we produce a transformation e'8 such that

e-~s(X+.¹+¹)e'sX+¹
e 's(T+ T.t+ T.p)e's= T+T,t.

(81)

The Hermitian operator S need be speci6ed only to its
leading term, order 0 '":

tion the Hamiltonian H~ is found by adding to 3'.~ the
additional terms

7irr¹+7,Ts=7w(E+Pr+Pp)+7, (T+T,t+ T,p) .

~=P'Z(f/ r
—1'.r')/4L2(2j+1)j'"U 21'. Ls(A'(J) —A(j))'+(A'(j) —A(j))& (j)+& (j)(A'(j)—A(j))j

+'Z(U; —1' ')/4L~(2j+1)j"'0„+',Z-(&'(j) —&(j))'+(&'(j)—&(j))& (j)+& (j)(&'(j)—&(j))j (8~)

Since the transformed efI'ective Hamiltonian X~ is
to order 0, the same as Xs, Eq. (42), the transformed
Hamiltonian P~'

i' —~-iSgg giS

is, to order 0,

Bs'=7iNS+X, T+Ks+7i~Nr+X, f'gr. (83)

This transformed boson Hamiltonian can now be dis-
cussed simply. It is diagonalized by the same eigen-
bosons that diagonalized 3'.& since they differ only by
the linear terms involving the boson operators ¹ and
'l, j, which are themselves among the eigenbosons.
Further, the leading corrections Bg' to the transformed
Hamiltonian

p=e 'sBe+'s Irs +H
can be shown by using the commutation rules (54a) to
commute with ¹~and T,~. Therefore, the eigenfunctions
of H&' are sufficiently accurate to give the energies to
order 9, even though there are operator terms in B~ of
order O'". Henceforth we will work with the trans-
formed problem.

The ground-state eigenfunction is especially interest-
ing. It is delned by the requirement that the conjugate
of the eigenbosons operative on this function, 0'~, make
it vanish. "Thus, in our example,

JWO

Assr(j, j')Fs ——Bzje(j,j')@s=C~sr(j, j')+s 0, (84a)——

J=O
A„+s=B„+s=C„es 0; p=1 ~ ~ (P—1),——(84b)

+14'B ~elks = ~Bus =0 (84c)
'~ R. A. Sorensen, Nucl. Phys. 25, 6N (T961); E. A. Sanderson,

Phys. Letters 19, 141 (1965); J. da Provide@cia, zbjd. 22, 478
(1966).

The condition (84a) is simply met by taking as 4's
factors independent of Aqsrt, BJsrt, and Cqs&t (JWO)
times the boson vacuum ~0s). The condition (84b)
and (84c) requires the form

Xexpf ——,
' g g; &'(j)&'(j')j

X pL.—'Z g "C'(j)C'(j')j(0 ).

Inserting the forms of the A, Eq. (45) into (84b) and
(84c), commuting the A's through and matching the
coefIIicients of the At leads to the equations for the g~:

Q(g ., &+)+g ., &-))g,&= (g &+) g &-)) ~ (86)

similar equations follow for the g~, g& by replacing the
(a&+&,a& &) by (b&+&,fi& &), and. (c&+&,c& &). Some of these
requirements have special physical significance. The
conditions ErPs =0, T,riPs Owould make ——its an eigen-
function of ¹ and 1, up to the order considered here.
With Ts+fs 0, these would —a—lso make gs an eigen-
function of T' to this order.

The solution of these equations is straightforward.
Even though there are zero-energy eigenbosons, the
Eqs. (86) are still solvable, and the g,y~ are well be-
haved. However, it can be shown that the resulting
function fs has an undefined norm; the series formed
for the norm by expanding each of the 4'z in powers of
the exponent can be shown to diverge as does

The diKculty comes from the fact that, for a zero-
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where the f~, f, are taken so that %B is a bound func-
tion. %~ is, then, not an eigenfunction of the ¹'y and
T,~, but rather a packet that can be chosen. to give the
desired expectation values to the operators that enter.
To the order of interest here, these are ¹~,¹ ', T,j, and.
T,~'. Once having chosen the expectation values, it is
assured that excited states formed by operating on
4B with nonzero-energy boson operators will have the
same expectation values as does the ground state, since
these eigenbosons commute with X'~, X',. These condi-
tions, together with the relation fB+fB 0, 6x ——the
expectation value of f'
(@BI~'I +B&=(+BI(~'+~) I @B&=2'(2'+ 1) (88a)

States formed by operating on %B with any of the non-
zero-energy bosons except fB will have the same ex-
pectation value of 1'.The boson TB changes T by one
unit; that is, to the order considered in this paper,

(C(~B-@B-)/V'(22')]
I ~'IL~B-@B-/4(2T)]&

=(1/2T)(4
i
Tg+T'TB i4 &

= (4B
~
f'~ +B&+2T, (88b)

as can be seen by using [I'B+,f']=2TTB+ together
with TB+ kB=0 and Eq. (65).

In practical work, we can see that applying these
procedures to the H(P, 2') of (78b), replacing the
operator dependences by their e ectation values, is
equivalent to dropping the P~, .~ dependence and
keeping only the constant term and that dependent on
fB—) fB+~

BH4 8B4 „
+4+fI2+ T + 2B 2B+~—

~(T') ~(2')

Applied to the actual Hamiltonian JIB', Eq. (83) with
the full boson dependence explicit, these prescriptions
can be simply stated: drop the linear terms XzP&+)„T,&
and the terms quadratic in ¹~and T,~. Ke will give a
detailed illustration when we discuss the degenerate
case in the next section.

We have so far not made explicit whether we are
talking about even-even or odd-odd nuclei or both.
This simple piece of information is, of course, contained
in the wave function, and we will now proceed to erect a
cumbersome machine to extract it. We begin by noting
a symmetry of the problem. Under the operation R(a)
defined by

+)m~ —@pm' @pm ~ —~jea. t (90a)

energy solution, there is no bound. on the corresponding
"coordinate" or conjugate boson.

To avoid this divcl gencc problem for the ¹y T y

zero-energy bosons that we have to deal with, we use
instead of 0'~,

4B=fN(XN) f.'(X.)@B,

or, equivalently,

Cjsrsp Cjj~ + +jm p
. t (9ob)

the Hamiltonian remains invariant. It also remains in-
variant under the similarly deaned R(b). Then, any
cigenfunction of H must be simultaneously an eigen-
function of R(a) and. of R(b);

R(e)@=a@, R(f)@=+@. (91)

The eveness or oddness under R(a) corresponds to the
eveness or oddness of the number of a particles;
snnllally for R(b) ~ Tlm BCS wave function Eq. (21)
is even under both R(e) and R(b).

From the fact that the operator combinations Qt,
8, St, 8, (32a) are even under each of these trans-
formations and Ct, 6 are odd, we see that the boson
operators At, A, 8~, 8 are even while C~,c are odd. The
correlated ground-state wave function O'B (85), as well
as 4B (87), is then clearly even under R(a) and under
R(b), and thus corresponds to an even-even system.
The excited-state wave functions

~~~'(i i')+B, f3~~'(ii')+B' j j' ~&0
92

A„%B, 8„%B,P,=1 (P—1),
are similarly even and thus correspond to excited states
of the even-even system. Contrastingly,

Cg3rt+B, C„t+B, f'B O'B (93)

are odd under the transformations, and thus do not
belong in the even-even system to which we conine
our attention. However, the states

(94)
Cpj's'(j,j')?'B +B; JWO,

C„tfB 4B, P=1 ('P—1), J=o,
are even-even excited states. %e can immediately see
that the states referred to in (92) have the same isospin
2 as the ground s'tate, while those in (94) have lsospln
7+1

In summary, we have solved for the states of an
even-even system, including those with isospin greater
than that of the ground-state value, T= T,. Since the
Hamiltonian is an isoscalar we have also solved for the
spectrum of odd-odd nuclei with the same isospins. We
omit the discussion of the wave functions of the
neighboring odd-odd systems which can be obtained by
suitable operati. ons with the isospin operators on the
even-even wave functions.

IX. DEGENERATE CASE: ENERGY SPECTRUM

As an illustration of these methods we consider the
special case of degenerate single-particle orbitals, e;=0.

The BCS equations (16) are easily solved the
(U, V)'s are independent of the orbit index j since all
the e s are equal, and the gap parameter, for the
constant-6 case considered herc, is also j-independent.
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The constraints immediately give us

V„'= (N+2T)/40, U '= (40—N —2T)/40,
V„'= (N—2T)/4Q, U '= (4Q N+—2T)/40,

0=2(j+k)

from which we calculate

(95a)

It should be noted that in calculating the (UV)'s we
have used the equations (16) which omit the Hartree-
Fock renormalizations of the single-particle energies.
However, their inclusion will not produce a change in
(95c), either in the leading term which is of order 0' or
the second term which is of order Q. The exact energy
for an even-even nucleus with T,= T is well known":

(95b)

E„=E„=GQ, XN=G(sN —0), X,=2GT,
6„'=~~G'(N+2T)(40 —N—2T),
A~'= ~iG'(N —2T)(4Q—N+2T) .

The corresponding energy is

E=——,'GLN(40 —N) —4T']—(G/2Q) (-'N'+ T') . (95c)

—xiGLN(40 —N) —4T']—G(-,'N —T) . (96)

The two expressions (95c) and (96) agree, as expected,
in the order-0' but not in the order-0 term.

The Hamiltonian in the boson approximation H~'
[Kq. (83)] is

=E+~i&(N(+~ T i+2GQ Zl LA J&(r (ji ')A, &(r(i Z')+B,„t(ij ') B,„(jj ')]+2GQ Q C,&(rt(j,j')
J,M, j& j',J&0 JM, j,j',J&0

XCJ &tr(g,g')+ {2GQp At(j )A (j)+GU~'V~ p(2 j+1)'('(2j +1)'~'t A((I )At(I ')+A(j')A (j)]—G(U '+ V ')

X P(2j+1)' 2(2j'+1)' 'At(j)A( j')}+{2GQP Bt(j)B(j)+GU~'V„' P(2j+1)'('(2j'+1)'('
PIP j j'

&& LB'U)B'U')+B(j')BU)]—G(U.'+ V.')&(2j+1)'"(2j'+ 1)'"B'(j)B(j')}

and

+{GU-V-U~V. E K'(i)C'V')+C(j')C(i)] G(U-'U'+V—-'V')Z C'(j)C(j')}; (97)
Std i7 l2

Ni N„i+N„i U„——V„g t 2(2j+——1)]i(~(At(g)+A (j))+U~V~ P L2(2j+I)]'~2(Bt(j)+B(j))
(98)

T»= i2(N~i —N„i) = ~U„V p L2(2j+I)]'&2(At(j)+A (j))—AU„V~ p L2(2j+I)]'(2(Bt(j)+B(j)).

The eigenbosons are easily obtained. As pointed out
before, the Hamiltonian is separable into parts depend-
ent on A alone, 8 alone, and C alone. The J/0 eigen-
bosons are trivially obtained as in Kq. (44). There are
as many J=O A, 8, C eigenbosons as there are j
orbits, say p. We discuss the A bosons first.

Ke know on general grounds that one of these A
eigenbosons is the zero-energy eigenboson X„~. Its
conjugate boson is X'„.The other (P—1) eigenbosons are
simply derived from Kq. (48). The eigenenergies are

8„-„=2GQ, p=1, ,(p —1) . (99a)

Since these bosons are degenerate, the corresponding
coe%cients u»&+) are not uniquely specified except for
the requirements

.(+&=(r .(—& Q(2j+1) I p». (+)=0
(99b)

~ g .(+)g, .(+)—gl49

for our purposes below this suffices. The conditions of
(99b) amount to a statement of orthogonality between
the nonzero-energy bosons and 1V'„i and X'„.

Similarly, we have for the 8 bosons the zero-energy
1V„i and its conjugate X'„. The (p —1) nonzero-energy
bosons are speci6ed by

8+„=2GQ, b»(+&=b»( &) P(2j+1—)"'b»(+&=0,

(100)
Q b„+'b„+'=b„,„, = i, ,(p —1) .

The equation for the C bosons (53) also admits of
ready solution. One of these has the eigenenergy 2GT
and is just T& . The others are given by conditions that
parallel (93) and. (94);

bc„=2GQt c»'+ =c»' ', P(2j+1)"'c»'+'=0,
(101)

p c„,+'c„.;+'=b„,„, p=1, ,(p —1).

In order to put II~' into diagonal form we must
write the original set of bosons A, 8, C in terms of the

'6 A. de Shalit and I. Talmi, 37Nclear Shell Theory (Academic
Press Inc., New York, 1963), Appendix.



ISOSP IN INVARIANCE

eigenbosons together with the conjugate bosons 2,X',.
This can be easily accomplished. The J&0 parts are
already in diagonal form. For the J=O parts a little
manipulation gives us

At(j) = p a;&+&2 t+(2(2j+1)]'~'
p~l

XL(8V.V„n)-ZV„,+V.VA„j, (1O2a)

B'(j)= Z 4'+'B'+L2(2j+1)3"'
p~l

&& L(8U.v.o)-'P„+v,v@,j, (102b)
y—I

C'(j) = & ~.~"'C.'+L(2j+ 1)IT)'"

)((V U~j~=U„V~T~+) . (102c)

Ke have then, finally,

xGLÃ(40 X) 4Tmj G(ace T)+lb ~P,+X Z +xGPP+GT" P+Gf ~ T

y—1

+2GQ Q (A„tA„+B„tB„+C„tC„)+2GQ
JAO, j& j', JM

E~~~'(ii ')A~~(i,i ')+B~~'Ui ')B~~(i Rj
+2GQ g Cg~t(j, j')Cg~(j,j'). (103)

Jy, j', j~,J,M

Ke can regard this result with great satisfaction. The
coefficients of the PP, T,P and (Ts Ts+) terms agree
with the results of the general formulas, Eqs. (72) and
(74), applied to this special case. Following the pre-
scription outlined in the previous section, we drop these
and the linear terms, and associate E and T with the
eigenvalues of the corresponding physical variables to
all orders. The ground-state energy, the constant term
in Kq. (103),which is good up to and including order 0,
agrees with the exact ground-state energy equation (96).

The excited-state energies also show interesting
agreements with the exact values. " In terms of the
usual seniority S, the reduced isospin t, and the total
isospin T', the excitation energy for an even-even
nucleus with ground-state T= T, is

G(T'(T'+1) T(T+1)+S—n i(~+1)
—-'S'+ 2S) . (104)

For low-lying states, —,'S and t are small integers; hence
to order 0, which is all we need for comparison, the
excitation energy is

GLT'(T'+1) —T(T+1.)&+-,'s(2Gn). (ios)

%e can now compare the exact states'~ ' for the lower-
lying excitations with those obtained from the boson
approximation. The lowest-lying excitations have 5=2,
t=i, P= 7, so their excitation energy is 2GQ. There
are two such states for every (j,j'), j (j' coupled to
angular momentum J and projection M. For j=j',
J&0, there are two states for every orbit j, for J even
only; there are no states for J odd. For J=O, there are
2(p —1) states. These states are to be compared with
the one-boson excitations given in Eq. (92), which for
the degenerate case, all have the same excitation energy,
2GQ. The next set of excited states have 5=2 and
T'= T+1, and so have an excitation energy 2GT+2GQ

"K. T. Hecht, Nucl. Phys. 63, 177 {1965);Phys. Rev. 139,
3794 (1965).

M. Ichimura, Progr. Theoret. Phys. {Kyoto) 33, 215 {1965);
J. N. Ginocchio, Nucl. Phys. 74, 321 (1965).

to order Q. For JWO there is one state for every (j,j')
coupled to angular momentum J and projection M.
For J=o, there are (p —1) states. These states are to
be compared with the boson excitations given in
Eq. (94), which, for the degenerate case, all have ex-
citation energy 2GT+2GQ. Thus we see agreement in
the low-lying states both in excitation energy and
angular momentum structure of the states.

X. DEGENERATE-CASE CORRELATED GROUND-
STATE WAVE FUNCTION

In this 6nal section we examine the correlations in-
troduced by the quasiboson approximation into the
ground-state wave function %~ and compare them with
those in the exact solution. Because our main interest
has been the isospin problem we examine only the
neutron-proton correlations.

As we have already noted in the general discussion in
Sec. VIII, in the pairing-force problem, the eigen-
bosons with J&0 do not produce any ground-state
correlations; J/0 bosons do not interact via the pairing
force. There are two classes of J=0 eigenbosons. There
are the A„, B„,C„, p=i, ~ ~ ~, (p—1), Eqs. (99)-(101),
which do not mix the bosons with their conjugates;
that is,

A„=P.„,&+&A(j), B„=gb„,~+&B(j),

C„=Q „;&+&C(j), =1, ,(p—1). (106)

Then A„, B„,C„,p= 1, ~, (p—1), acting on the boson
vacuum vanish, so that %~ di6ers from the boson
vacuum only by factors that commute with these
bosons. The other class of J=O eigenbosons consists of¹,T,», and T~+. The¹», T.» correlations have already
been discussed in terms of packets, Eqs. (85) and, (87);
in the degenerate case the gy", gy& of Kq. (85) are
given by L(2j+1)(2j'+1)J'I'/2Q. These correlation
factors commute with the other eigenbosons. The cor-
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A

relations related to the Ts+ are what we wish to discuss vacuum, and the correlated-pair-creation operators are

more fully.
A

The operator. T))+ [Eq. (62)] in the degenerate case is

Ta+= (20)'"(U V~Cot+ V U„Co), (107a)
). P( 1)j-mb. tb. t (110)

where we have introduced as notation S t=xg( —1))'-"a tb

(2J+I))/2 .

Co=+ C(J) .
(20)'lo

exp(-pg'CotCot) . (108a)

The condition (fJ)+%'~= 0) 6xes the constant g' as

The ~ot can be seen to commute with the C„,y = 1,
(P—1), as well as with all the other eigenbosons. Then
the correlation factor in %s [Eq. (85)] can only involve
the Cot, taking the form

Thep r' gH milto
' '

the d ge t '
j t

the interaction between these correlated pairs. In fact,
from Eq. (1) it can be seen immediately that it is

H= —2G(S tS +SOS„+2S,tS „). (111)

The factors in %. [Eq. (109)]have simple interpreta-
tions. The factor [S„tS„t—(S„„t)o]is a correlated four-

nucleon cluster with total isospin zero, as well as zero
angular momentum. The (S„t)~ are the two nucleon

pairs that carry all the isospin.
We next manipulate the ()!, into a form that will

permit a more direct comparison with the boson result.
This desired form is

g'=U V,/V U„. (108b)
cg(0&)y (S t)$(N+Rr) (S~t)j(N-Rr)

) 0) (112)

As an alternative procedure for 6nding the correlation
factor, we could have straightforwardly solved the set of
simultaneous linear equations for the g;; ' like those
shown in (86); the result is, of course, identical. Having
obtained the correlation factor in either way, we want to
compare it with the exact ground-state solution.

The exact ground-state wave function for the de-

generate case can be written -in the compact form'~

((!.(T, T.= T)
=K[S tS t—(S t)o]&(~ 'r)(S t)rj0) (109)

where O~ is an operator. To d.o this write @,in expanded
form

(—1)*)pr-~r)
@.= K

I-o s!f$(S—2T)—z]!
y (S t) & (S t) I(&+o&)—s(S t) t(N—&&)—i

~
0) (113)

Introducing the conjugate operators S, S„, and S ~,
and noting the commutation relations

[S„,S„t]= (0—8„), [S„,S~t]= (0—8,),
[S,S t]=0= [S„,S

(114)

The K is a normalization constant, 10) is the particle we can rewrite 4, as

I(N—2T) ( I)'Po(A)+2T) —s]![0——,'(X+2T)]![0—x~(X—2T)]!

s!P(g+2T)]![—(A)' —2T)]![0—x(X/2T)+ s]![0—x(AT —2T)+ ]!
y(S t)I(N+o&)(S t)t(&-o&) (0) (115)

which is the desired form; the factor in the curly bracket is the operator 0+. The factor

(S t)$(N+2T)(S t)I{M—RF) ~0)

which is a product of a neutron part and a proton part, is an exact eigenfunction of (H„+H~). The BCS solution

for this Hamiltonian (H„+H„) when projected for neutron number x'(A)+2T) and proton number x'(X—2T) is

just equal to this factor. The quasiboson approximation to the unprojected BCS solution improves it and brings it
closer to the exact solution. For our purposes and to our order, we can regard this factor as the product BCS solu-

tion with some A and 8 correlation factors. The C correlations, those associated with 1~+, are contained in the

6rst factor 0. .
To compare with the previous analysis, HCS and quasiboson, we write the operators in O~ in terms of the quasi-
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particle operators. Using the notation of Kq. (32) for the combinations of bilinear operators, we have

pj+1y 1/o 2j+1y 1/o

S„,t=(-;Q) ~ U„U„PI I
et(j)-V.V, P —

I e(j) —;U.V„P +(j)--'.U.V. Z (j),
2Q &

2j+1q 1/o
~2j+p 1/o

~.=«.v.+Q/ U. Z I ~(j)-V. ZI
4Q ) & 4Q )

/2j+1y 1/2 P~+1y1/2
~.=QU.V.+Q"' U.'&I I +(j)—Vn'Zl I +'(j) —UP'. Z&s(j).

E 4Q &
' ; E 4Q /

We keep only the leading term of the quasiboson approximation to each of the above quantities. This amounts to
discarding everything but the first terms in each expression (which are clearly of smaller order in Q) and replacing

et(j), e(j) by the bosons Ct(j), C(j):

& y~-+(oQ)"'(U UyGot-V V~Co), &, -+QU V, &,-+QU, V„.

(—1.) I
-', (X+2m) —s)!LQ—', (N+2T))!I Q—,'(X—2r)]!

*-o 2*s!I,(E+2T)]!Q(E—2T))!LQ—-'(E+2T)+s)!LQ—-'(E—22')+ )!
&&I C,t—(V.V,/U. U,)C,]". (»g)

This form for O~ can be considerably simplified. Thus in the ratio of factorials

Po(&+22') —«]!/Lo(&+2&)]!= 4(&+2&)L-'(&+22')—1]" H(&+2&)—s+1]} '
=

I o'(X+2T)]-'I 1+(terms of order s'/Q)),

the terms of order s'/Q can be shown to lead to a con-
tribution of order 1/Q relative to the leading term, and.

so can be dropped. The reason is that the s's are really
limited in the sum to order 0' by the weighting factors.
To prove the point most simply we can use the form we

shall presently obtain, converting the sum to an integral,
and easily examine the 0 dependence of this leading
terM. versus the terms that were dropped. Sy siIIlllar

reasoning the sum in (118) can be extended to infinity.
Then, using the expressions for the U's and V's

I Kq.
(95a)),

ignoring terms in normal order that contain Co's. Then

0= — Q f(k)LCo']'",
Po(&—2&)]!"-o

(121a)

where
1 ~

—2V.V,)' (2k)I
f(k) =

I I Z — (o V~)" (121b)
(2k)!5 U U~ / ~-&s!(s—k)!

These f(k) have simple properties. "By"direct examina-

tion it can be shown that.

1 1/ UU)*
Z —

I

—2 I ('.v.)'*
Po(cV—2T)) l I-o s!~ V„VP f(k+1)=

I If(&)
(k+1) 2V„U~

(122a)

V V„
X Cot— o . (119)

U„U~

%e rewrite this expression in normal form for the
Cot, Co. Since O~ acts on the Co-boson vacuum, only the
normal terms involving all creation operators will con-
tribute. It can easily seen be that

V„Vy &'* ~ (2k)!
Co' — -o

U U~, o-o (s—k)!(2k)!
I-o

I LCo')", (120)! 2U.U, &

so that
1

/
—U.V„)'

f(k)=—,I I f(0).
k!E2V.U, &

(122b)

The quantity f(0) is a convergent series that we do not
evaluate because it wiH be absorbed into the normaliza-

tion constant. Finally,

1 / —U.V,)'
f(0)E —

I

—

I
LC")"

P(E—2T)]! &-o k! &2V U~&

1 ( 1UV„
f(0) expI — ~otCot

I . (123)
PP -22))! & 2 V.U.



J. N. GI NOCCHIO AN D J. WENESER

The resemblance to the quasiboson result LEq. (108)J
is unmistakable.

Ke have thus shown that, to leading order, the
neutron-proton correlations in the exact wave function
are the same as those introduced by the quasiboson
approximation.

neutron wave function and a BCS-proton wave func-
tion. Thus the BCS energy is the sum of a BCS-neutron

energy and BCS-proton energy:

E4(X,T) = E4&
"&(1V„)+E4&»(X,) .

Since we also have a separation in variables,
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APPENDIX

We here carry out the solution of the simultaneous
equations (70a)—(70d) for the conjugate boson x„
and for co .

Equation (70c) requires that we equate the
commutator

L3's,&&-j=2 Z E.~&.~L~'(j)+~(j)j

fV=E +X~,
T=-,'(JV„X„),—

the first derivatives are separable;

8E, 1 8E&-& 8E&»q+-
81K 2 81V 8A „&

8E4 1 8E4&"& 8E4&»&

8T' 2 8%„8'�„i
as are also the second derivatives;

(A9)

(A10)

&LQ(2j+1)g'»(U„'—V„')PAt(g)+A(j) j, (A1)

with

2(o„N„&=2(u„+ t 2(2j+1)j"'
XU;V;I At(j)+A(j) j. (A2)

Matching coefTicients of (At(j)+A(j)), we obtain

X.i = t.2(2j+I)j'"(~-/E-~)
Xtr(U„, —V„, )+U„;V„;1, (A3)

where

B E4 1 BE4+-
8(T')' 2 8(T')

E4= T'
8(X)'

B2g4(~)-
(A11)

4 8(N )' 8(E~)'

B2jV f —B2jV4(n) B2+4(n)-
T

81V8(T2) 4 8(X„)2 8(AT„)'

Our problem is then completely reduced to solving for
the second derivative of the BCS energy for one kind
of particle, say for neutrons.

The neutron BCS energy is

(A4)

Substituting (A3) into (A4) and using the identities

E4&"&=+ e;(2j+1)V '—6 '/2G.

The derivative with respect to E is

(A12)

(U-P V-P) =1 4U-~'V— —
2U.;Vs, =A./Enr,

BjV4(n)

(AS)
n

BV;
e,(2j+1)2V,

BS

along with the gap equation (34b), we obtain for I" —A„Q(2j+1) U„;V„,. (A13)
BE„

P; (2j'+ 1)(U.; —V.,")U.,' V.;.

4Z~(2j+I)U ~'V i'
(A6) The normalization condition (U„J2+V„=1)gives us

The normalization equation (70a) gives us a result
for or '.

BU;V,

&0 =A /8/+(2j+1)U V j(41' '+1). (A7) which, using the BCS condition (16), becomes

Similar results hold for X~, &o~, with t«-+ p.
We now move on to relating the co's to the second

derivatives of the variational energy as given in Eq.
(79b). Our BCS wave function is a product of a BCS-

8U yV„; (e;—l&»&
—g'X,) 8V;

=2 V,
BE BE„

Substituting into (A13), the energy derivative is just
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the neutron Lagrange multiplier defined by 'A =AN+ —2X:

gjv4(&) BV;
—=X„P(2j+1)2V,

8E;
(A14)

where we have used the derivative of the number

equation

8X /8X„and 86 /81V„:

(e;—)t.)
- 8~. — (2j+1)- 8~„

Z(2j+1)-
E„;3 gg„~' E„;~ 9Ã„

(2j+1)- 8~.
rg r

E„,' 8S„
(A16)

(e;—X ) 86„
+-'&- Z(»+1)j E„,3 9g„8zV~ 8E»=Q(2j+1)2

BX 8Ã„

ax„a'z &"&

-= 2M' &

O'E4&"& N.

8E

8Ã BX„'
(A17)

These two equations are easily solved, a,nd using the
identities in (AS), can be written simply in terms of-"-'"

aX.
"" ---d -:

Solving for this derivative is facilitated by using the
expressions for the U„;, V„;given in Eq. (34a) in terms
of the gap h„and ) . Then, talking the derivative of the

gap equation (34b) and the equation for the number of
neutrons (A15), we have two equations linear in

Similar equations hold for the derivatives of E4&»

with respect to E~, with of course, ri-+ p and X, -+ —),,
Using these results in Eq. (A11), we finally arrive at
the expressions in (79b).
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Exponentially Velocity-Dependent Potential in the Shell Model of 0"
P. S. GANAS

Daily Telegraph Theoretical DePartment, School of Physks, Uwieersity of Sydney,
Sydney, Sam Sogth lVales, ANstralia
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The low-lying energy levels of 0'8 are calculated in the harmonic-oscillator shell model using as residual
interaction the exponentially velocity-dependent singlet-even potential of Tabakin and Davies in combina=
tion with the triplet-odd potential of Green. The main result is that the energy levels so calculated agree
closely with the energy levels of Kuo and Brown calculated without core polarization from the hard-core
Hamada-Johnston nucleon-nucleon potential.

I. INTRODUCTIOH

'HE suggestion originally made by Peierls' that
the hard core lD DucleoIl-DucleoD poteDtlals IDay

be replaced. by a velocity-dependent potential has re-
ceived much attention over the years. The most exten-
sively discussed velocity-dependent potentials are ones
which have a quadratic dependence on the relative
momentum:

V (r,p) = —Vi(r)+p'Ve(r)+ V2(r) p'.

A nucleon-nucleon potential of this form was found. to

*Address after July 3l: Physics Department, University of
Florida, Gainesville, Fla.

~ R. E. Peierls, in Proceedings of the Iwternational Cottference
ol ENclear Strlctlre, Eingstoe, CarIada, 20, edited by D. A.
Bromley and E. W. Vogt (North-Holland Publishing Co., Amster-
dam, iMO), p. 7.

be consistent with the nucleon-nucleon scattering data.
Green, ' for example, showed that the singlet and triplet
phase shifts in the region 100—300 MeV as well as the
low-energy data could be 6tted well by several sets of
values of the potential parameters. Using the potentials
so determined he calculated the energy per particle of
inlnite nuclear matter applying perturbation theory;
he found that the convergence rate was relatively slow.
The applicability of Green's potentials in the nuclear
shell model has been investigated by Ganas and Mc-
Kellar, ' referred to hereafter as GM. They Gnd that, in
considering the energy spectra of 0"and I'" the ground
state as calculated from a velocity-dependent potential

~ A. M. Green, Nucl. Phys. 33, 218 (1962).' P. S. Ganas and B. H. J. McKellar, Nucl. Phys. (to be pub-
lished); P. S. Gauss, thesis, University of Sydney, 1967 (un-
published).


