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Theory of Two-Photon Spectroscopy in Solids*
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The coeKcient of absorption of two photons is calculated for a two-band model of a solid. The frequency
and polarization dependence is evaluated for the case that one photon (laser) frequency is 6xed while the
second is varied. Wannier exciton states are explicitly included in both the intermediate and anal states.
Depending upon the symmetry of the two energy bands, the 6nal state may either be an exciton s, p, or d
state. All three cases have diferent frequency and polarization dependences. The 6nal formulas for the
matrix element are complicated, and approximate formulas are given which are useful for many applications.
It is shown that some of the two-photon spectroscopy experiments in semiconductors and alkali halides
which have been reported so far can be explained by these calculations.

I. INTRODUCTIOH

'WO-PHOTON spectroscopy is emerging as a
useful complement to one-photon optics in solid-

state physics. In two-photon experiments, the electronic
state changes its energy by the sum of the two photon
energies, and the solid does not absorb at either of the
individual frequencies. If one of the photons is from a
laser, so that its energy is 6xed, the other photon fre-
quency can be varied to obtain a spectrum. In order to
prevent the absorption of two laser photons, the laser
energy is selected to be less than half of the energy gap
of the insulator which is being studied. Since the
pioneering experiment of Hopleld and Worlock' on KI
and CsI, these measurements have been performed on
other alkali halides, ' T1C1,' Cd3, 4 ZnS, 4 CuCl, ' and
anthracene. '

There have been several theoretical calculations of
two-photon absorption. 7 ~ In mpst pf these, a
three-band model is assumed for the solid. The absorp-
tion of the 6rst photon lifts an electron from the valence
band to a virtual state in some higher-lying conduction
band. The absorption of the second photon takes the
electron to its 6nal state in another conduction band.
The conduction band which serves as an intermediate
state is usually considered to be at a higher energy than
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the Gnal state, which has experimentally been the direct
conduction band. Another three-band process worth
mentioning involves a lower valence band as an inter-
mediate state. Here the Grst photon takes an electron
from a deep valence band to the final conduction band.
The second photon ills this deep-valence-band hole
with an electron from the top valence band.

Louden' pointed out that the electronic transition
must produce an exciton state. If symmetry allows all
of the interband matrix elements, then, as in the one-
photon transition, the absorption coefEcient is propor-
tional to (fz(r =0)

~

', where fz is the hydrogenic relative
wave function of the exciton. The ~gq(0) ~' behavior
strongly inQuences the character of the absorption

coefficient

at the interb and threshold. Louden's
approach has been adopted in most subsequent theo-
retical discussions.

First we note that one does not need to include three
bands in discussing the two-photon absorption. Instead,
one can discuss the process entirely within a two-band
model. '" The first photon creates a virtual exciton
composed of electrons and holes from these two bands,
The second photon changes the system from the inter-
mediate exciton state to the anal exciton state. In both
the two- and three-band models the Gnal state is an
exciton. In our calculations for the two-band model we
also include exciton eGect in the intermediate state.
Exciton effects in the intermediate state have been
omitted from previous calculations using the three-band
model, and this may affect the accuracy of these
calculations.

The present investigation calculates two-photon ab-
sorption using the two-band model. Transitions which
occur in real solids will reach the 6nal state by using
every path through every intermediate which is avail-
able. whether the important process involves two
bands, three bands, or any other path, depends upon
the parameters of the material. Ke feel that the two-
band process is an important one, and deserving of
consideration. Furthermore, in Sec. IV, where we
compare our results to the experiments, we show that
many of the past two-photon experiments can be
explained by the two-band model.
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The two-band and three-band models not only differ
in the number of bands involved in the excitation
process, but they also predict different spectral depen-
dences for the absorption coef6cient. In the two-band
model, the final exciton may be in an s, p, or d state.
Indeed, in some of the experiments which have been
done, all three types were probably being excited. The
spectral dependences of s, p, and d excitons are all quite
different. They also have different dependences upon
the angle of polarization of the photons.

Even for s-state excitons, the two-band and three-
band models predict difIerent spectral shapes. In the
two-band case, the absorption coeKcient is rot just
proportional to lf„(0) l

~. The actual absorption coeK-
cient has a far more complicated dependence upon the
hydrogenic quantum number e.

The absorption coefficients for s, p, and d states are
calculated in Secs. II and III. The actual results are
mathematically complicated. In fact, the actual matrix
element requires a simple computer program for exact
evaluation. In order to make the results more useful,
some approximate formulas are presented which are
reasonably accurate in some cases. In fact, these approx-
imate formulas were given earlier. " The important
parameter is

»,'= Eg/(Eg A(u ), —

where E& and Eg are the exciton binding energy and
the direct interband energy gap, respectively. There
are two values of I&: in the problem, one for each photon
energy (A&oi and Acv2 give Ki »2). If both values of » ale
"smalV' (» (0.2), the approximate formulas work quite
well. When» is "large" (» ~0.5), the approximate
formulas adequately give the magnitude of the absorp-
tion, but are poor for predicting the shape.

Inoue and Toyozawa" pointed out the complicated
polarization dependence of exciton s-state absorption
in two-photon spectroscopy. Since each transition with
a different type of group symmetry has a unique
polarization dependence, this enables one to experi-
mentally deduce the particular transition involved.
This important idea has already been exploited by
Frohlich et al. in studying CuCl. This polarization
dependence, which can be deduced from group-
theoretical arguments, is the same for the two-band and
three-band models. We have calculated the polarization
dependence of p and d exciton states for cubic crystals.
Our calculation of the polarization dependence of p
states explained the dependence which was observed in
the alkali halides. "An extended comparison between
theory and experiment is given in Sec. IV.

IL ALLOWED DIPOLE TRAHSITIO5'S:
P-STATE EXCITONS

First we consider the case where the conduction-band
to valence-band dipole transition is allowed. In cubic

"G.D. Mahan, Phys. Rev. Letters 20, 332 (1968).

where Sy is the 6nal density of states. Ke take ko~ to
be the 6xed laser energy, while Aou2 is the variable second
frequency. The matrix element V,J between the initial
and 6nal states is

&fl si 111& il ~~ 11~&
fi

rS c i Zi —Z~ —fEM2

where A(1) is the vector potential for photons A~i, and
e~ is the polarization vector. For this two-step process,
we have included the sum over intermediate states

l l&

of energy Pi After we. have evaluated (2.2) and (2.1)
we will wish to calculate the attenuation constant 0.2 of
the second optical beam

a2= 2(Wn2/cE2), (2.3)

where e2 and E2 are the refraction index and number
density of the photon A~2. The attenuation constant 0.2
will be proportional to the power Pi=/i%&sic/Vrli in
the laser beam.

The two kinds of matrix elements which enter (2.2)
are easy to evaluate. It is the sum over intermediate
states which makes the calculation dBBcult. The initial
state has no excitons, and we set E;=0. The inter-
mediate states are exciton states with E=Eg+E„,p.

E,o is the exciton energy for hydrogenic state rs. The
exciton center-of-mass wave vector is set equal to zero
since it is just of the order of the photon wave vectors.
The 6rst matrix element is evaluated following the
procedure outlined by Klliott. "

(2 4)

The relative wave function fq(0) is evaluated at r=0,
and the matrix element (cl pie) is evaluated between
Sloch functions. We assume that the exciton states are
of the Wannier type. The absorption of the second
photon changes the exciton states, and the second
matrix element reduces to an integral between exciton

~' R. J. Elliott, Phys. Rev. 108, 1384 (1957).

crystals in which parity is a valid concept, the absorp-
tion of two photons requires the initial and 6nal elec-
tronic states to have the same parity. The allowed con-
duction-band to valence-band transition involves a
parity change. Therefore, the final Wannier exciton
state must have odd parity in order to keep the parity
change even. As will be shown below, the final exciton
is in a p state.

The basic transition probability for the two-quantum
process is

(2.1)
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hydrogenic wave functions: A. p-Exciton Bound States

The bound states of the exciton are given by the usual

(2 g) Coulomb wave functions"

F). (8,y)2 (n+l)!
The quantum numbers 8 for the final states are (n, l,m)
for bound states, and k for continuum states. The
exciton reduced mass is p.

At this point it is convenient to de6ne a special
symbol for the sum over intermediate states:

~.()~.*(0)
Ig(n, P) = d'r Pg*(r) ep y P . (2.6)

& A,o+Eg—"~~

The symbols n and P can be 1 or 2 for the two photons
A~~ and A~2. Our general matrix element (2.2) is

a'I'e'(2l+1)! (n t—1—)!
(2.10)

Xp'e»'Fq(1+1 n,—21+2&p),
p=2r/ae.

The 7~, are the usual spherical harmonic functions.
Since we have assumed spherical symmetry, we can
quantize the exciton Hamiltonian in any convenient
direction. If one chose the ep direction, the final state
is l=1, rN=O, and the angular integral in (2.9) gives

dQ I'go(e, p)ep r=(43m)'I'Ve'
a(1)~(2)Vy;=

pic'
The derivative (8/Br) G(r, O) is easily performed by using

XL(e~e~ p~w)Iq(1, 2)+(c(e2 p(e)Iq(2, 1)]. (2.7) the following representation for the Whittaker's func-
tion"

In order to evaluate the integral (2.6), we note that the
sum over ) is just the Coulomb Green's function

se—'I'
t 1+tq '

dt e *'~
~

. (2.11)

P~(r) g*(r')
G(r,r') =g

E),—0
Furthermore, the r integral in (2.9) can be performed
by using"

where Ez is the exciton hydrogenic energy as measured
from the conduction-band edge. For the case (2.6) with
r'=0 and 0= —Eg+Aa& (0, this can be expressed as a
Khittaker's function'4:

G(r, 0) = (p/2s rA2) I'(1—«)W„,y p(2r/ag)

z =LE/(Eg —Ace )j'".
The subscript n or P on ~ is omitted in (2.8), but ~ means
either K] or K2 for n= $,2. The exciton Bohr radius is a
and reduced mass is p. Since we assume that the hydro-
genic Wannier exciton states are isotropic in space,
then G(r,0) only depends upon the magnitude of r.
Hence

cp pG(r, 0) = iAep r(B/Br)G—(r,O).

Thus, the sum over intermediate states in (2.6) becomes

(2 9)

dp p'-'e-» gFg(u; o. ;lb,p) = I'(o)P —
/(P —X) . (2.12)

After performing these operations, the integral in (2.9)
becomes the somewhat more simpli6ed result

I„,) y(n, P) =A/[iE&(3~a')'I' j
XDe' —1)/n'g'I'J„„(a~) (2.13)

K

(1+ti '[t+ ,' «/2n j"-—
X(t+-', )i i

. (2.14)
k t i Lt+-,'+./2ej+2

The j~,„integration in (2.14) can not be performed in
a simple analytical fashion. About the best one can do
is to numerically integrate; or else express (2.14) as a
double series. Some of these methods are discussed in
the Appendix I. There it is shown that one way of

It is obvious from (2.9) that the final state Pq must be
a p state. However in order to make further progress
in evaluating (2.9), we must separately treat the cases
where f is a bound or a continuum exciton state.
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Abramowitz and I. A. Stegun (U. S. Department of Commerce,
National Bureau of Standards, Washington, D. C., 1964), Appl.
Math. Ser. 55.

~' Tables of Integra/ Transforms, edited by A. Erdelyi (McGraw-
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series converge for the physically interesting domain
of «/n(1. In fact, (2.15) was used in the numerical
calculations described below.

Now that the matrix element has been evaluated, we
can evaluate the absorption coeflicient. We must also
specify the angular dependence of the absorption
coeKcient. In cubic materials, the matrix element
(clp plv) requires that the conduction and valence
band symmetries diBer by T& . Thus there is only one
kind of polarization dependence which is common to all
different possible initial and dnal states.

Each combination of Bloch functions which have the
symmetry T&„,T&, Tj ' are di8erent 6nal states. One
also gets different anal states for the three hydrogenic
wave functions which transform like (x,y,s). When one
includes all of these possibilities, one gets an eGective
matrix element of

+IG. 1. The two-photon absorption coeKcient for exciton p
states calculated from the exact (aos) and approximate (uos)
equations. In part (a) the parameters are characteristic of an
alkali halide. Here the values of ff: are large (~.5) and the approxi-
mate expression does not resemble the exact result. In part (b) the
parameters are characteristic of a semiconductor with a small
binding energy. Here the values of K are small (~.15) and the
approximate formulas work reasonably well. At low temperatures,
the absorption will start abruptly in the vicinity of the n=2
exciton line. The superscript S means that the two photons were
polarized in the same direction. ¹teadded en proof. In part (b),
the value for E~ is given incorrectly, and should be E&=0.03 eV.

evaluating (2.14) is

r(1—K)«s p (2 n)1~—K ~'J., -(K)=
2tp'+' 1=P l! kntp)

1'(l+2) K

X 2P1(1—K)
—Ki l+3—Ki 1 tp)r (l+3—K) 2tpn

r(1+ 3)
X sP](i K) K!l+4—K; 1—tp), (2.15)

r(l+4 .)-
where

tp
——-', (1+«/n), (2.16)

sP1(1 K) Kl 4 Kq 1 tp)
tpn(3 —«)

Since sP1 is a series, (2.15) is basically a double series.
The second useful feature of (2.15) is that both of these

and 2Pj. is the standard hypergeometric function. This
result, although somewhat complicated, has two~+in-

teresting features. First, the transition probability to
the lowest exciton states is easily evaluated since the
sum over / contain just a few terms. For example, to
the Grst p state at n=2, there is just the one term in
the sum (l=0)

I'(1—K)«s

Jo, 'R(K) 2P1(1 K) Ki 3 Kp 1 tp)
I'(3 «)2tps+'—

S„2E~ E~
e„=I'gC~ (1—1/n') J,rt ' (2.1ga)

s k Goy Goy

321r'(e')' te'l(cl p Iv) I'

ntnpEAcl cm E11 Get

(2.18b)

We have tried to collect in (2.18b) all of the factors
which are independent of frequency. This choice is
somewhat arbitrary, since the refractive index n2 and
the matrix element (clplv) will both vary as @os is
varied. However, for the present discussion, we will

treat C~ as a constant.
For a sharp, well-defined exciton line, the density of

states S„will have a Lorentzian character. These sharp
lines are only experimentally observed for the lowest
values of e. For higher values of rs in the exciton bound-
state spectrum, the lines are broad and they overlap,
which causes a smooth spectra. Then one takes S to

Jen. ~'=-', (etXes)'I Jo, («1)—Jo, (Ks) I'
+sL1+(et's)'jl J..-(«1)+Jo, -(«p) I'

=cos'el J„,.(«1)+J,.(«p) I

'
+sin'el Jv,~(«1)'+Jn, „(«s)'), (2.17)

where 0 is the angle between e~ and e2.

This form is actually quite simple to understand. The
two terms J„,„(«1)and Jo (Ks) arise from the two terms
in (2.7)—i.e., the two photons may be absorbed in either
order. If the two polarizations e~ and e2 are parallel
(cos'0= 1), both terms create the same 6nal state. Here
one must add the two terms before squaring the matrix
element. When the two polarizations e~ and e2 are
perpendicular (sin'8=1), each of the two terms in (2.7)
creates a different ftnal state (although the two states
are degenerate). Here one squares the matrix elements
before adding. The general result (2.17) provides the
correct interpolation between these extremes.

After collecting our result (2.1), (2.3), (2.7), (2.13),
and (2.17), the absorption coefficient for a particular
exciton state of n,/=1 is



170 THEORY OF TWO-PHOTON SPECTROSCOP Y

When evaluating J„,„(») in (2.15), 22 can be treated as
a noninteger number by letting the sum over 3 extend
to inanity. Some examples of the absorption coeflicient
(2.19) are given ln Fig. 1.

B. p-Exeiton Continuum States

%hen the sum of the two photon energies exceeds the
energy gap, the exciton states are no longer bound. Here
one pictures the electron and hole in a relative scattering
state. The Coulomb wave functions are'5

&:
I' ~I'{t+1 i»t)—

~

!t(~,r) = Z (it)'~""
gV &-«{2t)!

XP&(cos&») zFx(t+1—i', 2t+2, —ip). (2.20)

When we put this wave function in (2.9), the angular
integrals must be treated carefully. Both k and r can
point in any direction, and cos~ is the angle between
them. If 8t&=s, and r=(r, 8,q), and k=(k, 8«, q») in
spherical coordinates, then

dQ k,—Ss &2P2(cos«&) =cos82= —.
4m k

(2.21)

The r integral in (2.9) is evaluated for continuum states
by following the procedure for bound states. One uses
(2.11) and (2.12), and gets

be 222/2E«. Here one also treats I as a continuous
variable,

1/—I'= A= (Aa)g+Ao)2 —Eg)/E~.

In this case, the absorption coeKcient (2.17) is

&2~= PiC~(E«2/h»o)&'ra2)(1+t&. )J,«,„2. (2.19)

f1+2 i—»/2»t j &2+'»'pt+',+-i»/2rtf &2-'»-&

exp( —2»t tan —
'L»/r&(2t+1) j}

L(t+2)'+(»/2n)'3'

VVe have evaluated this integral by direct numerical
integration. After changing variables S=(2t+1) ', we
etg

,
' SL(1+S)/(1-S)j

J„,2(») =2»2 &ts
L&+(S»ln)'j'

Xexp( —2g tan-'(S»/n)} . (2.24)

This integral is straightforward to evaluate numerically.
The integrand diverges at 5~ I, but this divergence is
integrable for ~&1. Actually, one could also evaluate
(2.14) by using an integral like (2.24), and this may
even be faster than using (2.15).

Since the matrix element has been evaluated, it is
now simple to calculate the absorption coeKcient. The
sum over 6nal density of states is

2V i22k2q

Q Sr= &Pk bi hcog+hco2 E0 —— i.—(2.25)
(2»r)2 k 2p j

When we evaluate the angular integrals jn (2.25), s, &~

factor arises from the cos'80 term which comes from the
square of (2.21).A similar 22 factor arises in one-photon
absorption when the conduction to valence-band dipole
moment is forbidden. Most derivations of the one-pho-
ton case do not explicitly include the k, dependence of
the matrix element, yet they manage to somehow
include the 3 factor later in the calculation. However,
the present method is correct, and it is especially
important to do this properly when discussing d-state
absorption.

The absorption coe@cient is

A&,» &2~ I'(2—iq) iJ, &(».)(k 8&2)

12,&-S(&2,P) =
QVEs

»2 " (1+t "
z„,,(») =— dti (t+-,')

2 2

XLt+-:-' /2~j-'"'"'

(2.22)

CgEg'
&2p

—Pr (1 s-2» )
—l(1+1/»t2) J'

2& 22 (2 26)
A fd], Gag

The matrix element J,«, 22 in (2.26) is the same as (2.17)
except with J~,2 instead of J~,„.The C~ in (2.26) is
given in (2.18). The result (2.26) is very similar to the
absorption coefEcient (2.19) for the higher bound states.
In (2.26), we have

Xf&+2+i»/2q j-&2 '-»&. (2.23)- 1/«t2=5= (Aa&g+ka)2 —Eg)/E&2, (2.26')

When we compare the two integrals (2.14) and (2.23)
we see that e —+ ig in going from the bound-state result
(2.13) to the continuum result (2.23). Therefore, it can
also be shown that (2.23) can also be expressed as a
double series like (2.15), except with 22~ i'. In this
case the terms are all complex, and this makes the series
inconvenient to evaluate. Although the terms in this
series are complex, their sum J~,2(») is reaL This is
because the integral (2.23) is real, since the complex
terms are conjugates of each other:

which will make (2.26) resemble (2.19) even more
closely. In fact, the absorption from the bound state
(2.19) and continuum states (2.26) is continuous at the
energy gap. This is demonstrated by showing that J~,„
and J„,I, have the same value at 6=0,

(—2») '(1+1)
lim J~,„(»)= lim J'~,s(») =»'2'+' Q
%moo k~&&

& 2 P(3+1 )

X2F2{1—», —», i+3-», 1-t2). (2.27)
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This continuity of the absorption spectra at the energy
gap is also characteristic of the one-photon absorption
spectra.

C. Ayyro~imate Solution

The absorption coeKcients which have been derived
require numerical computation to be evaluated cor-
rectly. It would be extremely convenient to have
approximate formulas for J~,„(K) and J„,p(K). These
simpli6cations exist for some range of the parameters-
in particular, when ~~ and If.2 are small.

In the series expansion (2.15) for J~, (K), the first
correction terms are of the order of ~. If ~ is small, these
higher terms may be neglected. It was noted that
J„,y(K) can be expanded in a similar series, and here the
first correction terms are also smaller by a factor of ~.

J~, (K) =K2L1+0(K)j

J„,2(K) =K2L1+0(K)$. (2.28)

Using these approximate expressions for J~,„and J„,y„

the absorption coefficient for pi~~ p2 is

3

a„=P&CA I 1++jpKi +K2 $'T(&), (2 29)
AM] M2

where

T(h) =5„2'/222 for discrete exciton states,

T(h) =1 for the closely spaced bound states, 6&0,
T(A) =(1 e'~I~~) ' f—or 6)0.

The approximate absorption coefFicient (2.29) has a
linear relationship with frequency 6 in the region of the
energy gap. This behavior is similar to the one-photon
forbidden transitions.

The approximate result (2.29) may be derived by a
simple argument which avoids our tedious derivation.
%hen we evaluate the sum over intermediate states
in (2.6), a simple approximation is to neglect the exciton
energy in the energy denominator. This is equivalent to
approximating the Coulomb Green's function by

G(r,0) (K2/Es) 8(r),

and (2.6) becomes

Ip(n, P) = i(AK 2/Es)[ep Vg—p(r) j„p (2.30).
When the result (2.30) is used to calculate the attenua-
tion constant, then one immediately gets (2.29). The
approximate result for the matrix element I~ depends
upon the derivative of the hydrogenic wave function
at r=0. This feature makes the two-quantum allowed
transition resemble the one-quantum forbidden tran-
sition, since the latter have a similar dependence. It is
interesting that, with the Wannier model, the result
(2.30) is exact for one-photon transition to p states, but
is only approximate for two-photon transitions. The
approximation (2.30) was used in the calculations of
Ref. 11.

D. Numerical Results

Numerical calculations were made in order to com-
pare the exact and approximate solutions. The two
polarimtions e~ and e2 were assumed to be parallel. The
6rst set of parameters were characteristic of an alkali
halide; Eg——7.0 eV, E~=0.5 eV, and %coy ——1.5 eV. For
these parameters, ~y=0.30, and 0.50&f~:2(1.0, for the
range of Aor2 which is shown. For these large values of ff.,
the approximate formulas do not predict the same
shape of attenuation curve as the exact formulas. This
conclusion agrees with the original hypothesis that the
approximate results were only valid at small &.

The same type of calculation is done in Fig. 1(b) for
parameters which are typical for a semiconductor, with
E0=2.5 eV, E&——0.03 eV, and the laser frequency
Aco~=1.0 eV is in the neodynium range. These numbers
give ~~=0.14, while If:2 varies between 0.17 and 0.18 for
the range of Puop which is shown in Fig. 1(a). In these
figures we plot the dimensionless function n"/(PiC~),
and the approximate result (2.29) is dotted while the
solid line is the exact attenuation coefficient (2.19) and
(2.26). We have started these functions in the vicinity
of the 22=2 line, although (2.19) and (2.29) actually
eanish linearly at the m=1 line. In the second case
Fig. 1(b) where the K's are small, the approximate
formulas work quite well.

The approximate formulas do predict the correct
magnitude of the absorption coefBcient even for large sc,

and hence are useful for order-of-magnitude estimates
of absorption strengths. For this purpose we note that
the constant Cz is directly proportional to the one-
photon absorption constant.

In Fig. 1(a), the exact absorption coefFLcient is diverg-
ing at hpii+ 12co2 ——8.0 eV because this coincides with the
real absorption Hne at Aco2=Eg —E~——6.5 eV. The ap-
proximate formula does not diverge here because a2 does
not become large until Aco2

——Eg. %e tried improving the
approximate equation by replacing K ' by (K

'—1) ' in
(2.29). Although this makes the approximate equation
diverge at the right frequency, it still does not resemble
the exact result, and this modi6cation was abandoned.

XII. FORBIDDEN DIPOLE TRANSITION

%'e now consider the case where the conduction-band
to valence-band dipole matrix element is forbidden at
k=o. Although the transition probability and matrix
element are still given by (2.1) and (2.2), the spectral
dependence of the attenuation coeS.cient is quite dif-
ferent than when the transitions are allowed.

For forbidden dipole transitions, the matrix element
between the initial and intermediate state is" "

"R. J. Elliott and R. Louden, J. Phys. Chem. Solids 8, 382
(1959)."R.J. Elliott, Phys. Rev. 124, 340 (1961).
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The matrix M„„was introduced by Elliott and Louden'8
in their discussion of the forbidden one-photon tran-
sition. They showed from k.y theory that M„„has the
form

&lip. l~&&~ I p. l')
pv

rr/ V

«I p li&&jl p. Is&
(3 2)

This is the de6nition of the inverse effective mass
tensor'0 2' when /=i, but in the optical problem w
expllc1.tly want the cRse l+$.

The otherV matrix element is still given by (2.5), so
we now need to evaluate the sum over intermediate
exciton states for the following integral.

Ig(e,P) = Ne „—M„„d'r g/, *(r)e// y

A(r)
xQ ,A*(r')"-0 (3 3)

Ey+Eg AMgg BSv

If we include spin-orbit eGects in the Hamiltonian,
then I', should be replaced by"

—x„l'(2—s)p (2r)
I4'v. s/ul

—
I v

2mar'h'
'

kgsi
' (3.4)

This refinement is apparently important in zinc blende,
where matrix elements exist for the spin-orbit term
which vanish for the p term. "This will make M„„lnite,
and hence allow transitions„where otherwise they
would not be permitted. This apparently is important
in CuCl, and this point is discussed in Sec. IV. In
crystals which lack an inversion center, these "for-
bidden" transitions are allowed along with the p-state
transitions of Sec. II. Actually, the exciton s- and e-
state transitions are allowed whenever the matrix M„„
is 6nite.

The sum over intermediate states in (3.3) can be
expressed as a gradient of the Coulomb Green's function

A(r)
lim — — G(r,r') = lim P ,A(r')"' 'Bx ' "'"'

& E/,+Eg Aor Bx'—

trying to evaluate

Ig(n, P) = k'e „M„„e/L d'r

B gvI (2 K)PWgs/2, (2r/gs)
XA*{r) (3.5)

8Ãy 2xx@f~k2

At this point the calculation divides itself into two pRrts.
The 6rst is the actual evaluation of the integral in (3.5).
Secondly, one must derive the general form of M„„from
group theory and discuss the polarization dependence of
the absorption coeflicient. The complexity of the calcu-
lation is summarized by noting that we can have ) =s
or XWv in (3.5), the 6nal states are either s or d exciton
states, and M„, has four different possible forms in
cubic materials. In Secs. IIIA through IIID we evaluate
the integral in (3.5), and in Sec. III F we give the lnal
results with the correct polarization dependences.

( 5 |V2v' —V' —V'
I's,o=

I

(15~'/'xy

&4~i

( 15 ) 1/2~2 y2

416s.i r'
(15' '/'sx

E4s i r'

(15 '/'ys
(3.6)

k4

When / &X in (3.5), the exciton anal d state will have
the symmetry of either I"2„„,Fm, ~„or F2,„.All of these
states will have the same absorption coeKcients. For
example, the integration over angles in (3.5) gives

B y 2r)
dQ I'2,.„——W. ,3/s —

I

Bs r gKi

(4~ '/'B - (2rq-
(3.&)

&15 Br
'

I asi

A. d-Exciton Bound States

Let us 6rst consider the case where r W X in (3.5).Then
the anal-state wave function f~ must have the sym-
metry x,~ in order that the integral not vanish. This
requires f/, to be an exciton d state. We assume the
d states are fivefold degenerate. Instead of the usual
spherical harmonics Fg, , it is more convenient to
introduce the five orthonormal harmonics

IJ. M. Luttinger and W. Kohn, Phys. Rev. 97, 869 (1955).-"E.I. Blount, in Solid State I'hypos, edited by F. Seitz and
D. Turnbull (Academic Press Inc. , New York, 1962), Vol. 5, p. 305."G. Dresselhaus, Phys. Rev. 100, 580 (1955);R. H. Paimenter,
ibid. 1QQ, 573 (1955); V. Heine, Group Theory in Quarts
3Achmsics (Pergamon Press, Inc., New York, 1960).

IF 8/g(s) = dfe *'2 "(1+I)'+" (3 8)
I'(2—s) 0

Furthermore, the r integral can be done using (2.12)

which is independent of the choice xy. The derivative
where a is dined in (2.8).Thus in (3.3) we are basically in (3.'1) is easily performed by letting the Whittaker s

function be"



G. D. M AHA N

and we get for (3.5)

&NIIMga~&p«pI..r s(~,P)=
(15'.a') 'I'

(t+-,' —»/2') "-'
Z& (») =»' dt(t+-')8-"(1+t)'+"

0 (t+-,'+»/2n) "+'

(3.10)

The integral (3.10) is very similar to the p-wave result
(2.14). The d-wave term (3.10) may also be expressed
as a series expansion

B. d-Exciton Continuum States

When the sum of the two photon frequencies A&oq+ Aco2

exceeds the energy gap Eg, and when vWX in (3.5), the
final state of the exciton will be in the continuum with
d symmetry. Hence we want the l=2 state in (2.20). If
we remember that cosm is the angle between k and r,
then

The only di8erence between o.&~ and n&~ is the plus or
minus in the last bracket. The particular choice for C~,
which gives the 3/80 factor in (3.12), is convenient for
the s-state absorption coeKcient which is derived below.
The polarization dependence has been removed from

(1—1/I')(1 —4/62) ~» (3.13) and we just use IM„„I2, when M„„ is one com-
X ~v, ~(»~) ~ (3 9) ponent of the tensor. This usage will be clari6ed in

Sec. III F. When the bound states become densely
packed, then 2S„Ea/I'-+1, as was done also for P
states.

sF«(2 —», —1—»;1+4—», 1—to)
x

xl ll~, -{ )+~..-( ) I'
&e~p~gi

3 2&&a)
ag~-—PgC, . (1—e 2)(1—4e ')

go ~' i

x I I I J., -(»~) —&., -(»2) I', (3 12b)
EA G)g cdgf

2'a'k'(e' q' IM„, I'

3'n~ Ekci Za'u'm'
(3.13)

(1+2)» gFg(2 —«, —1—»; 3+5—», 1—to)-

I'{1+5—»)

The same comments which applied to (2.15) also apply
to (3.11):This expression is useful for evaluating Jq,„for
all e where «/e&1. It is particularly useful for evalu-
ating the transition probability to the erst d state
at m=3.

Since the matrix element can be evaluated using
{3.11), the absorption coefficient can now be given.
There are two matrix elements Jq, „(»q) and Jq, „(~)»
since the photons can be absorbed in either order. This
is evident in (2.2). These two terms do not necessarily
add coherently. Depending upon the.form of M„„these
two terms may be combined with diGerent relative
phases. We anticipate our later results by stating that
only two cases are necessary —the case where they add
and the case where they subtract. Ke de6ne these as the
symmetric eq~ and antisymmetric nq" absorption
co scient.

2&&a)
!a+=I'gC; {1—e-')(1—4n-')

80 e'

8 y (2r)
dQ Pg(COSM) ——W„,g»! —

!
ax r' '

ku»i

(4 )~»kJ., a-1 ~r-—W'q, a» — . (3.14)
'«5l O' Br r' a»

Here we have chosen x),=x, x„=y, but the results will
be independent of this choice. Now the sum over
intermediate states in (3.5) becomes

pQ2

I)j;,/ =p ((E~p) —

krak«

6~11M@@ED«

QV
xe-I ll(3—i~) Iz.,,(»), (3.15)

J,,,()=»»' dt 6 (1+t)'+ (t+-'-)

i» ~
-(3+&»

x! t+-',—!
2qi

i» ~-&'-'»
x! t+-,'+-!

2qi

1 (1 5') 1—c(1+5')I+a

=4' dS S
L1+(5'»/m)'j'

S»)
x exp! —2g tan-'

! . (3.1'/)

The integral (3.1/) was derived in the same way as the
p-state result (2.24). This was the form used m
numerical calculations.

Since the sum over intermediate states has been
evaluated in (3.15), the attenuation coef5cient can now
be evaluated. When we sum over the 6nal states, this
lea,ds to an angular average (k,'k„')= k'/15. Again we

need to de6ne a symmetric and antisymmetric absorp-



170 THEORY OF T%0-PHOTON S P E CTROS COP Y

tion coeKcient.

3 (1+&t-')(1+4&t-') EiiP
~SA, pg

80 2% Q 5 COj C02

X
~
J,,.(.,)~J,,,(.,) ~

. (3.18)

The coefFicient Cr is given in (3.13).The d-state absorp-
tion coefhcient is continuous at the energy gap, i.e., the
result (3.18) for g-+ p» joins smoothly to (3.12) as
n-+ pp and S„=nP/2Ei&. Using our delnition (2.26') of
g =+ (Appi+Appp Eg)/Ez& we see from (3.18) that
the attenuation coeKcient rises parabolically with 6
when b is small.

Approximate solutions for the d-state absorption
coeKcient can be obtained when ~ is small —as was done
for p states. When « is small, we get )from (3.17) and
(3.11)g

The evaluation of the integral in (3.5) proceeds as it
did for p and d states. The result is

where

(p M ss)4pI.,. p(~,P) = J...(..),
3+praPIPn'I'

(3.22)

J,,„(«~)= dt—t'-"(1+t)'+*
8n 0

and the derivation of this result will be given below
in Sec. III F and Appendix II.

The angular average of (x„') is 1/Br', so that (3.21)
may be rewritten for s states as

1 8 r2r
rW. ,pg]—

3r' ar
'

ku«

Jp, («) =«'L1+0(«)$,
Js, g, («) =«'L1+0(«)g. (3.19)

(t+-', «/2n)"—
X (n+ 1)(n+2)

(t+-,'+«/2n) "+'

The approximation (3.19) may be used in evaluating
(3.12) and (3.18). As in the p-state case, the approxi-
rnate formulas (3.19) are very good when « is small
(«(0.2). However, even when « is large (~0.5), the
results (3.19) give the magnitude of J to within 50%%uo.

The approximate results (3.19) can be derived in a
simple way. As in the derivation of (2.30), if we ignore
the exciton energy in the sum over intermediate
states, then (3.5) is given by

(t+-,' «/2n)—"—(n—1)(n—2) (3.23)
(t+-', +«/2n) "+'

This may also be expressed as a series

-i
t « ~'(1 n)i(2—n l)(l+—3)J„.(«) = Zl —

i

8(2—«)ntp'+' i-p Entpi

XpFi(2 —«, —1—«, l+3—«, 1—tp) . (3.24)

A K
Similarly, the symmetric and antisymmetric absorption

k, l 2(a&P) &a&&&&&»v&px]
coefFicients to an exciton bound s state are

When the absorption coefficient is evaluated from
~ ~ rS„2EI& Esp

(3.20), one immediately obtains the results (3.12) and ( np tppppipp&p

(3.18) but with Js——«'.
X [

J'., («i)aJ„.(«p) ('. (3.25)

C. s-Exciton States

We now consider the evaluation of (3.5) for the case
that u=). The derivative gives

8 x 2r) W, p/p x„Bt'W„,p)p—W. , p)p
—

)

= +——
~

. (3.21)
Bx„r' '

u«) r' r Br 4 r'
EsP

( J,.p(«i)+ J.,p(«p) ('
(3.26)

2 tlat

~ S,A. PC
5 07y C02

The constant Cr is the same as Cr in (3.13).
The absorption coefEcient for exciton s states in the

continuum can be derived by the methods which have
been employed above for p and d states.

The first term in (3.21) is spherically symmetric, and
this requires that the exciton state be an s state.
Furthermore, the x„2 term will be a combination of the
spherical harmonics F~ 0 for s waves, and 72,0 and F2,,
in (3.6). Therefore the terms in (3.21) creates both s
and d states. Since one evaluates the absorption coeK-
cient separately for each 6nal states, we wi11 just evalu-
ate the s-wave part here. The d-wave contribution from
(3.21) will just be proportional to n p which was derived
in the preceding sections. The proper proportionality
between s and d which results from (3.21) is simple,

where

J„p(«)=-
29

' ds(1+s) '+"(1—s) '—"

p+(s«/g)pjp

( s'«') 2«s
X 3~1 1- [+ (2-~')

s«y
Xexp( —2&t tan-' —

)
. (3.27)

I gi'
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.OIO

replacement

O
Q.

.005

i 0, -
-Bx - r-o 382K

(3.30)

6.5

2xl0-

C3
CL

0
IxlO-

Ee

I

7.0

Ee 7.5eV
Es 0.05eV
fw

fiW, =I.5eV,'-e /
u,'

75hw, 4W~ev 80

We should emphasize that the divergence in (3.29)
exists only in the attempt in (3.20) to find an approxi-
mate formula. The rigorous solution presented in
Kqs. (3.21)—(3.27) does not have any problems with
divergences. Furthermore, these divergences are avoided
by making (3.22) and (3.28) the basis for our approxi-
mate solutions,

E. Numerical Results for s and d States

2.47 2.5 2.53 2.56
%W&+hWz(eV)

The absorption coeflicient above the energy gap (3.21)
is continuous with that below the gap; the latter given
by (3.25) with S„=ri,'/2E& for large e values.

FIG. 2. The two photon-absorption coefficient for excitons s and
d states. The approximate formulas are dotted. Just the symmetric
coefficients are shown. The antisymmetric coefficients (o.~) have a
similar spectral dependence but are smaller in magnitude. In (a),
the parameters are characteristic of an alkali halide. In (b), the
parameters describe a semiconductor with a small exciton energy.
The d-state coefficient ad~ has been magnified 20 times, and the
approximate nq8 is not shown, since it coincides with nq~.

Some numerical calculations were performed in order
to determine the frequency dependence of the various
absorption coe6.cients. For this purpose it is convenient
to neglect the polarization dependence of the matrix
elements, and just to evaluate the magnitude of the
absorption coeKcient. Results are just given for the
syrrDTIetric coeKcient n, ~ and n+8. The antisymrnetric
coefficients n," and n&" have a similar frequency de-
pendence to their na counterpart, but are smaller in
magnitude. Basically we are plotting

3 gB3

n„s/(P, Ci ) (1+g)(1+4&)
~
J„(a,)+J„(x~)

~
2~

80 5 GOg (d2

J„(~)=~11+0(~)$,
J,,g(~) =zL1+0(~)$.

(3.28)

The leading terms are proportional to l~:. This is quite
different than the z' dependence for p and d states
which is found in (2.28) and (3.19). This difference is
quite important in affecting the shape and magnitude
of the s-state absorption curve.

Some insight into why the s state is diKerent from
the p and d is obtained by trying to derive an approxi-
mate formula for s-state absorption. For p and d states,
we could derive the correct approximate result by just
ignoring the exciton energy in the sum over intermediate
states (2.6) or (3.3). This method does not work for s
states. Such an approximation gives (3.20) with x„=xi„
e.g. , (3.20) becomes (for x„=xi,=x)

Is, l=o

g2IIg2
—g2

(s M. sp)
— g„,i 0(r)

2 -r o

(3.29)

The quantity in brackets diverges as r —+ 0 for hydro-
genic wave functions. If we take (3.22) with J,„z,and
compare this to (3.29), we see that one should make the

D. Aypro~~ations to s-State Absorption

ln the limit of small I»:, we can obtain approximations
to J,,„(~) and J.,&(~) by expanding them in a power
series in a. The leading terms are

+B
n, s/(J.'iCs) =

~
J,(xi)+J,(~2) ~',

k Ng Cd2

where 6= (koi+A~2 —Eg)/Eii, and 2'(6) is deaned
in (2.29).

The notation J~ means Jg,„for bound states and Jq, ~

for continuum states. These are calculated from (3.11)
and (3.17) for the exact absorption coefficient, while

Jq If:2 was used in the approximate expressions.
Similarly, J, means either (3.23) or (3.27), with J, a

used as the approximate formula.
These numerical results are shown in Fig. 2 for the

same two sets of parameters which were employed in
Fig. 1. Approximate expressions are denoted a. The
d-state coeScient n& is given reasonably well by the
approximate expression. The quadratic rise of nq with
kar2+Aa» is caused by the (1+6)(1+49) factor. The
shape of the s-state coeKcient is much diBerent than its
approximate form. This is because J, „and J,,~ have a
large e and k dependence even when ~ is small. The
approximation J, ~ does give the correct magnitude
of the absorption coeS.cient. However, it is obvious that
one must use the exact de6nitions for J, for any detailed
comparison of experiment and theory.

The magnitudes of n, and n& can be compared directly
since the same coeS.cient Cp enters both expressions.
At the energy gap (6=0), their ratio is nq/n, ~3m'/80
Since ~&1, nq is much smaller than n, . However, as 6
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increases when one goes above the energy gap, the 0.~
value increases much faster. Thus, in Fig. 2(a) where
z&0.5, the o.d absorption can become comparable to o,
However, in the case of Fig. 2(b), where x(0.2, the
d-state absorption is always negligible. In order to
compare n„with n, or o.g, one must explicitly know the
values of M„, which as yet are not known.

F. Polarization Beyendences

It was already noted in Sec. III A that the p-state
absorption in cubic materials has an angular dependence
upon the polarization of the incident photons. The s-
and d-state absorptions also have a strong polarization
dependence. Inoue and Toyozawa»0 calculated those
dependencies for s-state absorption. In the case of cubic
symmetry (OI,), we have extended their results to
include the d states as mell.

%'e will brieQy summarize their s-state results. The
ground state of system, before the photons enter, is
obviously A~g. Absorption of two photons (Tx„) takes
the electronic system into states with the symmetry
T&~XT&„=A&g+Eg+T~g+Tg, . These four final states
have di8crent polarization dependences, which allows
them to be easily distinguished experimentally. If
we introduce the direction cosines e& = {l~,ga~,e~),
g~

——(lg,m2, N2), then they showed that

(g~ M'g)'= IM(f~) I'fg(g~ gg)

where f; is one of the four functions

A gg = (gg ' g2) = (lll2+gw]gÃQ+gggNQ) (3.31)
= 11 12 +ml W2 +Nl S2

—(lyl25$ygwn+lgl25$g5$2+SyS2tÃygwg), (3.32)

Tlg (glX g2) 1 (gl ' gg) (3.33)
Tg g

= 1—(lpl2'+nspgwn'+npNg')

+2 (l1l2galga2+ l14'+1'+2+ gal'+9+lgN2) ~ (334)

These results can be easily deduced from symmetry,
For example, M(A~g)„„ is a symmetric second-rank
tensor, which, bccausc of cubic symmetry, Dlust hRvc
the form M(A~g)b„„; this leads directly to (3.31). In
the 72g transition, the 6nal T2g state is threefold
degenerate and. we label these states (x,y,s). The
appropriate tensor is symmetric:

M„„&~~(T2,)=M„„&»(T„),

where (j)=(x,y,s) for the three final Tgg states. This
has nonzero components

M„.~&~(T2g) =M.„'*'=Mg,&*&=M.,&». (3.35)

This leads directly to the result (3.34). Similarly, the
T~g tensor has the same form as (3.35) but it is anti-
symmetric. Proceeding in this way, one can show that
the results of Inoue and Toyozawa follow directly from
the properties of the M„„matrix introduced by Elliott
and Louden. '8

A»g.

Eg ~

T»g e

T2g g

a =ags+(a, s+-,'ags)A g„
a= (a +sag )8 +4ag Tyg

+-,'ass(1+3A g,),
a= (a,"+-',ag")Tg,+ags(3+Ay, ),
a=(aa +sag )Tgg+jad Tlg

+;a„{Eg+Agg). (-3.36)

The angular functions A»„E„T»g and T2g are given
in (331)-(334). The a,s" and ags" are defined in
{3.12), (3.18), (3.25), and (3.26). In the definition of Cg

(3.13), I M„,I
' means the nonzero tensor component,

such as (3.35). An example of how to derive these
results 1s glvcn In Appcndlx II.

Our results for s states verify the results of Inoue
and Toyozawa. »0 An additional feature of our results
is that the T»g angular functions are always associated
with antisymmetric absorption coeKcients 0.,", 0.„~,
and 0,~~. Since the antisymmetric functions are generally
smaller than the symmetric ones, the T», symmetry
may be harder to see experimentally. In general the
angular dependence of d-state coeScients is quite
complicated.

lV. COMPAMSOH %7TH EXPERDNEHTS

ANuk hulides: The original two-photon experiments
of Hopficld et u/. ' were on KI and CsI. Many other
alkali halides were measured by Frohlich and
Stagginnus. Here the direct transition is allowed, so
the absorption creates final p-state excitons. After the
initial onset near the m=2 line, the low-temperature
absorption coeScient appears to rise linearly with
frequency. This agrees with the present theory. Indeed,
our approximate solution for p states, which had been

It is worth noting that there are only two independent
angular functions. One can denote them as

Dg —ll 942+gNygga22+ gg g2N 22

Dg ill&4~2+ l14+lgg2+~1~2'+1'+2 ~

All of the functions in (3.31)-(3.34) can be expressed. as
linear combinations of j., D», and D2. That is, only two
of the functions A»„E„T»„and T2g are really inde-
pendent. If we choose A», and E, as thc independent
pair, then

T»g= 1—A»g,

Tgg =1+A yg/3 4Eg/—3.
This remark is not very important for s states. But for
d states, when the answer comes out a linear combina-
tion of iq By) Rnd D2~ lt CRn bc cxp1csscd Rs R large
number of different combinations of A»„E„T»„and
Tggg

As we noted above, absorption to the s and d states
occurs simultaneously, at least above the m=3 line
where the d-state absorption begins. The polarization
dependence for the combined absorption is
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derived earlier, "was used by Hoped and Worlock'
in the analysis of their results. No discrete bound states
have been observed. This is because the Grat p state at
I= 2 is too close to the other exciton lines (I=3,4, etc.),
and the width is too large.

We have previously reported'2 a comparison of our
calculated results with the experiments of Frohlich and
Stagginnus on RbI.' There were three parts to this
comparison. First, the magnitude of the two-photon
absorption was calculated using (2.18) and (2.26). The
coeKcient C~ in (2.18b) was found by obtaining

(cIp I&) from the one-photon absorption. The other
parameters E~=0.5 eV, Eg=6.25 eV, koy=i. 785 eV,
and laser power were obtained from Ref. 2. The calcu-
lated magnitude was exactly that which was observed.
This agreement is pleasant but partly fortuitous, since
some of the parameters are not known precisely,
especially the one-photon absorption coefEcient and
also the refractive indices near the band gap. Second,
the spectral dependence of the absorption coeS.cient
was evaluated and this also agreed with the experi-
mental observation. Third, the observed polarization
dependence was precisely that predicted by (2.17). At
6.8 eV in Rb, Frohlich and Stagginnus showed that the
absorption coeflicient changed as the angle 8 changed.
The ratio between the minimum and maximum absorp-
tion at this energy is

n(a=res) J„(sI)s+J,(as)s
E= = . (4.1)

~(~=0) l~.(st)+~.(ss) I'

From their data we deduce that this ratio is about 0.62,
while we calculated the value 0.69. This ratio is limited
to values between one-half and one.

CNC/: Frohlich and co-workers' have recently ob-
served some discrete excitons in CuCl using two-photon
spectroscopy. This is a zinc-blende structure, so the

group theoretical selection rules are quite diferent than
in the alkali halides. '2 These sharp lines were identified
as exciton s states by their energy position, and also
because they had the polarization dependence (3.34)
associated with a Ts state (I's in their notations' ).They
also commented that the I'5 type polarizationdepen-
dence was not observed for transitions to the exciton
continuum —here they described the behavior as "rather
complex. "

Since the dipole transition is allowed between the
conduction (I's) and valence bands (I'I and I's), one

would expect from our result that the main absorption
to the continuum is caused by exciton p states. The
p-state absorption would. also be dependent on the
photon polarization vectors. Perhaps the "rather

~3 In analyzing the group theory for these transitions in zinc-
blende (Tg) we decided that (Fs of Frohlich) = (I'4 of Dresselhaus)
=(I'I~ of Parmenter)=(T2 of Heine, and also of Inoue and
Toyozawa). We have adopted Inoue and Toyozawa's notation.
This confusion has apparently arisen because this representation
transforms like both sets of basis vectors (x,y,s) and (ys, sg,ey),
whereas in Op, these basis sets belong to TI and Tg, respectively.

complex" polarization dependence observed in the
exciton continuum is caused by a combination of 0,„0,„,
and. otg absorption. No bound excitons in p states are
observed, nor are any I=2, s states. The two s states
observed in the spectra are the v=1 states fr'om the
two valence bands. This follows from the interpretation
of the one-photon spectra given by Cardona. '4

The oscillator strength of the observed discrete
exciton state appears small compared with the oscillator
strength in the continuum. This suggests that s-state
absorption is weaker than the transition which is causing
most of the continuum absorption, which is presumably
a p state. Tile IIlagIllttlde of tile forbidden 'tlaIlsltloll
to s states depends upon the size of M„„in (3.2). If we
ignore spin-orbit e6ects, the term M„„vanishes in
zinc-blende structures. " Including spin-orbit effects
causes M„, to be 6nite. There is a close relationship here
to the linear wave vector term, which also exist because
of the spin-orbit interaction. Basically this happens
because zinc blende lacks an inversion center. "Since the
magnitude of 3f„,is proportional to the spin-orbit inter-
action, one might expect that the "forbidden" transition
to s states might be small. This is in accord with the
small intensity of the bound states relative to the
continuum.

CdS: The two-photon spectrum of CdS was measured
by Regensburger and Panizza. 4 CdS has the wurtzite
structure, and optical selection rules differ according to
whether the polarization vectors are oriented parallel or
perpendicular to the C axis. They had the Nd laser
directed along the C axis. The probe beam was directed
perpendicular to the C axis. The dichroism they ob-
served could be caused by either the dichroism of the
CdS or the dichroism caused by interchanging the order
in which the two photons are absorbed. The interesting
peaks in the spectrum are partly caused by the separate
contributions from the three valence bands. Further
polarizations studies are needed before this complex
spectrum can be unraveled.

TlCl: Matsuoka' has reported extensive two-photon
measurements in T1Cl. This material has the CsC1
structure and its group-theoretical selection rules are
the same as in alkali halides. The two-photon spectrum
rises linearly with frequency, in agreement with the
expectation for p-state exciton absorption. Matsuoka
also measured the polarization dependence and dis-
cussed his results theoretically. He deduced that the
polarization should obey a cos'8= (ct es)s law, but did
not derive an equation analogous to (2.17).The angular
dependence he observed did have the type of cos'0 be-
havior indicated, by (2.17). However, his data contain
two features which can not be explained by (2.17):
(1) Although his data show that the absorption is
maxtmum when et II es(cos'0=1) and. minimum when

SIJ es(sin'0 = 1), the ratio of the minimum to the maxi-

mum absorption depended upon the orientation of 8j.

"M. Cardona, Phys. Rev. I29, 69 (1963).



and e2 with regard to the crystal axes. This feature is
not predicted by our results for p-wave absorption,
although the s- and. d-wave absorptions, forbidden in
this case, do depend upon the orientation with respect
to crystal axes. (2) The ratio of the minimum to the
maximum absorption was in some cases less than one-
half. The present calculation predicts that this ratio is
given by (4.1) and the algebraic form of 2 in (4.1)
limits it to values between ~ and i for any values of the
J~(k)'s. Thus we cannot explain these features of
Matsuoka's data. We also considered whether the
harmonic generation effects discussed by Jha were
important. However, Jha points out that his additional
absorption processes were unimportant in crystals with
inversion symmetry, and therefore should not be
relevant in the present case."

P(n)P(7 —n)
Fg(n, P,P',y, oo,y) . (AI4)

p(v)

If we examine the series definition (2.15) for J~,„we
see that the terms are just given by an Ii3 type of series
in (AI2).

«'I'(1-«)
J,.(«)=

2$ 2+@

1 (
X Fol 1—«, » «2——, 3—«, 1—to, —

Ir(3—.) 5
' ' ' ' '~,eJ
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APPENDIX I: INTEGRAL EVALUA TION

Here we summarize some of the ways we have found
to express and evaluate the integrals which are en™
countered in this calculation. The result will be given
only for the bound p-state integral Jo,„, but similar
comments apply to all of the other integrals. Our
original hope was that these integrals could be reduced
to a single series. We 6nally concluded that this was
impossible, and the reasons for this pessimism are
provided below.

Single series can always be expressed in terms of
hypergeometric functions. Similarly, there exist some
standard de6nitions of double series which are natural
extensions of the single-series hypcrgeomctric func-
tions. '6 For the present discussion, we need the following
definitions and relations'6

(n)-+-(p) (p')-
Py(n, P,P',Y,oo,y) = Q x"y", (AI1)

m, o o (+)

(n)-&n')-(p)-(p')-
Fo(n,n', P,P',y,x,y) = Q — x"y", (AI2)

(y)„+„m!n!

Fo(n,n', P,P',v =n+n', *y)= L1/(1 y)'j—
XF,En, P, P', n+n', *,—y/(1 —y)j, (AI3)

S. S. Jha, Phys. Rev. 145, 500 (1966).
~6 Hjgher Transcendental Ii@nctions, edited by A. Erdelyi

(Mcoravr-Hill Book Co., Nevr York, 1953), Vol. j., Secs. 5.7
and 5.8.

lC K

Poi 1—«, 3, —«, 2—e, 4—«, 1—to, —
+to P(4—«) k to

These F3 functions have the characteristic that
n+n ='y, so one can relate them to a Py by uslllg (AI3).
Furthermore, by using an additional Euler transforma-
tion among the Fq functions, "this can be written

J., ()=-'9'~(1—)j&n/~(3 —n
XFg(2, v+1, 2—n, 3—«, 1—fo, 4)—P«/el'(4 —«)j
XP~(3, oo+2, 2 I) 4 —«, 1——&o, 4)) ~ (AI5)

Our basic integrals such as J„,„can be expressed com-
pactly as standard series, either of the type Iis or,
alternatively, as I j, This explains our pessimistic
conclusion that it was impossible to reduce these
further to obtain simple series. Mathematicians have
constructed these standard double series because of the
impossibility of reducing them further. The Fj form
was not used for numerical computation because for
large values of the m-quantum number it does not
converge very rapidly.

One may also use the integral definition (AI4) to
obtain (AI5) directly. First we rewrite the basic integral
(2.14) as

«o co p1+~ x- « -o—o

J„,.(.)=—
A~ ~+-,'—

2 o it 2e

K

X ~SNOW~
(g+g )m+1 2+ (~+g )o+o

(AI6)

If we now make the variable change I= (1+&) ', we
just get integrals of the type (AI4). This leads directly
to the result (AI5).

Finally, we had promised a short derivation of the
double series (2.15). This can be done by using the



G. D. MAHAN 170

binominal expansion for

o(2—n)g K&,
'

t+1 —P
~
(t+t )n 2 -l-

2n & o t! nl

When we use this expansion in (AI6), the integrand
becomes a power series in (t+to) '. Integrating each
term in the series yields (2.15).

APPENDIX II: POIARIZATION DEPENDENCE

Inoue and Toyozawa" calculated the dependence of
the s-state absorption upon the polarization e~ and e2 of
the two optical beams. In Eqs. (3.31)—(3.34) we sum-
marized their results for cubic crystals (0&) and our
results for d states. Here we will show how the calcula-
tion is done by outlining the steps for one of them,
the T2 state.

Essentially, one evaluates the matrix element for each
distant 6nal state, squares the matrix element, and
sums over all Gnal states. This seems incorrect for the
exciton continuum states, where one might sum over
6nal states before squaring. However, as is shown
below, the two methods are equivalent.

The T2 state is threefold degenerate, and we label
these states x, y, and z. Each of these three is a per-
missible 6nal state. For the z state, the M tensor has
the form M»&'& (To) = M„,&'&(To) and other components
vanish. For the z state of T2 we get

8 8
o „M„.&*&

op&, =M»&*&(To)
BXy B~

82 82 82
X imp + mtp +/Jp

By8y 8$8$ 8$8y

82 82 g2

+m mp +npl + npm . (AII1)
By8$ By Bg 8$ Bz

A similar result is obtained for the x and y states by
permuting indices. The derivatives with respect to
primed and unprimed variables act upon G(r,r') as
r'-+ 0. Let us now consider how the operator (AII1) is
evaluated for an exciton continuum state. We wish to
evaluate (3.5) for the 6nal-state wave function (2.20).
An operator of the type 8'/BxBy creates an exciton
state with the symmetry Yo, „ in (3.6). When one

integrates in (3.5), the result is proportional to
k,k„f~,o(K); the k,k„ factors comes from the angular
integral of Po(coso&) Yo», and the r integral gives J„,o.
If we use the spherical coordinates of lr= (k,Ho, yo), this
term may be written as Yo, „(Ho,ohio)J„,o(K). Similarly,
the derivatives of the type 8'/Bx' give exciton states of
symmetry Fp, F2,p, and F2, The integration over d'r
in (3.6) gives terms proportional to Fo(Ho, o&o)J,,o and
Yo,o(Ho, o&o)Jp, o and Yo,,(Ho, qo) Jp, o. The total results of
putting (AII1) in (3.5) is

Mg„&'&p e-& ~2 4
Ig, &*&(n,P) = —Q(4s.)

gV 3

X J.,oYo~l'(1 —i») ~(t mp+m tp)

t I (3—o~) ]
+Jp, a +15 —Yo,o(l mp+m tp)

v3

Yo—,(m l, p t m—p) Yo—,„(l t,p+m„mp)

npl Y—,,„, npm —Fo,,. (AII2)

The functions Fo Yo,o, etc. refer to (Ho, qo). A similar
equation results when evaluating I& ) and I(». These
latter two can rot be obtained by permuting indices
in (AII2), because x', y', and s' contain different com-
binations of F2, p and F2, In order to evaluate the
absorption coefficient, we must square (AII2) and
average over angles dQ~. Since the angular functions
Fp, F2,p, etc, , are orthogonal, one gets results equivalent
to squaring them separately. In e6ect, there are eighteen
di6erent final states —six angular functions Fp, F2,p, etc.,
for each of the three states (x,y, s) of 7&.

An additional complication arises because there are
two terms in (2.2). These arise because the photons can
be absorbed in either order. For each of the eighteen
states, one must add these two terms before squaring.
For example, the last term in (AII2) gives an absorption
coefficient proportional to

~
m&nof p, o(K&)ym, n&J „,o(Ko)

~

'.

After summing up all of these contributions, one gets
the result in (3.36).


