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Excitonic Insulator in a Magnetic Field
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The eBects of large magnetic fields on the excitonic insulator are considered. Since the excitonic insulator
does not display a Meissner effect (according to a recent paper by Jerome, Rice, and Kohn), a Hartree-Fock
ground state can be expressed in terms of Landau-level basis functions. A magnetic-Geld-dependent phase
diagram and the magnetoconductivity are discussed. The excitonic insulator, not yet observed experi-
mentally, may be observable in high magnetic fields at normal pressure.

L INTRODUCTION

HE excitonic insulator has been discussed in a
number of recent papers. '-" This new phase,

not yet observed experimentally, is expected to occur
in solids with bandgap or band overlap less than the
exciton binding energy. Below a critical temperature,
the single-particle energy spectrum contains a gap
similar to the energy gap in a superconductor. The
ground state is a coherent state of excitons rather than
the flied valence band, empty conduction band of a
normal insulator. Diagonal long-range order exists in
the electron assembly, characterized by the wave
vectors in the Brillouin zone which separate valence
band maxima from conduction band minima (of the
normal phase). Collective excitations obey an acoustic-
mode dispersion relation. '

Recently, the phase transition characteristics have
been discussed by Kohn. ""The preliminary results
indicate that passing from low-density to high-density
limits at zero temperature involves an infinite sequence
of second-order phase transitions and excitonic phases.

We consider the excitonic insulator in arbitrary
magnetic Geld. Although it has been suggested that for
triplet exciton states the excitonic insulator will display
antiferromagnetic ordering, "' at the present time
we will consider only a spinless system. The total charge
of the basic group is zero, which precludes the Meissner
effect according to arguments due to Yang. " (A direct
proof occurs in Ref. 6 as well. ) Therefore the excitonic
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insulator in a magnetic field can be conveniently
described in terms of Landau-level basis functions.

Two principal sects occur when a. magnetic Geld is
applied:

(1) The bandgap is replaced by an effective bandgap
which has been increased by the cyclotron energies of
e=o Landau levels in valence and conduction bands"
(in the absence of spin). The phase diagram is no longer
centered about G=O, but occurs near G+-Az~„,= .OG
is the bandgap (or band overlap for negative values)
and p, indicates the reduced mass.

(2) The exciton binding energy increases with
magnetic Geld. ' " Representing the magnetic-field-
dependent binding energy by Ee(B), the excitonic
insulator regime Ee(H) &G—+shia„,&Ee(B) expands
as the magnetic Geld increases.

In the following sections we will discuss the magnetic-
Geld-dependent ground state, phase diagram, and
electrical conductivity. Possible observation of the
excitonic insulator phase in high magnetic fields at
normal pressure will be considered, in contrast to the
high-pressure experiments required when the Geld is
zero.

H. GROUND STATE

In this section, we will discuss the ground state in
terms of the stationary states of spinless single particles
in a magnetic field, using a BCS type of variational
calculation. " Consider spinless particles with single
valence and conduction bands which have isotropic
and quadratic E versus it relations, and in which the
band extrema are separated by a wave vector w in the
Brillouin zone. Choosing the field H in the s direction
and the gauge A~ ——( yH, O, O), the single-p—article
wave functions are

y (x)= ~ts,k.,k.)=e'"*+"*'XQ+(k,/m )) (1)

where j refers to band e or band b, and the crystal has
unit dimensions. The X„arenormalized one-dimensional
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harmonic oscillator functions. Figure 1 shows the
magnetic-Geld-dependent band structure for reference.

Consider the operators

f.(x)=Z GA (x)

I

I

I

ne2

neP

and
02(x)=Z f A-(x).

(2)

a and b are fermion destruction operators for Landau-
level states in bands a and b. Summations are over the
Brillouin zone. We take for a model Hamiltonian

G+f~gzpc
p p, C

3'.= Q yzt(x) e;(x)P;(x)dx
j~,b

1+- p(x)p(x') V(x—x')dxdx', (3)
2
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I

I

I
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I

I

(b)

n=o

n=l

where
e, (x) = —22G+ (22n,)-I(V+isAII)2,

es(x) =-,'G—(22Ns) I(V+ieAII)2,

(A=c= 1),
(4)

and the charge density is represented by

p(x) =6'(x)4"(x)+4' '(x)f (x). (5)

V(x—x') is the Coulomb interaction screened by an
effective dielectric constant.

We introduce a Hartree-Pock trial wave function for
the ground state

FIG. 1. (a) Band structure in the absence of a magnetic field.
(b) Band structure in a magnetic field, but without regard to
intrinsic spin.

(11)

(12)
where

obtained by Des Cloiseaux' and by Jerome, Rice, and
Kohn (JRK),e as they did not include all single-particle
kinetic terms from the valence band. These terms do not
contribute to subsequent calculations in any case.)

Minimizing 5; we obtain

I-= l.s (1+e-/&-)3'"

e-= L2 (1—e-/&-) j'"

le&=II c *Ivac&. (6) 6a= g 65 CX kg CL (13)

+2—sr++2 (14)c * creates an electron in a linear normalized combj. na-
tion of band a and band b Landau-level states:

Ca =SaQa &a~a.

We have chosen the phase of 6„,which is arbitrary, as
zero. The gap function satisGes

(&)

We obtain a trial value for the energy

Iv=(+l3:I+&-Z () -'+Z ~ () -'
lL =Q V,.

a&

Equation (15) may be written as

(15)

where

+ Q Vaa&la'Uana~ea& g (8)
$ 2-2 1/2

G+(n+ —)og„,+ — +4& 2 t( )
2p

V = V x—x' * x x'

Xy..*(x')y..(x)dxdx'. (9)

The single-particle energies are

ea(gr)= ea(nag&az) = 2G (na+2)ogaz (22na) kaz

es(gr) =-',G+ (ns+2)ees. + (22ns)-lks. s,

where, k„,k„etc., are measured with respect to the
band extrema. Intraband electron-electron interactions
do not appear in (8) in this simple model due to the
exclusion principle. (Single-particle terms are not
completely analogous to the corresponding terms

=Q V g(n'), (16)

$(n)=h /2E .

M. PHASE DZAGRAM

The wave equation for the exciton' in the Landau
representation is obtained by expanding

I (rlr2) P I (rg)giga (rl)ga(r2)

~R. S. Knox, in Solid State Physics, edited by F. Seitz andD. Turnbull (Academic Press Inc., New York, 1963), Suppl. S.
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phase diagram to be similar to the G&0 regime at zero
Geld, although the extent of this regime may be re-
duced at high Gelds.

The exciton binding energy as a function of magnetic
Geld is shown in Fig. 2.~7 ~8 The zero-Geld phase diagram
of Ref. 3, 6 versus G, is scaled on both axes according
to Es(B) when a magnetic 6eld is applied. The scaled
diagram is shifted on the G axis by —-,'Ace„..At G+ Issue„,
=0& tllc gap function IllaxlxllllII1 ls A~gx= (8//ll )FB(H').
Figure 3 illustrates the magnetic-Geld-dependent phase
diagram.

0
0 20

and the result is

k.'
(IS+s)~..+ +(l~s(&) I

—s~».) i(n)
2p

Fzo. 2. Binding energy of the exciton as a function of magnetic
Geld, after Yafet, Keyes, and Adams (see Ref. 1'I).

IV. MAGNETOCONDUCTIVITY

We vrill consider the longitudinal dc conductivity
using the general response theory derived by JRK.s The
response of the excitonic insulator to an electric GeM
perpendicular to H is considerably more dificult to
calculate since in this case oG-diagonal elements of the
Green's functions must be determined. (However, the
cyclotron resonance can be determined in a straight-
forward manner).

From the equations of motion of the Heisenberg
operators, diagonal elements of interband and intraband
Green's functions in the Landau basis are, at zero
temperature, '

=XV..f( ). (18) e—e.(n)
Gs(n) e) =

I e—e.(n) jLe—es(n) j—a.' (20)

Comparing (18) with (16), 6=0 when G)Fs(H)
—xIhe1„,. 6 has a maximum value at G+-,'Ace„,=0, and
the phase diagram for G+sker„.&0 is identical in form
to the zero-Geld diagram calculated by Kozlov and
Maksimov for Q&0.'

In the semimetallic band. -overlap regime, the phase
boundary is determined by changes in the dielectric
function which reduce the effective interaction V(x—x')
as band overlap increases. When the magnetic Geld is
absent, the effective dielectric constant is approximately

Ep
E q)=

q'+ 1/)1s

as taken by Kozlov and Maksimov. Ep is the static
dielectric constant and X is the Thomas-Fermi screening
length. 2» Although we can assume that Ep is only
slightly changed by an applied. magnetic Geld, the
complete magnetic-Geld-dependent dielectric function is
considerably more complex than (19).~ "We will not
discuss this question in detail in regard to the excitonic
insulator, but will only comment that w'e expect the
gross characteristics of the G+-sIhco„,(0 part of the

"J. M. Ziman, EIedrons used I'honda (Clarendon Press,
Oxford, England, 3.9N).

~' E. N. Adams and T. D. Holstein, J. Phys. Chem. Solids 10,
254 (1959).

~ P.¹Argyres, Phys. Rev. 148, 548 (1966).
~' 0, Wolman and A. Ron, Phys. Rev. 148, 548 (1966).

F'(n, e) =
Le-"(n))Le- es(n) j-&-'

Gs(1,1')=—i&2'A(1)|t s'(1'))

=KG (., )~.'(.)~.(.') wL (f -f)j (22)

G.(1,1')=-'&2~.(1)~. (1)),

F'(»1') = —&~a.(1W '&1')),

F(1 1')= —i&2'A(1)~t"'(1'))

(24)

T is the time-ordering operator and thc vs, rjable (1) in
the Heisenberg operator denotes (xI,fI). Expressions
analogous to (20) and (21) are obtained for G, (n, e)
and F(n, s).

The gap function is

X) t=i Q Q V 'Ft(n', e') (26)

and Eq. (15) ls 1'ccovex'cd, llslIlg (21) in (26).
We introduce a vector potential A(x, f) as s, perturbs,

tion to the Hamiltonian of Eq. (3), represent1ng
weak. electric Geld. With the perturbation the single-
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where j=u, b. In the last term, p is the density matrix
and v the unscreened Coulomb potential. The bar
over the variable denotes integration.

The diamagnetic current response is the usual
expression

Je(1)=—(n,e'/p) A(1), (28)

where e, is the number of carriers in either band.
(Apart from the small Landau diamagnetism, dia-
magnetic and paramagnetic currents due to A~ cancel. e)

The paramagnetic response is given by

J"(1)= —~e LV~+ieA~(1) Vq +—ieA~(1')7

particle terms become

e
e, '(1,1')= e;(1)——

I iV~—eAn(1)7 A(1)B(1,1')
mj

—v(1—1.)(p(1 ' A A)&8(1,1'), (27)

SEM I METAL

t

I

I

I

t

I

I

I

I

- -&+pc

SEMICONDUCTOR

0 E~(H)- ~ &(g)~c

Applying the current operator of Eq. (29), we obtain

—Z8

JP(1),= P (2k,+g,)'LG, (a', e+~)G, (~,e)
2m' a,a'

FIG. 3. Magnetic-Geld-dependent phase diagram of the excitonic
insulator, ignoring spin.

kg(1,1')
m —I

8A(2)

8G,(1,1')—ma ~ A(2)
8A(2) p g where

—&(a', e+&)P(e, e)7 exp(ice(i, —4)}
X|t (x~)p .(x~)A .(g,&o)„(32)

=Jp(1)+J.&(1). (29) Aa» (g,~).=A(q, ~). P». ( x)me& *'Pa(x,)dx, (33)

bG(1, 1')/bA(2) denotes the functional derivative, which
can be obtained from 4,'(1,1')/BA(2) by using the
general response equations derived by IRK. Since the
equations are lengthy, they wi11 not be repeated here,
and the reader is referred to Eqs. (3.27)—(3.31)of Ref. 6.

8e (1,1') —e

bA(2)
(LV,+ieA~(2) —Vp+ieA~(2') 7

2m~i

Xb(1-2)8(1'-2')}~ 2

—e(1—1)l 5(p(1)&/8A(2)76(1', 1). (30)

Landau transforming the response equations, we are
led to

bGg(1, 1') —e
g (k, '+k, )l Gg(n', c')Gg(n, e)

8A (2)~ 2mb a,a'

—P(cK, e )Pt(cK, e)7 exp(imam(e e )+$11(e e)}-
Xy.*(x,)y.(x,)y. *(x,)y. (x )

+(terms in e and V „).(31)

The interaction terms are not expressed explicitly since
we will be confining the discussion to the equal mass,
semimetallic limit in which all such terms eventually
cancel by particle hole symmetry. ' Henceforth they
will be dropped.

I
'&—= In', k.+q., k,+&,&,

ln&—= In,k„k,). (34)

Vile will be concerned with the limit q-+ 0 and near
that limit the A, (q,a&) are vanishingly small unless
n'=n. Considering only the n'=n terms in (32), and
noting that the Green's functions do not depend on
k or k,', the summation over k„(q=0+),yields

ze c
Jp(0+,co),= Q (2k,+g»)'LGy(n, k,+g. ; e+a&)

2~m e,k»

( k»+ g») ( k» mes,
hm Z x-'I y+ lx-I y+ — =- — (36)

ma&, i k cue, 2»
'

valid when the cyclotron radius is much smaller than
the dimensions of the crystal.

@le proceed directly to the Boite temperature
generalization of (35) by replacing the functions G, F
with the temperature-dependent Green's functions

8~(1,1')= —i&(2'A(1)A'(1')&&

&(1,1')=-i(&2'4.(1)k '(1')», (37)
+(»1')= —((2'0 (1)f. (1')&).

XGs(n, k„e)—F(n, k,+g„e+o&)
XFt(n,k. ; e)7A (g,(o),I, p+, (35)

where we have used
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and thus the low-frequency conductivity is
jeff

I

I

I

I

I

I

C where

ie'co, k,262
o.,(0o&) = g f(n,k,)

AM»& E
e2neff

(42)

I'zG. 4. I'" versus temperature. The dc conductivity of the
excitonic insulator in a large, longitudinal magnetic Geld is
s«'(H, T)o, (H, T)/2e„v/here oo(H, T) is the temperature- and
field-dependent conductivity of the normal phase. The field
dependence of I"/ enters through the dependence of LL on En(E).

e M k
limJ" (0,&o).=

2~m n kz En, k

X[1—2f(n, k,)]U(0,o/) I o (3&)

where f(o) f(n, k=—,) =Lexp(E /kT)+1] ' is the Fermi
distribution function, and E is specified by Eq. (14).

The diamagnetic contribution for the equal-mass
semimetallic case is

e +c
Je(0,0),= Q 2t/. 'A (0,0),

7t, kg

—e co

P (1—e„/E )A(0,0).
2m

(39)

These functions are obtained from (20) to (25) using
the fact that the real parts do not depend on tempera-
ture and the imaginary and real parts are related by a
well-known dispersion equati. on." The resulting func-
tions are identical in form to the zero-Geld functions
obtained by JRK, Eqs. (6.3) of Ref. 6. The current
density is obtained using these expressions for b and
5 in (35) and"„the'corresponding equation for J,"(0+,a/), .

~.(&y) mar, mes,
k.(Er)

&z- 2g 2~

an expression for n" is obtained,

(44)

n"'= 2n,

=2n.

oo de +2 -
/e 9++2)l/2 -—1

(e '+6')s/' k k'T' /

00

{expLA(v'+1)/kT]+1) '. (45)
(ps+ 1)s/s

Equation (45) is identical in form to the zero-field
expression obtained by JRK. When +=0 at T)T„
where T, is the critical temperature, n"'=2n, . When
6/0 and T-+ 0, n'"=0. n"' is depicted schematically
in Fig. 4.

An expression for the real part of the conductivity
can be obtained by introducing a Gnite level width
I'=(1/r), where r is some average lifetime. We let
o/ —+ ~+i/r in Eq. (42), and obtain for the real part of
the dc conductivity,

m~, k.'6'
n"'=- g Lexp(E„,s,/kT)+1]—'. (43)

&,&z mE„,Je,

In the materials of greatest interest such as the
semimetals, in the excitonic insulator regime near
G+-', A&o„,=0 the effective range of band overlap will
include only the n=0 Landau level, all other levels
falling completely above or below. Using this fact, and
also the number of free carriers in the extreme quantum
limit, in either band,

Re (o.,)=n"'e'r/rn (46)
using (12) in the second equation. It can be shown by
integrating that the diamagnetic current cancels the
temperature-independent term of (38), and the total
current is

—e or

g ((l,()),= p — f(n, k.)A (0,0).. (40)
xm

In (46) we have taken r, a function of magnetic field
and electron energy, outside of the integral in n"'. Since
the integrand is sharply peaked at the Fermi energy,
this procedure may be a reasonable approximation, with
r referring to an average lifetime at the Fermi surface
(in the presence of a magnetic field).

V. DISCUSSION
The vector potential is

—Z

A (O,o/), = &,(o/)

~'L. D. Landau, Zh. Eksperim. i Teor. I"iz. 34, 262 (1958)
/English transL: Soviet Phys. —JETP 7, 182 (1958)j.

It must first be emphasized that the quantum limit
for a semimetal with free carriers due to band overlap

(41) is not similar to the quantum limit for a metaL In a
metal, the Fermi energy increases when the n=0
Landau level exceeds the zero-Geld Fermi level. In the
absence of intrinsic spin, we expect the contrary
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behavior in a semimetal, with a decrease of charge
carrier density to zero (T=O) when the n=O Landau
levels of valence and conduction bands fail to overlap.
At higher magnetic fields a decrease of the Fermi level

will occur as the ted=0 level of the valence band moves
downward from the band maximum.

In our calculations we have ignored intrinsic spin,
and we will now show that no complications arise from
this source. For the Wannier excitons of this theory,
appropriate to materials in which

~
G t

is small, spin-orbit

coupling is practically identical in bound and free states,
and intrinsic spin does not contribute a term to the
binding energy Es(H). However the effective band gap
becomes G*=G+ sr A&p„,+-',Aoi„&-,'Aces„where App„and
Aor~, refer to spin splitting of v=0 electron and hole
Landau levels. Because of screening by quasifree
electrons, we are concerned only with the regime
corresponding to the minus signs. (Excitonic insulator
regimes which might be expected to occur for the other
cases are "screened out. ")

The effective band gap 6* will increase or decrease
with increasing magnetic GeM if spin splitting is
respectively smaller or greater than the Landau-level

spacing. The excitonic insulator phase may be intro-
duced in either semimetals or small bandgap semicon-
ductors by sufficiently large magnetic fields (or be
removed, if occurring at zero Geld in some complex and

poorly understood substance, such as an organic
compound. )

Zittartz has considered the effects of impurity scatter-
ing on the excitonic insulator, ~' and obtained an
impurity-dependent critical temperature

kT, =kT, p 7iA/4r; k—T,&0

r(T, =O) ~A/kT. p.

T p is the critical temperature in the absence of impuri-
ties and v is the relaxation time. )Equation (47) can be
justified by a simple uncertainty principle argument. $
With T,p the order of one degree Kelvin, and a Fermi
velocity &10s cm/sec, the critical mean, free path for
kT,&0 is &10—' cm. Contrary to the discussion in
Ref. 8, this is not an experimental obstacle as mean
free paths the order of 1 cm have been obtained in
bismuth" and several other metals (Mg, Sn, Ga, Tl).
In this case, Eq. (46) is representative.

The scale of the phase diagram of Fig. 3 depends on
the binding energy of the exciton in a magnetic field,
Fig. 2, and position along the G axis is determined by
the cyclotron energy (and also the spin splitting).
Variation of Err(H) and the ratio —',A&p„,/G are greatest
in materials which have low effective mass, high
dielectric constant, and small bandgap or band overlap.

~ A. M. Toxen and S. Tansal, Phys. Rev. 137, A211 {1965).

The semimetals arsenic, antimony, and bismuth are
favorable in this regard, and we consider bismuth
where p~0.01',"and Ep 100."The ratio of cyclotron
energy to the effective rydberg is proportional to
(m,Ep/Is)s, and this factor may be as much as 10
greater in bismuth than in the hydrogen atom. At 50
kG, ~A+„, 2500 Ry*. Using Fig. 2, and the fact that at
high Gelds the exciton binding energy is approximately
proportional to B'Is, we find Err (50 kG) 20 Ry*. (For
bismuth, Ry* 1.4X10 ' eV.) The total number of
electrons and holes will be greater than 10'4 cm—' in
the new phase. The transition temperature is order
unity times 6 or EJr(H), and we find T,(50 kG) 3'K
for bismuth, which compares with 0.15 K when the
magnetic field is zero. Es(50 kG) corresponds to a
magnetic field range bH 400 G.

The phase diagram migrates along the bandgap axis
toward increasing or decreasing band overlap when
spin splitting is less than or greater than the Landau-
level spacing. (In Fig. 2 we have taken the spin splitting
as zero for simplicity. ) At 50 kG the cyclotron energy in
bismuth is as great as 0.03 eV. The zero-Geld Fermi
energy (band overlap) is 0.02 eV, and we can expect
that the excitonic insulator in the extreme quantum
limit will be attainable experimentally in materials
such as bismuth. The ratio of spin splitting to Landau-
level spacing in the semimetals is not yet well under-
stood, however, in bismuth the spin splitting is known
to exceed the Landau-level spacing considerably with
H along the trigonal axis. (If spin splitting and Landau-
level spacing are nearly equal, the effective band gap
is relatively insensitive to magnetic Geld. ) Recent
experiments show that in a Bi~,Sb alloy with "x"
suQiciently great to remove band overlap, band
overlap can be reintroduced by applying a large
magnetic field." (This alloy is somewhat unusual in
that mean free paths of free carriers remain long even
when x is several atomic percent. )

Experimental circumstances may favor observation
of the excitonic insulator phase in high magnetic Geld.s
rather than at high pressures. Pressure-control require-
ments are probably more exacting than present experi-
mental techniques permit. However the lower symmetry
in a magnetic Geld may introduce extraneous and
unwelcome effects which remove the excitonic insulator
regime, and which are. difficult to evaluate a priori.
Experiments to observe the excitonic insulator at high
magnetic Gelds in the Bi~,Sb alloy are being conducted
at the National Research Council of Canada,

» G. E. Smith, G. A. BaraB, and J. M. Rowell, Phys. Rev.
135, A1118 (1964).' W. S. Boyle and A. D. Brailsford, Phys. Rev. 120, 1943
(1960).

@N. B.Brandt, E.A. Svistova, and R. G. Valeev, Zh. Eksperim.
i Teor. Fix., Pis'ma v Redaktsiyu 6, 724 (1967) [Enghsh transl. :
Soviet Phys. —IETP Letters 6, 203 (196'7)g.


