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Using simple functions, upper and lower bounds for the Thomas-Fermi energies of atoms and homonu-
clear diatomic molecules at various internuclear separations are calculated which differ by less than 0.29,
in the atomic case and at most by 0.5%, for molecules. The calculation verifies that for this model molecules
are not stable for short and intermediate nuclear separations. The possibility of a long-range attraction is
also examined, and again the conclusions are found to be in agreement with Teller’s theorem.

I. INTRODUCTION

N the framework of the Thomas-Fermi (TF)

model,’3 the electron cloud in the atomic or
molecular system is treated as though it were a com-
pletely degenerate electron gas obeying Fermi-Dirac
statistics. Application of the statistical theory to a
neutral system leads to

p=\"32)73/2 , (1)

where p is the electron density, V is the electric poten-
tial, and N=21(37%)?%3 eap. Atomic units will be used
throughout. With the application of Poisson’s equation
and Eq. (1), the TF differential equation is obtained:

VIV =—dr ¥ Z3(r— 1) F4n\I2V2, (2)

where Z; is the charge of the ith nucleus and r; is its
position vector. Again the statistical theory can be
invoked to arrive at an expression for the total energy:

E=%A/p“%v—/Vdiv*%fVePd”'*‘ Un, Q)

where
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Furthermore it can be shown that the functional E,
derived from E by replacing p with any normalized
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trial density function p, leads to an upper bound for
the exact TF energy.*

Firsov® has demonstrated the existence of another
functional H which provides a lower bound to the TF
energy.
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The following restrictions hold for the trial function f:
(a) f <V in order that the second integral be real (if
f=Vx then H=— «); (b) f must vanish at infinity.
Also, the positive root is always taken in the second
integration in (4). For the exact solution f (that f
which completely maximizes &), one has the relation

f==Vep). ©)

In the calculation which follows we will use an
analogous relation to generate f, namely,

F==V.6). €]

Thus, two functionals, (3) and (4), are available
which are capable of yielding an upper and lower bound,
respectively, to the TF energy of an atomic or molecular
system.

In the atomic and in the molecular calculation, the
nuclear charge has been set equal to unity. This is not a
limitation since a scaling theorem exists in both the
atomic and molecular case.’ For an atom,

E(Z)=2Z"%E(1). (6)
For a homonuclear diatomic molecule,
E(R,Z)=Z"3E(RZ'Y31), (7

where R is the internuclear separation. Equation (7)
follows directly from consideration of Eq. (3) for a
homonuclear diatomic molecule.

II. ATOMS

The minimization procedure has been applied to the
atomic problem with good results by Jensen.” The trial

4 Reference 3, p. 31.

0. B. Firsov, Zh. Eksperim. i Teor. Fiz. 32, 1464 (1957)
[English transl.: Soviet Phys—JETP 5, 1192 (1957)].

8 Reference 3, p. 60.

7 H. Jensen, Z. Physik 77, 722 (1932).
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density used for the calculation was
== P ®
p="""" x) 1%
A 28

where 4 is a normalization factor chosen so that
Jpdv=2Z,x= (aZY%)"2, a is a variational parameter, and
P(x)=1+4C=x, where C is another variational parameter.
Using this density and the upper-bound functional (3),
Jensen obtained the results displayed in Table I. A poor
result was obtained for P(x)=1.
We have obtained a lower bound to the energy from
Egs. (4) and (5') using as an approximate density
Ze*
P= A x 3 ’ (9)

corresponding to P(x)=1 in the Jensen approximation.
Equation (5") then yields?

f= f lfi)lldv'=a24/3[1:—_:(x;1)]. (10)

X

Substituting (10) into (4), an expression for the lower-
bound energy is obtained. The first integral in (4),
Jf V*f dv, can be done analytically, whereas the second
integration f(Vy—7f)%2dv must be done numerically.?
With this simple choice for f, a surprisingly good result
is obtained after optimization with respect to the
variational parameter a. In fact, a smaller deviation
from the exact value is obtained than with the more
complicated function used in the upper-bound calcula-
tion. These lower-bound results are shown in Table I,
along with the upper-bound values and the exact TF
energies.

In Table IT we have tabulated an approximate TF
function @. This is defined as follows. Since V=V .+Vx
we have from (5) the exact solution

V=Vy—7f. (11)

This then suggests defining an approximate 7 according
to (10) and (11). From this 7 we calculate an approx-
imate dimensionless TF function defined as

¢=(r/Z)V. (12)
TasiE I. Calculations for atoms.
Energy (Z=1)
Method (a. u. a C
Jensen (upper bound) —0.76776 10.9107 0.265
Exact —0.76873 .o ..
This work (lower bound) —0.76920 4.1024

8 The integration is the same as that used to determine the
electrostatic potential produced by a spherically symmetric charge
distribution.

9 All computations for this work were performed on the CDC-
1604 computer.
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TasiE II. Dimensionless TF function.

t & (this work) @® @
0 1.000 1.000 e
0.05 0.932 0.935 0.97
0.10 0.877 0.882 0.89
0.20 0.790 0.793 0.79
0.30 0.720 0.721 0.71
0.50 0.612 0.607 0.59
1.00 0.433 0.425 0.42
4,00 0.107 0.108 0.109
5.00 0.0743 0.0788 0.0783

10.00 0.0170 0.0244 0.0207
20.00 0.00186 0.0058 0.0027

& Reference 11.
b Reference 12.

The exact ¢ satisfies the dimensionless TF equation®®
o= /1, (13)

where {=7/u, u=0.8853a,/Z'3, and o= (r/Z)V. Then,
using (10), (11), and (12),

F=e"*(x+1)=¢"195t"2(1,9058241).,  (14)

This approximate @ is compared with the numerical
solution of Bush and Caldwell" and also with Brink-
man’s*? approximation. Equation (14) shows reasonably
good agreement for such a simple function, although it
displays incorrect behavior as £— .

III. HOMONUCLEAR DIATOMIC MOLECULES
A. Intermediate Internuclear Separations

Teller'® and more recently Balazs'* have shown that
the TF model can not lead to molecular binding.
Firsov'® has performed a calculation utilizing the upper-
and lower-bound technique; however, it was not done
accurately enough to clearly point out that binding was
not possible. Townsend and Handler'® have solved the
TF equation numerically for the homonuclear diatomic
molecule. Their results for the intermolecular potential
indicate that binding will not occur for intermediate
separations. One of the objectives of the present calcula-
tion is to confirm, with the help of Firsov’s lower-bound
method, that binding does not occur. At the same time
it provides a simple analytical form for the molecular
electron density.

We have approximated the molecular density by a
superposition of the approximate atomic functions (8)
centered on nucleus 4 and B:

(15)

The parameter C in (8) is not varied but set equal to

ﬁmol= 5A+ﬁB .

10 Reference 3, p. 40.
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Taste III. Upper-bound molecular energies for Z=1
(hydrogen molecule) in atomic units.

Re a E—-Ux E—2ETF atom
0 13.75 —3.8693 ©
0.0780 12.80 —3.2430 11.1250
0.3296 12.14 —2.7160 1.8557
0.7789 11.55 —2.3412 0.4801
1.4278 11.21 —2.0911 0.1467
2.2647 11.04 —1.9290 0.0500
3.2829 10.97 —1.8231 0.0189
4.8091 10.94 —1.7524 0.0082
5.8597 10.92 —1.7038 0.0044
7.4190 10.92 —1.6707 0.0026
9.1610 10.92 —1.6443 0.0023

o 10.91 —1.5355 0.0019

a The energies were calculated for regularly spaced values of the reduced
quantity (aR)1/2,

the optimal atomic value. pmo1 was substituted into (3)
and the integrations were performed numerically. The
results are given in Table III along with the optimized
values of the variational parameter «. The electronic
energy E— Uy, as well as the potential-energy curve
(with respect to the exact separated TF atoms) are
given.

Similarly in the lower-bound calculations a super-
position of the functions used in the atomic calculation

was used: ; o
fmol= fA+fB-

The results of the lower-bound calculations are listed
in Table IV.

The results for the upper- and lower-bound calcula-
tions differ at most by about 0.5%, in the electronic
energy. It is particularly useful to study the lower-bound
values for the TF molecule since these can determine
with certainty if the molecule will be unbound in the
region considered. As long as H—2Err atom>0 the
molecule cannot bind. This is the case up to the separa-
tion R=7ay for Z=1. The results can be extended to
larger separations since the approximate lower bound
for the molecular energy A has been referred to an
exact separated atom system whose energy is —1.5375.
However, the separated atom energy for f is —1.5384.
Thus the lower-bound potential curve can be expected
to be lower than the exact curve by about 0.0009,
which is the difference in the approximate and the
exact separated atom energies, as R becomes larger.

(16)

TasiLE IV. Lower-bound molecular energies for Z=1
(hydrogen molecule) in atomic units.

R o H—-Ux H—2ETF atom

0 5.169 —3.8765 ©
0.1960 5.120 —2.9490 3.6905
0.8254 4.846 —2.3290 0.4200
1.9952 4.511 —1.9757 0.0629
3.7434 4,274 —1.7946 0.0100
6.0061 4.162 —1.7026 0.0013
8.7362 4121 —1.6523 —0.0004
11.9296 4.107 —1.6221 —0.0008
0 4.102 —1.5384 —0.0009
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This is sufficient to extend the instability range out to
the largest R tabulated, which is close to 12a, for Z=1.
For a molecule such as N, (Z=7) it can be shown with
Eq. (7) that binding should not occur in the TF sense
up to at least 6a,.

B. Large Internuclear Separaﬁons

As pointed out, one has at his disposal both an upper-
bound and a lower-bound functional for the TF system.
In the following section these expressions are used to
develop upper and lower bounds for the energy of a
diatomic molecule at very large separations and hence
provide verification of Teller’s theorem at long ranges.
For extended separations, the leading term in an R™!
expansion should be repulsive rather than attractive, as
is the case for real molecules (Van der Waals attraction).

If a linear combination of exact TF atomic functions!?
is used in (3) and (4), the following bounded expressions
for the total energy are obtained!® (where Z=1):

E(R)= )\/ [3 (poa+poB)*3—5(poa?*+pos?3)]

X (poa+poz)dv
1
-/ (“+*—)(P04+P03)d7l+— ()
2 Y4 7B
and
HE)= [ T ouackoon)~Fpua s
X (poa?*+pop?®)dv
1

- / (M rB)(porl-Poa)dv'i-—- (18)

For the TF atom one has the expression

A 1 rop
Err atom™= /poalsdv—-‘ / ‘—odv.
10 2J r

With Eqgs. (17)-(19), one obtains the potential-energy
curves relative to two TF atoms for the upper bound;

(19)

Ey(R)=E(R)—2Er1r atom

=%)\/[(pOA-I-POB)“/“—pMW—p035’3]dv

-1 f (0o4?*pos+pon?3pos)dv

1 [/poa pon
—= / ( +— )dv—l———, (20)
2 B 74

7 pos and pop refer to the exact TF atomic densities placed on
nucleus 4 and B, respectively.
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and for the lower bound,

HL(R) = H(R) - 2ETF atom

=§\ / Lo04®/3+pos®*— (poa?*+pos?®)*/* Jdv

4N f (poa?*p08+poB*®poa)dv
1 POA PoB

= ( )dv—l———. 1)
2 B 74

Since (20) and (21) are symmetric about the reflection
plane of the nuclei we need only consider the half-space
containing nucleus 4 when examining the behavior of
the integrals for large R. Then fdv’ will denote an
integration over the half-space containing nucleus 4 and
Jdv is the integration over the entire space. In this
half-space poa>pos. This allows us to expand certain
expressions in (20) and (21) using a Taylor series:

poz S/p
<p04+p03)5/3=p045/3[1+— —E+—(f) o] @
3 poa 9\pos

and

2/3
PoB
(9042/3—P032’3)5/2=9045/3[1+( )

P0A

15 4/3
+~(—p~°f) e
8 \pos

Upon substitution of (22) and (23) into (20) and (21)
and using

po4 poB
—dy= | —dv,
B 74
po4

Ey(R)=X\ / [poBpoa®®—poapos?®Jdv'— / —dv—{——-

rB

we have

6
+ / [“?POB”""F%)\IJOszoA"” 4+ -]dv’ (24)
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and
poa 1

Hr(R)=\ / [ro5p04*— pospos?*dv'— / —‘+’]‘€‘

B

4/3

+ f [$N00s®/*—$Npos*/Spoa /- - - Jdv'.  (25)
For very large R, the higher-order terms in the last
integration in (24) and (25) can be shown to vanish at
least as fast as R~7 by using the fact that

3N\31
lim Po= (—) —_—. (26)
>0 T 76

‘Hence for very large R, Ey(R)—Hr(R)~R-", so any

term of lower order than R-7 in either (24) or (25) is
exact for large separations. Thus up to order R~ one
can write the TF interaction potential as

Enat(R)=X / Lpospoa®*— poapos®*]dv’

poa. 1
- / —dv+—.
B R
With some analysis and the use of (26), one can show

that
Emol (R) =

3\3
C= (*) )@przlsdv_
Y

Since C>0 the leading term in the expansion for large
R leads to repulsion.

27)

CR-, (28)

where

IV. CONCLUSION

The results of this investigation are in complete
agreement with Teller’s theorem. At normal separations
this was demonstrated by a calculation, while at very
large separations the leading term in the R—! expansion
was shown to be repulsive. At the same time this
calculation also provides a simple approximate expres-
sion for the electron density of homonuclear diatomic
molecules in the TF framework.
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