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Using simple functions, upper and lower bounds for the Thomas-Fermi energies of atoms and homonu-
clear diatomic molecules at various internuclear separations are calculated which diBer by less than 0.2%
in the atomic case and at most by 0.5 jo for molecules. The calculation veri6es that for this model molecules
are not stable for short and intermediate nuclear separations. The possibility of a long-range attraction is
also examined, and again the conclusions are found to be in agreement with Teller's theorem.

where Z; is the charge of the ith nucleus and r; is its
position vector. Again the statistical theory can be
invoked to arrive at an expression for the total energy:

where

E= ss X psi'ds V~pd—s ', V,pds+ U—~—, (3)
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Furthermore it can be shown that the functional 8,
derived from E by replacing p with any normalized
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Space Administration Grant No. NsG-275-62.' L. H. Thomas, Proc. Cambridge Phil. Soc. 23, 542 (1927).' E. Fermi, Z. Physik 48, 73 (1928).'P. Gombas, Die Statistische Theoric des Atoms Nnd ihre
Anmendmgen (Springer-Verlag, Vienna, 1949).

I. INTRODUCTION
' 'N the framework of the Thomas-Fermi (TF)
~ - model, '—' the electron cloud in the atomic or
molecular system is treated as though it were a com-

pletely degenerate electron gas obeying Fermi-Dirac
statistics. Application of the statistical theory to a
neutral system leads to

y-3/2 V3/2

where p is the electron density, V is the electric poten-
tial, and A=sr(3s')'I' eas. Atomic units will be used
throughout. With the application of Poisson's equation
and Eq. (1), the TF differential equation is obtained:

'7sV= —4s g Z;5(r—r;)+4s.X si'Usi',

trial density function p, leads to an upper bound for
the exact TF energy. '

Firsov' has demonstrated the existence of another
functional Bwhich provides a lower bound to the TF
energy.

H= fV'sf—ds sg si—s (V~ f)sl—sds+P~. (4)
8x

The following restrictions hold for the trial function f:
(a) f(VN in order that the second integral be real (if
f = V~ then H —~ ); (b) f must vanish at infinity.
Also, the positive root is always taken in the second
integration in (4). For the exact solution f (that f
which completely maximizes H), one has the relation

f= V.(p). —
In the calculation which follows we will use an

analogous relation to generate f, namely,

f= V.(p)— (5')

Thus, two functionals, (3) and (4), are available
which are capable of yielding an upper and lower bound,
respectively, to the TF energy of an atomic or molecular
system.

In the atomic and in the molecular calculation, the
nuclear charge has been set equal to unity. This is not a
limitation since a scaling theorem exists in both the
atomic and molecular case. ' For an atom,

E(Z) =Z'I'E(1) .
For a homonuclear diatomic molecule,

E(E,Z) =Z'jsE(RZ"s, 1), (7)

where E is the internuclear separation. Equation (7)
follows directly from consideration of Eq. (3) for a
homonuclear diatomic molecule.

II. ATOMS

The minimization procedure has been applied to the
atomic problem with good results by Jensen. ' The trial

4 Reference 3, p. 31.'0. B. Firsov, Zh. Eksperim. i Teor. Fiz. 32, 1464 (1957)
LEnglish transl. : Soviet Phys.—JZTP 5, 1192 (1957lg.' Reference 3, p. 60.' H. Jensen, Z. Physik 77, 722 (1932).
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density used for the calculation was TABLE II. Dimensionless TF function.

(8)

where A is a normalization factor chosen so that
fpdv=Z, x= (nZ'/'r)'/' n is a variational parameter, and
E(x)= 1+Cx, where C is another variational parameter.
Using this density and the upper-bound functional (3),
Jensen obtained the results displayed in Table I.A poor
result was obtained for E(x)= 1.

We have obtained a lower bound to the energy from
Eqs. (4) and (5') using as an approximate density
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Z 8
p=

A x'

corresponding to E(x)= 1 in the Jensen approximation.
Equation (5') then yields'

-1—e-*(x+1)-
(10)

x2

Substituting (10) into (4), an expression for the lower-
bound energy is obtained. The first integral in (4),
ff V'f dv, can be done analytically, whereas the second
integration f(V~ f)'/'dv m—ust be done numerically. '
With this simple choice for f, a surprisingly good result
is obtained after optimization with respect to the
variational parameter 0,. In fact, a smaller deviation
from the exact value is obtained than with the more
complicated function used in the upper-bound calcula-
tion. These lower-bound results are shown in Table I,
along with the upper-bound values and the exact TF
energies.

In Table II we have tabulated an approximate TF
function p. This is defined as follows. Since V= V,+Vs/

we have from (5) the exact solution

V= Vs/ f—
This then suggests de6ning an approximate V according
to (10) and (11).From this V we calculate an approx-
imate dimensionless TF function defined as

q = (r/Z) V. (12)

TaBLE I. Calculations for atoms.

The exact y satisfies the dimensionless TF equation"

~« ~s/s/tt/s (13)

III. HOMONUCLEAR DIATOMIC MOLECULES

A. Intermediate Internuclear Separations

Teller" and more recently Balazs' have shown that
the TF model can not lead to molecular binding.
Firsov" has performed a calculation utilizing the upper-
and lower-bound technique; however, it was not done
accurately enough to clearly point out that binding was
not possible. Townsend and Handler" have solved the
TF equation numerically for the homonuclear diatomic
molecule. Their results for the intermolecular potential
indicate that binding will not occur for intermediate
separations. One of the objectives of the present calcula-
tion is to conkrm, with the help of Firsov's lower-bound
method, that binding does not occur. At the same time
it provides a simple analytical form for the molecular
electron density.

We have approximated the molecular density by a
superposition of the approximate atomic functions (8)
centered on nucleus A and 8:

where t=r/P, P=0.8853as/Z'/', and y= (r/Z) V. Then,
using (10), (11), and (12),

V7
=e *(x+1)=e ""'"(1.905t'"+1). (14)

This approximate g is compared with the numerical
solution of Bush and CaldwelP' and also with Brink-
man' s" approximation. Equation (14) shows reasonably
good agreement for such a simple function, although it
displays incorrect behavior as t —+ ~.

Method

Jensen (upper bound)
Exact
This work (lower bound)

Energy (Z= 1)
(a. u.)

—0.76776—0.76873—0.76920

10.9107
~ ~ ~

4.1024

8 The integration is the same as that used to determine the
electrostatic potential produced by a spherically symmetric charge
distribution.' All computations for this work were performed on the CDC-
1604 computer.

Pmol =PA+Pe ~ (15)

The paramete~ C in (8) is not varied but set equal to
"Reference 3, p. 40.
n V. Bush and S. H. Caldwell, Phys. Rev. 38, 1898 (1931)."H. C. Brinkman, Physica 20, 44 (1954)."E.Teller, Rev. Mod, Phys. 34, 627 (1962)."¹L. Balazs, Phys. Rev. 156, 42 (1967)."O. B. Firsov, Zh. Eksperim. i Teor. Fis. 33 696 (1958)

/English transl. : Soviet Phys.—JETP 6, 534 (1958)).
'6 J. R. Townsend and G. S. Handler, J. Chem. Phys. 36, 3325

(1962).
'
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