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in the figure) lie between 35 and 40 meV, while the
accepted ionization energy of Zn in GaP is 62 meV.? In
the absence of complete Hall data for these samples this
is seen as satisfactory agreement. As a further test of
this model we have performed similar measurements on
GaP doped with Cd and O, and find an activation
energy of about 70 meV, which is consistent with the
known difference in ionization energies of the two
acceptors Cd and Zn.® The green exciton in Cd+O-
doped material appears at the same energy as in the
Zn-doped samples.

In conclusion, we have interpreted the temperature

0P, J. Dean, J. D. Cuthbert, D. G. Thomas, and R. T. Lynch,
Phys. Rev. Letters 18, 122, (1967).
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‘dependence of the efficiency of red radiation from

Ot+Zn—-doped GaP in terms of specific competing
processes, both radiative and nonradiative, which apply
in different temperature ranges. The list isnot exhaustive
and further work at temperatures greater than 250°K
would be necessary to elucidate the nature of other
nonradiative processes which become important at still
higher temperatures.

The authors are indebted to Dr. L. M. Foster and
John Scardefield for their skill and cooperation in
furnishing materials, to Dr. R. Bhargava, Dr. S. P.
Keller, Dr. M. R. Lorenz, and Dr. R. S. Title for
helpful discussions and comments on the manuscript,
and to E. E. Tynan for assistance in making the
measurements.
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Binding Energy of the Excitonic Molecule
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The binding energy of the excitonic molecule, a complex consisting of two electrons and two holes, has
been determined as a function of o, the ratio of the mass of the electron to that of the hole. We find the
binding energy of the excitonic molecule in Si to be 0.63 meV, as compared with the experimental result of
<2 meV. Our analysis also predicts that the excitonic molecules should also be observed in a wide variety
of crystals for which o does not lie in the range 0.2<¢<0.4.

HE aim of this paper is to present theoretical
evidence of the experimental observation! in Si

of the excitonic molecule, a complex consisting of two
electrons and two positive holes. It is the first theoretical
work which gives the binding energy of the excitonic
molecule for various values of o, the ratio of the mass
of the electron to that of the hole. For the history of
such complexes, see Ref. 1. In our estimate of the bind-
ing energy of the complex, we assume a model in which
the constant energy surfaces are spherical and the
effective-mass approximation is valid. In order to
eliminate the kinetic energy of the c.m. of the complex,
a suitable transformation is applied to the Hamiltonian.
We have used a five-parameter variational wave func-
tion for obtaining the ground state of the system. For
the calculation of the energy matrix elements a method
due to James and Coolidge? is employed. The results are
displayed in Fig. 1, in which the ratio of the binding
energy Wem of the excitonic molecule to E, (where
Eo=m.e*/282K?; m, is the effective mass of the electron
and K is the dielectric constant of the medium) is
plotted against o, for 0<o<1. The results for 1<e<
can easily be obtained from Fig. 1 by considering that

* Supported in part by Advanced Research Projects Agency.
17, R. Haynes, Phys. Rev. Letters 17, 860 (1966).
2 H. M. James and A. S. Coolidge, J. Chem. Phys. 1, 825 (1933).

the binding energy of the complex does not change on
inverting the sign of the charges of the constituent
particles and thereby reducing the problem to the case
for which 0<¢<1. We find the binding energy of the
excitonic molecule in Si to be 0.63 meV (making use of
m.=0.39 in units of free-electron mass, ¢=0.75 and
K=19.4), consistent with the experimental observation?
of <2 meV.

Since the complex is stable against dissociation when
its binding energy is positive, Fig. 1 predicts that such
excitonic molecules should also be observed in a wide
variety of other crystals for which o does not lie in the
range 0.2<¢<0.4. It is true that such will also be the
case for ¢ not lying between the reciprocals of these
limits. The latter case is not of much interest since we
are dealing with semiconductors where mostly 0<¢<1.
Consequently, it is hoped that this work will give
impetus for the discovery of excitonic molecules in
crystals other than Si. It will be more gratifying if
experiments are conducted which can give a definite
value for the binding energy of the complex. In the
following, we describe our method for estimating the
binding energy of the system, namely, the excitonic
molecule.

The excitonic molecule is a complex consisting of two
positive holes, each of mass m, and two electrons, each
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Fic. 1. Binding energy of the excitonic molecule as a function of o,
the ratio of the mass of the electron to that of the hole.

of mass m,, interacting with one another through a
Coulomb potential. The Hamiltonian for the system is

e=—%0 (Vi + Vi) —3(Ve+ V) + Vo, (1)
with V,, the potential of interaction, given by

1 1 1 1 1 1
V0= —— { ’ (2)

Yhihe Yhier Thoes 7Thies Thoer

Vereq

where we have taken the unit of distance to be %2K /¢
and that of energy to be m.e*/#2K2

The first four terms in Eq. (1) are the kinetic energies
of the holes and electrons with respect to a fixed origin
0 of a coordinate system. We designate the holes by %,
and 4, and the electrons by e; and e.. The distance
between the holes %; and %, is denoted by 74,s,. Other
distances carry a similar meaning.

We transform the Hamiltonian and eliminate the
kinetic energy of the system since it does not contribute
to its binding energy. To this end we introduce a new
set of coordinates defined by

Ro.m.=[ra,+ 13,0 (1 +1.,)1/2(140),
R=ry,—1y,, 3)
Ri=r.,—3(t,+11,), Ro=r,—3(tn,+1s1,).
In Eq. (3), r, and 1, are the position vectors of the
holes %, and %, with respect to the origin 0. Other vec-

tors are defined in a similar way. Re.. is the position
vector of the c.m, of the system. R is the distance
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between the holes. R; and R; are the position vectors of
the electrons 1 and 2 measured from the midpoint of the
line joining the holes.

The new coordinate system (3) transforms the
Hamiltonian (1) into

= "‘o‘ng—'%— %0‘+1)[V12+V22]—%0'V1' V2+ Vo (4)

with Vr=9/9R, V1=0/0R;, V.= 3/dR,, where we have
dropped the kinetic energy of the c.m. of the system
since it does not contribute to the binding energy of the
system.

It is worth remarking that the Hamiltonian (4)
reduces to the Hamiltonian of the hydrogen molecule?
if ¢ — 0(m>m,) as expected.

In order to obtain the lowest eigenvalue of the
Hamiltonian (4) we assume a variational wave function
of the form

U= f(R)g(Ar,u1,M0,0,010) ®)

where Ay, i, etc., are the elliptical coordinates defined
by
R)\1= 7h161+rh261 )

Rui= T hies ™V hgey s

-R)\2 =Th 62+ Thoeg s
Rua=7n1e= " hges, (6
RplZ = Zreleg .

If the wave function ¥ is normalized, the eigenvalue
W is
W=—o(fg| Va*| fe)+{fIVR)| f), (7
with
V(R)=(g|H|g), ®)
where
H= —%(%0+1)[V12+V22 —%G'Vr V2+Vo. (9)

Now we choose for g a variational function of the form

g=N—1I2 Z Cmnjkp‘I’mnjkp: (10)
mnjkp
where
‘I’mnjkp= (21!')_1 exp[—-&()\1+)\2)]
X (M™\a"pa uokpP 4NN urPua®p?) . (11)

The normalization constant N is. determined by
(g|g)=1. One can show that?

V(R)=P/R—B/R, (12)

8 The form of the operators V;2 and V3 in terms of the elliptical
coordinates can be obtained from H. Eyring, J. Walter, and G. E.
Kimball, Quantum Chemistry (John Wiley & Sons, Inc., New
York, 1961), p. 367. The form of the operator V;-V; in elliptical
coordinates was determined from the Cartesian form Vi-V,
= (9/0%1)9/ %2+ (3/9v1)9/dy2+ (8/921) 9/ 032 and making use of
(3/6.’)01) = (a)“/axl)a/a)q+ (6M1/6x1)6/3u1+ (6¢1/6x1)8/6¢1 and
the similar expressions. The partial derivatives d\1/dx1, etc., were
derived from the relations connecting the Cartesian coordinates
with the elliptical coordinates.
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P=Ngt >

manajakaPambnbivkspb

X[wu,b(l)+wab(2)+wab(3)+wub(4):] ) (13)
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where

0a 0= (o Ditor®-+ho
X[Pa+2Ps+Pu+2(Ps+Pe)+Pqr]. (14)

%45 in Eq. (14) is given by Eq. (15) of Ref. 4, and

Py=—&[munp{# (00000)+2(11110)— 2(— 11110) —2(1— 1110)+2(— 1— 1110)}
—n38{#'(10000)+2(21110) —2(01110) — 2(2— 1110)+-2(0— 1110)}
—md{z (01000)+2(12110) — 5(—12110) — 2(10110)+2(— 10110)}
+8{z (11000)+2(22110) — 2(02110) — 2(20110) +2(00110)} ],

Ps=—3 ju[ns{ —# (00000)+2(11—110)— 2(11110) —5(1— 1 — 110)+2(1— 1110)}
—8{—#(01000)42(12—110)—2(12110) — 2(10— 110)+2(10110)} ],
Pai=— jika{2 (00000)+2(11—1—10)— (11— 110)— z(111— 10)+2(11110)} ,
Py= — s po[na{X (1111 —2) — X (1 — 111 —2) —X(0200—2)+X (0000 — 2) -+ (2000— 2) — ' (0020—2)}
—5{x(1211—2)—Xx(1011—2) — X (0300— 2)+X (0100— 2)+2 (2100— 2) — ' (0120—2)} ],

Py=—5kopi[Xx(111—1—2)—x(1111—2) —Xx(0000—2)4X (0002 —2) —2' (2000— 2)+2' (0020—2) ],

and
Pr=—£5(p+1) (p5)[X(0002—2)—x(0200—2)].

The symbols z7(11110), etc., are the sixfold integrals
defined in Ref. 2. The expression for w,;® is obtained
from w.,;® by the substitutions [m, <> #4, jo <> kol
wap® is obtained from we,® by making the changes
[my <> ns, 75> kp] and we;® by

(o <> B4y Fo<> ko, my <> 1y, f5<> by ).

The factor Ny in Eq. (13) is defined in (16) and (17)
of Ref. 4. The parameter B in (12) can be obtained from
Egs. (18) and (19) of the same reference.

The normalization constant N in Eq. (10) is related
to No by N=N,R® The variational function g is a
function of R through the normalization constant N
and therefore is proportional to the inverse cube of R.
We choose f(R)=R—?F(R), where F(R) is the eigen-
function of the operator

—od?*/dR*+P/R*—B/R (15)

corresponding to its lowest eigenvalue. This completes
the choice of the form of the wave function. The expec-

tation value W of 3¢ is then given by?®
W= (—2B*/0)E[1+{1+ (4P/0)}"2] 2, (16)

where we have restored the original cgs units. The
binding energy Wem of the excitonic molecule is the
energy absorbed when the system dissociates into two
excitons so that Wem=—W—2W,, where W,=E,/
(1+40) is the binding energy of the exciton. Thus

Wem=Eo{ (2B*/0)[1+{1+ (4P/0)}2]2—2/(1+40)}.
7

We choose five variational parameters Cogooo, Coooso,
Coo110, C10000, and Coooor. In order to obtain the maxi-
mum value of Wy for each value of o, the coefficient
Cooooo was kept constant equal to unity while § and other
para.meters Cooozo, Coouo, CIOOOO, and C00001 were varied.
The values of Wem/Eo so obtained are displayed in
Fig. 1.

The author is very thankful to Professor S. Rodriguez
for useful discussions.

4R. R. Sharma and S. Rodriguez, Phys. Rev. 159, 649 (1967).

8 L. D. Landau and E. M. Lifshitz, Quantum Mechanics (Addi-
son-Wesley Publishing Co., Inc., Reading, Mass., 1958), p. 128.



