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Cyclotron Resonance of Piezoelectric Polarons in the
Quantum Limit*
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The shift of the cyclotron resonance frequency of electrons in piezoelectric semiconductors at finite
temperature is calculated for the case of such a strong magnetic field that the energy separation of the
Landau levels is larger than thermal energy. The thermal Green-function method is used to calculate
the energy shifts of the two lowest Landau levels between which the transition occurs; the Dyson equation
for the electron self-energy part is solved in an approximate way, taking into account the broadening and
the shift of electronic states self-consistently. The shift obtained agrees in sign, and roughly in magnitude,
with that given by a semiclassical theory, and with that observed in CdS by Sacr and Dexter.

I. INTRODUCTION

YCLOTRON resonance of electrons in CdS was~ observed by Sawamoto, ' and by Baer and Dexter. '
They found that the frequency of cyclotron resonance
of electrons in this substance is about 15%higher than
the value expected from the effective mass obtained by
other experiments. Cyclotron-resonance measurements
show a peak which corresponds to an effective mass of
about 0.17rns (rrts being the electron mass in vacuum).
On the other hand, the values of the effective mass
obtained from various different experiments lie between
0.iso and 0.21@so.

Mahan and Hopfield' noticed the importance of the
effect of piezoelectric electron-phonon interaction upon
the properties of low-energy electrons. They suggested
that in the cyclotron-resonance experiments performed
at low temperature, the piezoelectric-polaron effect
produces the observed shift in cyclotron frequency, but
that in other experiments at high temperature or high

frequencies, the effects are negligible. Unfortunately
the calculation by Mahan and Hopfield is based on a
semiclassical argument. The experiments by Sawamoto,
and by Sacr and Dexter were done at low temperature
and strong Geld. If we write the temperature T and the
microwave frequency to, the ratio A&a/AT (A, Boltzmann
constant) is 1.4 for Sawamoto's experiment and 2.6 for
Sacr and Dexter's. It seems an open question whether

the semiclassical argument applies for the case Acr&kT,
i.e., in the quantum limit.

Larsen4 undertook a quantum-mechanical calculation
of cyclotron-frequency shift at zero temperature in the
quantum limit condition. He calculated the frequency
shift taking into account such processes in which a
phonon is spontaneously emitted by an electron. It was

found that the shift in the cyclotron-resonance fre-

quency begins to differ drastically from that expected
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from the semiclassical theory when AQ, &-,'ms', where
AQ, is the separation in energy of the unperturbed
magnetic levels, m is the band mass of the electron, and
s is the velocity of sound in the crystal. When 2AQ, /rnss

=30 as in Baer and Dexter's experiment, Larsen's
calculation gives a shift which is less than ~ of the
magnitude of the correction predicted by the semi-
classical theory and of opposite sign. It is apparent that
a semiclassical treatment is inappropriate in this case.
I,arsen did not give a result at finite temperature, at
which the absorption and induced emission of phonons

by an electron are much more important than the
spontaneous emission of phonons by an electron.

Under the conditions of Sawamoto's and Baer and
Dexter's experiments, the energy of phonons which
contribute much to the piezoelectric-polaron effect
is much smaller than the thermal energy kT. It is
interesting, therefore, to carry out a quantum-mechan-
ical calculation of the effect at finite temperature, and
to compare with the experimental results.

In the present paper, we will present a quantum-me-
chanical calculation of the shift in cyclotron-resonance
frequency in quantum limit at Gnite temperature. We
use an isotropic interaction model which is represented

by the Hamiltonian

X XO+Xr p

Xo=Lp+ (e/c) A (r)js/2nt+P, Asqb, tb„
Xr=(2sraAe s/aV)'t g q 't'(b e's'+b te 's').
Here e is the magnitude of the electron charge, c is the
velocity of light, A(r) is the vector potential describing

the applied magnetic Geld, m is the electron band mass,

b~ and bq are, respectively, creation and annihilation

operator for phonons of wave number q, s is the velocity
of sound, 0. is a dimensionless coupling constant which

is equal to (Xs), , the spherical average of the square of

the electromechanical coupling, ~ is the dielectric
constant, and V is the volume of the crystal.

In the next section, we brieQy discuss inadequacy of
the second-order perturbational calculation when the
quantization of electronic levels due to magnetic field

is taken into account. In Sec. III, the method of the

5 A. R,, Hutson, J. Appl. Phys. 32, 2287 (1961).
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present calculation will be described; approximations
used in the computation will be discussed. The result
of the calculation and some discussions will be given in
the last section. The appendix contains some prelim-
inaries to Sec. III.

E&a& (N, P„X)= (N+sr) AQ, +P,s/2ttt,

Q, =eH mc.
(2.1)

In the quantum limit where hQ, &kT, almost all
electrons are in the S=O states. Hence, the most
important contribution to the absorption of microwave
power comes from transitions between the Landau
levels of E=O and 1. The shift of cyclotron-resonance
frequency will be determined from the diGerence of the
energy shifts for states of E=O and 1.

The second-order energy shift of the state (N, p„X)
is given by

t& E&'& (N,p„X)
2m nest.'s

[(N,p, ,X [e' '[N, p„X) [
X~prrr q gPq

&&{Ns(f~ ) '+(Ns+1)(f~+) ') (2 2)

8+=E' '(N, p„x) E&"(N', p, ',X—') WAsq,

where N, = (e"'«"r 1) ' is—the number of phonons of
wave number q in thermal equilibrium. The matrix
elements for E=O and 1 are gi.ven as

[(NI,p,',X'[e's'[0 p„X)[s
= 8„... , „,.8,„(N'!)—' p( —-', Pq, ') (-', J'q, ') ',

[(N',p, ',X'[e's'[1,p„r) [s
= o,:,„,~„„5»,» t,„(N'!) 'exp( —-', l'q, ')—

)&'(1$2q 2) N' r(N& rPq 2)2 (2 3)—
where f = (mQ, /A) 'ts is the radius of the lowest Landau
orbit.

Among the terms on the right-hand side of Eq. (2.2),
the one which is independent of E, was treated by
Larsen. 4 %e restrict our discussion in this section to the
contribution which is linear in E,.

As we shall see later, we are interested. in terms with
N'=N. We see from Eqs. (2.2) and (2.3) that the wave
numbers of phonons which make an appreciable contri-

'R. Kubo, H. Hasegawa, and N. Hashitsunm, Phys. Rev.
Letters 1, 2't9 (1958);J. Phys. Soc. Japan 14, 56 (1959).

II. SECOND-ORDER PERTURBATIONAL
CALCULATION

An unperturbed electronic state in magnetic Geld is
speciied by quantum numbers N, p„and X, where N
is the quantum number of the cyclotron motion, p, is
the component of momentum in the direction of
magnetic Geld, and I is the center coordinate of the
cyclotron orbit. ' The unperturbed energy of a state
(N,p„X) is given by

bution to these terms are such as q& 1/l. At high temper-
ture, where kT is much larger than the energy of typical
phonons, As/l = (tttssAQ )'t' we can use the high-
temperature approximation:

N, =kT/(Asq) . (2.4)

1
dQ8 I

0 tt tt'+4m'

1——;~s—5(~) . (2.6)

The Grst term in the bracket on the right-hand side is
positive and behaves as x—' when x is small, while the
second term is proportional to 8(a) with a negative
divergent coeKcient. Of course, Eq. (2.5) cannot apply
for [p, [

& (2trtAs/J)"' as mentioned before. If we take
account of inelasticity in the scattering process, the
singular behavior will be regularized. This singularity
is regularized also if we take into account the Gnite
width of the energy of the electronic states. If the width
of the electronic energy is larger than the typical
phonon energy (tlssAQ. ) 'ts, a dominant role in regulariz-
ing the singularity is played by the broadening of the
electronic energy rather than by the inelasticity of the
scattering. The situation seems analogous to that of
determining the cuto6 energy for the logarithmic
divergence in the static magnetoconductivity. ~ As we
shall see later, in the case of CdS the width of the

'R. Kubo, S. J. Miyake, and N. Hashitsume, in Sots&t State
Physt'cs, edited by F. Seits and D. Turnbull (Academic Press
Inc., New York, 1965), Vol. 17, p. 269.

%e can also neglect the energy of phonons in the
denominators 8+ in Kq. (2.2). This approximation is
invalid for p, & (2tttAs/J)'ts but at high temperatures,
the number of such electrons is negligible compared with
the total number of electrons.

Using these approximations, we obtain the shifts of
energy levels for the states (O,p„X) and (1,p„X):

V2nlkT 1
hE&'&(O, p.,X)= p P dN

rag N St
g
—u&N2N+1

X (2.5a)
(I'+p) [ xs—(tt+ &)' Nj—

%2ctlkT 1
hE&'& (1,p„X)= Q P dl d&

~a& ~ Nt

e
—asN2N —1(N tts) 2

X (2.5b)
(t '+k') [:*'—(*+i)'—(N—1)j

where &tt&= (mes/A' s)
—' is the Bohr radius in the crystal,

and we put x'= p, '/(2tttAQ, ).These shifts show a singular
behavior as a function of x as x —+0. For example,
take a term of N =0 on the right-hand side of Kq. (2.5a).

e "'I
P dN d$

(tt'+$')I &'—(. +k)']
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electronic state is larger than the typical phonon energy
under experimentally interesting circumstances.

In order to treat the energy broadening of electronic
states, we must investigate the imaginary part of the
self-energy along with the real part, Eq. (2.2). As
pointed out by Larsen, 4 the inverse of the lifetime of
the state, which is proportional to the imaginary part
of the second-order self-energy, is divergent even if the
inelasticity of the scattering is taken into account. Thus,
in order to obtain the real part, as well as the imaginary
part, of the self-energy, it is necessary to go beyond the
lowest perturbational calculation. It is necessary to
include the self-energy in a self-consistent manner,
since the self-energy of a state is appreciably a6ected
by the self-energy of other states.

HL HIGHER APPROXIMATION FOR
ENERGY SHIFT

To a better approximation, we use the formalism of
the thermal Green function, which can be found in
standard textbooks. s Definitions of the Green function
and some of its fundamental properties will be given in
Appendix.

The self-energy function is given as

z(iv, p.,x; f „)
4m'nA282$2

= —-ZZ G(ft't', p, ',X'; i „tc;)—
p &i e &' tz', x' ttV

xD(ti;;) [ (w, P, ,X i.' 'i Jlt,P„X)i r„(3.l)

Analytically continuing the variable f'„ to the real
axis, vre obtain the self-energy function.

4xo.e
z($, p„X;E+ib)=

p s N'pg'x' «p'qs

l(~,p. ,x I
' 'l~,p.,x) Ix

Eaib E«I—(X' p 'X') —Z(Jlt' p
' X'E~g)

3.4

The energy of a quasiparticle state (X,p„x) is given
by a real solution of the equation

E=E&+(N,p.,x)+6(AT,p.,x; E), 3.5
A(X,p„X;E)=ReZ(X, p—„X;E+s3).

Equations (3.4) and (3.5) constitute a complicated
set of simultaneous integral equations. In order to
solve these equations, we make the following approxima-
tions: (1) We assume that the broadening of a level is
large compared with the thermal energy kT. If this is
the case, the dependence of Z(X,p.,x;E) on p, is not
appreciable as far as those states are concerned which
participate in the cyclotron-resonance absorption, or
which contribute much to the self-energy of states,
We neglect the dependence of Z(X,p.,x; E) on. p, and
replace Z by its value at p, =o. Since Z(E,p„x;E)
does not depend on X, we have Z which depends on
ollly E and E. We wl'lte 'tllls quaIltl'ty as Ztv(E). (2)
The effect of the presence of Z in the denominator in

D(q, t)= —bt, o(h g)
—'. (3 3)

wl ere P=(I T') ', f.=t+(2-e+l)~/( iP), ~—t=2g'~/
( ip), G—is the one-particle electron Green function, D
is the phonon Green function, and I~ is the vertex
function.

Since we are considering a situation in which the
number of electrons is small, the self-energy of phonons
is negligible. We replace the phonon Green function by
the unperturbed one.

D(g tat) =D"'(q &ct) =Etc' (ttt g)'j-r (3 2)

At high temperature (k T))As'), D«& (q,cc,) is appreciable
only when j=o. Thus, we use a high-temperature
approximation for the phonon Green function:

Cs 0.6

40

4a 0.2

I ) I

!
0.2, 0,4 0.6 0.8 t.0

COUPLlNG CONSTANT

vT (f,ra~)(eve cc)
Further we replace F~ by its lowest approximation, i.e.,
one.

L. P. Kadanoff and G. Baym, Quantum Statistica/ M echalics
(%'. A. Benjamin, Inc. , New York, j.963); A. A. Abrikosvo, L. P.
Qorkov, and I. E. Dzyaloshinski, Method of Quantum Infield 7"hery
ttt Statistt'cat Pkyst'cs, translated by R. A. Silverrnan (Prentice-Hall,
Inc., Englewood ClBB, ¹ J., 1963}.

I'"IG. i. Shift of cyclotron-resonance frequency d,co and the
imaginary part of the self-energy part 1'~ for the Landau states of
X=0 and E=l versus a coupling constant %a(l/ag)(kT/M).
Herc, o; is the square of electromechanical coupling, / is the radius
of the lowest Landau orbit, a~ is the Bohr radius in the crystal, and
0, is the unperturbed cyclotron frequency. Solid lines represent
the result of the present calculation. A broken line in the upper
6gure shows the shift calculated according to a semiclassical
theory.
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where

P, (h) =(~) "'
2 (h —1+e-') '»

g-t 1/2h'h'+ (h—1+e-
Xln

t/2 -t/2 9- C/2e e )

Lh"'—G(h) jXln

3 h"'(2h —5)—G f )
3

arcsin (1—
h)

1/2

(1-h)"'
h'»+(h —1)

p'= 1'p(Eg)/AQ„

where d, (

—-o AQ —6o (Eg)j/AQ„gp'= rp~=tR—
o c— o

&=vs(h/o ) (kr/kQ, ),

dkk

{E;)/AQ,=1m Z;(E;)/I„=S, E,)/AQ„g;=r, ;, Aa„

2 N —kl (1-p&}1 tk'(1 —h')) e-

x k' k'p'+N

Rn gynd y Rs fun

AND DISCUSSIONS

of the calculation escrFi . 1 the result o

—6 (Eo))/ih=apo =Lh4(Eg) —
p

thc rcsu t o Re resent res
c sake ofl

'
al calculation,

COIIlP

fshift of cyclotron-res

= aE(p,)—m p,
s i h l ctron ofshift of the e cc

fleM po an(j
where M(p) r s i

inthea s
tates E=o anp being momeentao ce

shift in D

C

respectively.
mRgnctlc c6eld is given by

(4.3)
9 Here, @re used the resu econd order p

ust twice as large as

unpl st
side of Eq. (4.3) sho

the above, we havethe square-root function in t e a, c
drawn a branc cu
branch the rea p

Sg can cbe transformeThe sums, S~ an, e
Lal'sCD.t form for computation,Coi1VCDlCD O

00

5=-
Vi p

dk dp Ch exp L
—k'(1—p'+ noh

X(exp''(1 —p')e 'J—1

ChFg(h),

00

dk dp Chk'(1 p')—S2—Sg=-

ex gL— — ' k'(1—p')e-'jex gL—k'(1—p'+noh) j(expl

X ees e

ChF, (h),

die-"'(1—sh')

s y ~

X/2

(h&1)

&g~)"'E(oe)"'+Ij
ln

1/2 ~1/2

merlca c '
re as follows:numerical calculation are

facilitate the ca cu
el the integra w ic

dkk2 8p-

f )t. d 1 o d (X)

o N 1P7 k2—(1 po))9 e~Lk'(1-h')j" ' &-
k'hl, '+ (F—1)



730 SATO RU J. M I YAKE 170

If we take P,=O, we may put Ps= L2m(AQ, /2) /Is and

Pr =L2tn(3AQ, /2)$'I . Then we have

TmLE I. Energy shifts of Landau levels b,z(iV=0 and 1) and
shift of cyclotron-resonance frequency I'6&—bp)/h, calculated for
electrons in CdS& at 8=4.1 ko and T= 1.3'K.

(a~)„= ,'—rrn—kTu~ '$-(3mAQ )-'~' —(mAQ )-'I'j
= —2 siss. (3 'I' —1)XQ,=0.470XQ, . (4 4)

Present calculation
Contributionss hs/AQ, nl/AQ,

Second-order perturbation
ap/AQ, hy/AQ,

In Sacr and Dexter's experiment on cyclotron
resonance of electrons in CdS, ' the temperature is 1.3'K
and AQ, /k equals to 2.8'K (m= 0.20mo, and 8=4.1 kG).
If we use the values as=25K and n=0 035. , swe
obtain X=0.37. The present calculation gives 0.10 for
the relative shift of cyclotron-resonance frequency,
while the semiclassical theory gives 0.17. The latter
theory will give a smaller shift when the distribution of
electrons in various p, states is taken into account.
These values are in a reasonable agreement with the
experimental result. The observed cyclotron mass is
anisotropic; the average cyclotron mass is (0.165+0.03)
)(mo. There is a scatter among the observed values of
the band mass; they lie between 0.19nzo and 0.21mo.'
Thus the relative shift of resonance frequency seems
to be between 0.15 and 0.27. The present calculation
gives the shift of the same sign and comparable in
magnitude with that obtained by the experiment and
the semiclassical argument.

The present result is obtained in the high-temperature
approximation (3.3), with which the contribution from
the spontaneous emission of phonons is neglected.
I arsen calculated this contribution to the shift of the
cyclotron-resonance frequency. Prom his result, we
obtain (ha&)soonrsneous/Q, =0.02 for the experiment by
8aer and Dexter. This value is small compared with
the present result but not negligible, as expected from
the ratio of the typical phonon energy ( 0.5') to
the temperature (1.3'K).

The approximation (3.3) implies the elastic-scattering
approximation as well as the high-temperature approx-
imation mentioned above. As discussed in Sec. II, the
role of the inelasticity in the scattering is expected to
be less important than that of the electronic level
broadening so long as the typical phonon energy is
smaller than the level width. In the example above, the
typical phonon energy ( 0.5'K) is smaller than I'&

and F~ which are both about 1.2'K.
Next, we compare the present result with that

obtained from the second-order perturbational calcula-
tion. The latter result is obtained from Eq. (2.2). If we
let p, tend to zero in order to compare with the present
result, the shifts diverge, but the dif'f erence between
the shifts of the Ã =0 and X= 1 states is hnite. We
compare the results in Table I for the case of X=0.37.
In Table I, the contributions to the energy shifts from
the states of E'=0 and lP = 1 are shown separately
from others. Note that the symbol 80 stands for a
common positive divergent contribution. We notice
that the contributions from the terms E'=E which are
positive and divergent in the second-order per turb a-
tional calculation, change sign and become 6nite if we

S'=0
S'= 1
i7'& 2

—0.121 0.047—0.081 —0.084—0.145 —0.210

$ o 0.079—0.081 8pe —0.491—0.145 —0.210

Total —3.347 —0.247

(ai —ao)/Aae +0.100

5p—0.226 Bp 0.622

—0.396

a We have used the data m =0.20mo, (me~/A2a) ~ ~25 A, and the square
of electromechanical coupling a =0.035.

& Contributions to the energy shifts which come from mixing of the
Landau states ¹ =0, N' = 1, and N'&2, are separately shown.' These terms are divergent. But we can subtract a common divergent
term, go, from both d, o/IiQc and h1/IiQo.

include the level broadening of states. As we mentioned
in Sec. II, the contribution from transitions in which the
quantum number S does not change, takes a positive
value for finite p, and tends to + oo as p, ~ 0 in the
second-order perturbation energy. This positive con-
tribution, however, is compensated by a singular
negative contribution at P, =O upon including the level
broadening of states, so that the net result becomes
negative. This change of the contributions from the
terms of S'=E accounts for the change of the sign
of the cyclotron-resonance frequency shift.

The dependence of the cyclotron-resonance frequency
shift on the temperature and the magnitude of magnetic
field is of some interest. The shift depends on the
temperature and the magnetic held through the param-
eter ) . The shift obtained in the present calculation is
approximately proportional to X''s (within 3% error)
between ) =0.05 and 0.8. Since X is proportional to
XII '~', the present result predicts

hro/Q, ~ TslsH ',
while the semiclassical result (4.2) which includes the
eGect of the quantization of orbits semiclassically, gives

(As&)„/Q, or TH sls,

and Mahan and Hopheld's result which entirely neglects
the quaritization effect would give

(Aro)~rr/Q, o: T(p ')r rr.T'I'--
where p is the electron momentum and ( )r represents
the thermal average.

Sawamoto observed the cyclotron resonance of
electrons in CdS under a diBerent experimental condi-
tion. ' Unfortunately, the theory for the quantum
limit does not seem to apply for his result, since the
temperature and the cyclotron-resonance frequency are
comparable (A co/ls T= 1.4).

In the present calculation, we neglect the dependence
of the self-energy on p, and replace the self-energy by
its value at P, =O, assuming that if I' is large compared
with kT, the dependence is not appreciable. Under the
condition of Sacr and Dexter's experiment, I's(Ep)//s
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Tmx,z II. The dependence of the self-energy on p, rvhen the
coupling parameter X %=2(t/os) (kT/AQ, ) =0.37. These results
are obtained by replacing the self-energy involved in the energy
denominator by the self-consistent solution in Sec. III.

P,~/2mAQ& h(O, P, ; E0)/AQ, F (O,P, ; E0)/AQ, 6(1,P; E&)/AQ, F(1,P,E&)/fiQ,

0.0
0.23
0.45

—0.347
—0.415
-0.435

0.448
0.369
0.294

-0.247
—0.318
—0.342

0.426
0.364
0.307

(=1.2'K) and I'r(Er)/A (=1.2'K) are comparable
with the temperature (1.3'K), contrary to the assump-
tion above. To make an estimate of the error introduced
by this approximation, we calculate the dependence of
the self-energy on p, in an iterative process. By replacing
Z in the denominator of Eq. (3.4) by the value obtained
in the present calculation, we find Z(N, p„EN) for
P, &0.The results for P s/2m=0. 23AQ, ( —,'kT) and 0.45
AQ ( I'p) are shown in Table II. The dependence on p,
is found far from negligible. We may take account of
the dependence on p, in calculating the cyclotron-
resonance frequency shift by replacing Z in the
denominator of Eq. (3.4) by a certain average value of
Z rather than by its value at p, =0. However, the
dependence of the cyclotron-resonance frequency shift
on the variation of Z in the energy denominator, is
extremely complicated. We cannot hope to determine
the appropriate average value to replace Z in the
energy denominator. We arbitrarily assume that the
average self-energy is given by the self-energy of a
certain representative state. If we use the self-energy
for p, '/2m=0. 23AQ, and 0.45AQ, as the average self-
energy which replaces Z in the denominator of Eq. (3.4),
the cyclotron-resonance frequency shift practically does
not change for both cases compared with the present
result described earlier. (If we use the self-energy for
p, '/2m=0. 23AQ, as the average, the shift increases by
1%of the present result; for P,s/2m=0. 45AQ„ the shift
increases by 3%.) Although this observation is not
decisive, we anticipate that the neglect of the depend-
ence of Z on p. does not introduce a serious error.

As seen from Fig. 1, Fo and 71 are fairly large. In fact,
they are comparable with the resonance frequency
(rs/Are and I'r/Aa 0.4 in the example above). These
large 1' values raise two questions to be considered.

(1) When I' is so large that the quasiparticle approxima-
tion does not seem to hold, how can we interpret the
result obtained above P

The energy obtained from Eq. (3.5) gives the position
of the peak of the spectral weight function A(E) if
I'(E) varies slowly as a function of E, irrespective of
whether the quasiparticle approximation is valid or not.
The variation of I'(E) near the peak energy is found
very slow. The shape of the absorption curve could be
obtained only after working out the calculation of the
spectral weight functions for the states of E=O and 1,
and the calculation of the oscillator strength which
connects these two states. However, we expect that the

difference of these peak energies for iV=0 and 1 will
give a good approximate value for the cyclotron-res-
onance frequency.

(2) How can we observe a sharp resonance line when
I'/A is comparable with the resonance frequency'

Sacr and Dexter's experimental result shows co7. 6,
whereas the quantity Aco/(I'p+I't) is about 1.3. If
(I's+I'r)/A would represent the width of the resonance
line, the line would be very broad and hardly observable.
As pointed out by Saitoh and Kawabata, "however, the
linewidth is diferent from the inverse of the lifetime to
which the present I' is related. They showed that to
the second order with respect to the perturbation, the
expression for the linewidth contains a correction term
besides the inverse of the lifetime, and that owing to
the presence of the correction term the linewidth is
6nite whereas the inverse of the lifetime diverges in the
second-order perturbational calculation. The situation
is analogous to that in the calculation of the conduc-
tivity by piezoelectric polarons in the absence of
magnetic 6eld. There, in the second-order perturba-
tional calculation, the inverse of the lifetime is diver-
gent; but the inverse of the scattering time contains an
extra weighting factor (1—cose) in its expression (where
8 is the deflection angle at the scattering), and is there-
fore 6nite. The remarkable difference between the line-
width and the inverse of the lifetime comes from the
long-range character of the piezoelectric interaction.
It is expected that even to higher orders in the perturba-
tion, the linewidth would be smaller than (r,+rt)/A
on account of the long-range nature of the interaction.

Finally, we discuss the relation between Larsen's
calculation of the probability of decay of electronic
states4 and the present calculation of the self-energy.
Larsen pointed out that the usual Fermi "Golden-rule"
expression for the transition probability per unit time
is logarithmically divergent for piezoelectric polarons
at 6nite temperature. He showed that this situation is
remedied if one uses a more fundamental expression for
the total transition probability of a state LEq. (21) of
Ref. 4). In this expression, the factor guaranteeing the
conservation of energy has a 6nite width of the order of
the energy uncertainty A/t, t being the time after the
interaction is turned on. The divergence which is the
result of replacing the energy conserving factor by a
8 function, is removed; the cutoB is given by the energy
uncertainty A/t. Hence, the rate of change is time-
dependent; the amplitude shows a nonexponential
decay.

This result is applicable so long as t is much smaller
than the lifetime of the state, v, because in the perturba-
tiooal calculation the total probability of decay is
assumed to be small compared with unity. If we want
to discuss the transition probability for t& v, we must

» M. Saitoh and A. Kawabata, J. Phys. Soc. Japan 23, 1006
(1967).
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take into account the broadening of energy levels which
is of the order of fi/r. When t) r, the energy uncertainty
fi/t, becomes smaller than the broadening of energy
levels. Hence the cutoG of the logarithmic divergence
will be given by fi/r rather than fq/t T.he decay rate
will be time-independent and the amplitude will decay
exponentially for a long time.

The time dependence of the amplitude for t«v is
related to the behavior of the self-energy as a function
of E in the tail part of the spectral weight function.
We can show that when the interaction is sufBciently
weak, Larsen's result for the transition probability of
the v state can be obtained from the behavior of the
self-energy for ~E—E„&')~)) ~Z. ~. The value of the
self-energy around the peak of the spectral weight
function (for ~E—EN~(F) is irrelevant to the time
dependence of the amplitude for t«r.

Thus in terms of the self-energy function, Larsen's
calculation for a short-time behavior is related to the
behavior of the self-energy function in the tail part of
the spectral weight function. On the other hand, the
present calculation is concerned with the value of the
self-energy function at the peak, which reQects the
long-time behavior of the amplitude. Two calculations
are not contradictory, but complementary.

APPENDIX

In this section, we will give definition of the Green
functions and their properties used in the text. In the
formalism of second quantization, our Hamiltonian
(1.1) is rewritten as

Kq=+„E&'&(v)a,ta„+Qq Asitbqtb„

I'.g
——g, p, „.(47mb'e, 's'/ii V)"'(e'q').;a,ta;

X (2hsq) "'(bq+b )

(A1)

where a Greek letter v stands for a set of quantum
numbers (1V,p„,x) and a„t and a„are, respectively,
creation and annihilation operators of an electron in a
state v, and

(eiq r), (v~eiq r~v) (A2)
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We dehne the one-particle electron Green function

G(v, t t')—= i—(T—a„(t)a„'(t')),

and the phonon Green function

(A3)

G(v, iP)-= G(-v,0)e », -
D(il, —iP) =D(il,0),

we expand 6 and D in Fourier series:

(A7)

(AS)

G(v, t) = (-'tt) 'Z- e-'-'G(v -{.-)
{ =p+(2n+1)~( iP) —', —

(A9)

D( ,il)t= ( ~P) ' Z—e '""D(a,~;),
(v, = 2j 7r( ip) '. (A—10)-

If we solve the Dyson equation formally, we obtain
the Fourier coeKcient of the electron Green function
as follows:

G( {-)=I {--E")()—~(,{--))-',
Z(v,{„)=(—iP)

—'P; Pqg„. G(v', {„—a&;)

XD(q, &u;) (47mb'e's'i/iiV)

X
~

(e'q')„„~'rq(v, v', {„,id,),

(A11)

where F~ is the vertex function. We have normalized
F~ so that the lowest-order term is equal to 1.

The quasiparticle energy is determined from the zero
of the real part of the denominator of the electron
Green function which is analytically continued to the
real axis,

E—E&')(v) —ReZ(v, E)=0. (A12)

This energy gives the position of the peak of the
spectral weight function

A (v,E)=i'(v, E+i e) G(v, E iq)5,—(A13—)

when the imaginary part of the self-energy function is
a slowly varying function of E near the peak.

D(tl t—t') =—i(2&m) 'P'Lb (+)+b-q'(t))
XP,'(t')+b, (t'))) . (A4)

Here t and t' are "imaginary time" variables and T is
the Wick time-ordering operator; we used the de6nition

(A) =Tr{expf—P(X—tiN))A)/
Tr expL —P(K—tiX)), (AS)

Z=Q„a„ta„, (A6)

p, being the chemical potential of an electron.
Noticing the relations


