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Polaron in a Magnetic Field*f
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A study is made of the energy spectrum of a polaron in the presence of a magnetic Geld for the cases of
weak and intermediate couplings, using Onsager's theory. This theory makes use of the Bohr-Sommerfeld
quantization rule, which has been derived with the %KB approximation and is therefore valid for large
quantum numbers. Following an approach Grst formulated by Argyres, we prove that the energy spectrum
of a polaron in a magnetic Geld obtained by using Onsager s theory is correct even for small quantum
numbers like n=0, 1, 2, etc.

INTRODUCTIOÃ

"NVESTIGATIONS of the behavior of an electron
~ - moving slowly in the conduction band of a polar
crystal and interacting with the polarization 6eld of
the crystal lattice have been carried out by several
authors' ' in the past few years. Such a system is called
a polaron. In this brief note we report a calculation of
the energy spectrum of a polaron in a magnetic 6eld
using a particularly simple approach given by Onsager, ~

and Lifshitz and Kosevich, independently. This
approach is based on the use of the Bohr-Sommerfeld
quantization rule which is supposed to be valid for
large quantum numbers, i.e., in the classical limit. Ke
prove that in the case of a polaron in a magnetic Geld,

the energy spectrum is indeed given quite correctly by
Onsager's theory even for small quantum numbers
like n =0, j., 2, etc. Our procedure consists in evaluating
the erst correction term to the usual phase integral,
derived from the exact quantization rule by Argyres, '
for the case of a polaron and showing that it is very
small.

THEORY

Brillouin zone and that they are spherical. The dynam-
ical properties of the system we envisage are given by
the Hamiltonian operator'

IJ= +Q fV,a,e's'+V, *aete 's'j
2m

+Z ~(a.'a.+l). (1)

The 6rst term is the band energy of the electron. The
second term gives the interaction Hamiltonian of the
electron with the longitudinal optical phonon Geld.
Here u, and u,~ are the destruction and creation
operators for a phonon of wave vector q and or is the
optical phonon frequency. The quantity V, stands for

she) js '" 4s-n)'"
V=—

g 2rrs~ V 1

where e is the dimensionless coupling constant

Ke consider a single electron whose band effective
mass is ns and take the electron charge to be —e. %e
assume the electron to be in the conduction band of a
polar material and suppose further that the energy
surfaces possess minima at the center (k=o) of the

e„and e are the optical and the static dielectric con-
stants of the host lattice, respectively.

Ke now calculate the energy of our system as a
function of the wave vector k of the electron. In the
case of weak coupling (at&&1) the perturbation theory
gives us at T=O'K:*Part of this work was done while the author was at Purdue

University and was reported in Semiconductor Research Semi-
annual Report October 1, 1965 to March 31, 1966 of Purdue
University.

t Supported in part by the Advanced Research Projects Agency
and the U-. S. Army Research Ofhce (Durham) and by the Uni-
versity of Kansas.' H. Frohich, Advan. Phys. 3, 325 (1954). Reference to earlier
work can be found in this work.' R. P. Feynman, Phys. Rev. 97, 660 (1955}.

~ E. H. Lich and K. Yamazaki, Phys. Rev. 1Q, 728 (1958).
4 D. S. Falk, Phys. Rev. 115, 1074 (1959).
~ T. D. Schultz, Phys. Rev. 116, 526 (1959).' A specially useful reference is the book I'olarons and Exc@ons,
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E(k) = —nba+
2m

(~—~/6) — (2)
160 ego)

for k(((2mco/is)"s. For the case of intermediate coupling

(a~&6) we have's

O2E2

Z (I) =.
—u4)+ (&+a~) '

3 k'aE4
(&+a~) ' (5)

160 m2o)

"T. D. Lee, F. E. Low, and D. Pines, Phys. Rev. 90, 297
(1953).
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Kane's" theory we have calculated the variation of the
effective mass of an electron with the magnetic Geld due
to the nonparabolicity of the band. In the case of CdTe,
for instance, we And that this variation from the zero
fteld mass is about 1.5% at 100 kG. The corresponding
variation in the polaron mass is about 4%. For GaAs,
however, the change in the effective mass due to the
nonparabolicity of the band is about 2% at 100 kG
whereas the variation in the polaron mass is about 0.4%.
It seems that, in most direct wide-energy-gap ionic
semiconductors, the e6ects due to the nonparabolicity
of the conduction band are relatively small.

Cyclotron-resonance experiments in several III-V

"E.0. Kane, J. Phys. Chem. Solids 1, 249 (1957).

compounds have been made" and a small change in
the eGective mass of an electron as a function of the
magnetic Geld is observed. In GaAs for instance, we
find that the observed variation of the cyclotron mass
with field is the same as we have calculated. Similar
measurements in II-VI compounds have not yet been
made.
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Raman Scattering in 5H SiCt'
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Fifteen phonon lines were observed in the 6rst-order Raman spectrum of 6B SiC, using laser excitation.
Polarized light was used to identify the mode symmetry, and a large-zone analysis was used to classify
the modes and to display the results in what appear to be dispersion curves. All observed narrow lines are
consistent with our interpretation, and only two of the expected lines remain unobserved. A study of the
dependence of phonon energy on propagation direction shows that certain infrared and Raman active modes
have extremely little infrared strength (a consequence of the polytype structure of 6H SiC). Doublets in
the Raman spectrum give accurate measurements of the 4-8-cm ' discontinuities within the large zone.

I. QfTRODUCTIOH

AMAN measurements have been greatly improved.

by the use of laser light sources. In recent Raman
work the allowed. optical phonons of Zno' and, CdS'
have been fully identified. These crystals are uniaxial,
with wurtzite structure. 6H SiC belongs to the same
space group as Zno and. CdS (P6ssIIc) but has more
atoms per unit cell, ' and therefore has additional weak
mod. es accessible to Raman scattering. As a result of
certain special properties of phonons in SiC polytypes it
is possible to classify the observed weak modes in 6H SiC
and to display the results in what appear to be phonon
dispersion curves.

Many phonon energies have been reported for 6H SiC,
but most are zone boundary phonons, measured in

t This work was supported in part by the IT. S. Air Force
Materials Laboratory, Wright-Patterson Air Force Base, Ohio,
under Contract No. F33615-67-C1401.

' T. C. Damen, S. P. S. Porto, and B.Tell, Phys. Rev. 142, 570
(1966).

~ B.Tell, T. C. Damen, and S. P. S. Porto, Phys. Rev. 144, 771
(1966).

3 A. R. Verma and P. Krishna, Polymorphism and Polytypism
sIs Crystals Qohn Wiley 8I Sons, Inc. , New York, 1966).

luminescence, indirect interband absorption, ' and two-
phonon infrared absorption. ' Polytype 6H has 12 atoms
per unit cell, hence 33 long-wavelength optic modes,
many of them allowed in first-order Raman scattering,
but few of them previously observed. Earlier Raman
work on SiC was done without a laser, and apparently
without polytype identiGcation; only a few lines were
reported. 7 The residual ray reQection spectrum of 6H
SiC was analyzed by Spitzer et al. ' to give fairly com-
plete information on the strong modes. Recently' an
additional weak absorption line was found at 19.9 p,.
This was subsequently identiGed as a fundamental
lattice line, the key to identiGcation being an analysis of
phonon branches in the large zone. '

4 W. J. Choyke and Lyle Patrick, Phys. Rev. 127, 1868 (1962).
Table I lists 17 phonon energies, but only one component of the
wave vector was identi6ed. The energy conversion factor is 1 meV
=8.07 cm '.

5 Reference 4, Sec. VII.' Lyle Patrick and W. J. Choyke, Phys. Rev. 123, 813 (1961).
7 J. P. Mathieu and H. Poulet, Compt. Rend. 244, 2794 (1957).

W. G. Spitzer, D. A. Kleinman, and D. Walsh, Phys. Rev.
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'B. Ellis and T. S. Moss, Proc. Roy. Soc. (London) 299, 393
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