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A study is made of the energy spectrum of a polaron in the presence of a magnetic field for the cases of
weak and intermediate couplings, using Onsager’s theory. This theory makes use of the Bohr-Sommerfeld
quantization rule, which has been derived with the WKB approximation and is therefore valid for large
quantum numbers. Following an approach first formulated by Argyres, we prove that the energy spectrum
of a polaron in a magnetic field obtained by using Onsager’s theory is correct even for small quantum

numbers like =0, 1, 2, etc.

INTRODUCTION

NVESTIGATIONS of the behavior of an electron
moving slowly in the conduction band of a polar
crystal and interacting with the polarization field of
the crystal lattice have been carried out by several
authors'$ in the past few years. Such a system is called
a polaron. In this brief note we report a calculation of
the energy spectrum of a polaron in a magnetic field
using a particularly simple approach given by Onsager,”
and Lifshitz and Kosevich,® independently. This
approach is based on the use of the Bohr-Sommerfeld
quantization rule which is supposed to be valid for
large quantum numbers, i.e., in the classical limit. We
prove that in the case of a polaron in a magnetic field,
the energy spectrum is indeed given quite correctly by
Onsager’s theory even for small quantum numbers
like =0, 1, 2, etc. Our procedure consists in evaluating
the first correction term to the usual phase integral,
derived from the exact quantization rule by Argyres,®
for the case of a polaron and showing that it is very
small.

THEORY

We consider a single electron whose band effective
mass is 7 and take the electron charge to be —e. We
assume the electron to be in the conduction band of a
polar material and suppose further that the energy
surfaces possess minima at the center (k=0) of the
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Brillouin zone and that they are spherical. The dynam-
ical properties of the system we envisage are given by
the Hamiltonian operator!

2
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The first term is the band energy of the electron. The
second term gives the interaction Hamiltonian of the
electron with the longitudinal optical phonon field.
Here a, and a,” are the destruction and creation
operators for a phonon of wave vector q and w is the
optical phonon frequency. The quantity V, stands for
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where « is the dimensionless coupling constant

/1 1\/ m\V
=G
B \eo €/ \2kw
€» and e are the optical and the static dielectric con-
stants of the host lattice, respectively.

We now calculate the energy of our system as a
function of the wave vector k of the electron. In the
case of weak coupling (@<1) the perturbation theory
gives us at T=0°K:
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for k<< (2mw/%)2. For the case of intermediate coupling

(2<6) we have?
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for K< (2mew/#)'2. Here
=nk+ 3 ajlaq
q

is the polaron momentum.

We now calculate the energy levels of a polaron in
a uniform magnetic field using the theory given by
Onsager” and Lifshitz and Kosevich® independently.
Suppose we want to study the motion of a charged
quasiparticle having the general dispersion relation

E= E([’b?w?z)

in a magnetic field. If the field B is directed along the
2z axis of the Cartesian coordinate system, the Hamil-
tonian of such a particle is obtained by replacing in the
above dispersion relation the momentum operator p;
by p¢ such that

iheB
[p)/ 0 1=——; [p,/,p'1=[p.",0/1=0.  (4)
C

Onsager showed, using the Bohr-Sommerfeld quantiza-
tion rule, that the energy of the system is given by

'rrheB
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where A (E,p.) is the area intercepted on the surface of
constant energy by a plane perpendicular to the
direction of the magnetic field and v lies between 0 and
1. We calculate 4 (E,k,) for the case of a polaron and
find that the energy

E,(k.,B)=—ahw+thw.(1—
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where w.=eB/mc. The cyclotron mass m,* is defined
by the condition

heB
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Simple substitution of Eq. (7) in Eq. (6) gives
m

ml*

30 <n+v+ + e 2) (®)
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The expression for m* for the case of intermediate
coupling is obtained in an analogous fashion.

In calculating the expression for the energy levels
of a quasiparticle in the presence of a uniform magnetic
field, use has been made of the Bohr-Sommerfeld

IN MAGNETIC FIELD
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quantization rule which has been derived by WKB
(semiclassical) approximation. This is an asymptotic
approximation which is valid only for small values of
Planck’s constant and large quantum numbers. In the
following we prove that in the case of a polaron, the
energy spectrum in the presence of a magnetic field is
indeed given by Eq. (6) even for small quantum
numbers like =0, 1, 2, etc.

Consider a one-dimensional system with a classical
Hamiltonian H (p,q) where g is the Cartesian coordinate
and p, the conjugate momentum. Assuming that the
Hamiltonian of the system is such that at least for a
certain range of values of its energy, the classical motion
is periodic, Argyres® has derived the following exact
quantization rule:

[ f dpdq S(pg; e)=2mh(n+3). )
Here T
S(pg; e€)

- / de(g—3o|s(e—H(P+p, Q) |g+da), (10)

-0

where 8(e) is a step function, P and Q are the momentum
and position operators, respectively, and e, is the nth
eigenvalue of H. One can expand .S(pg; €) in power of %,

S(pg; € =So(pg; +72S1(pg; +0), (11)

and calculate So(pq; €) and S1(pg; €) explicitly. Argyres
finds that So(pg; €) leads to the usual Bohr-Sommerfeld
quantization rule, i.e.,

L[ e
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and the expression for S1(pg; ) is
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Here 8'(e)=d8/de=8(e) is the Dirac & distribution and
8/8p and 8/8q are differential-operators which operate
only on the functions to their left, whereas 9/9p and
9/dq operate only on the functions to their right. The
Bohr-Sommerfeld quantization rule gives good results
for those values of e, for which

i / / dgdpSi(pg; en) K / / dpdg. (14)

Heg en
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We now evaluate the phase integral

[

He en

72 / [ S1(pg; en)dpdg

for the case of a polaron in a magnetic field and show
that the value of the latter expression for most materials
of interest is much smaller than that of the former for
magnetic fields generally available in the laboratory.
Now the expression for the classical Hamiltonian of a
polaron in the presence of a magnetic field can be
written as

and

(le2+Py'2+Pz'2)

3a
160%m2w

He=—
2m(1+3a)
(15)

(le2+py/2+P2/2)2

and making use of Eq. (4) we can write Eq. (15) as
Hc=61(P2+¢2q2)'—.32@2+¢2q2)2 ) (16)

where we have made the following substitutions:
B1=1/2m(1+0/6), By=3a/160m’hw, p,'=p, ps'=dq,
e8/c=¢. Here we have assumed that the energy is mea-
sured from —a#w and have put p,=0 to simplify the cal-
culations. As before, the applied magnetic field is along
the z axis of the Cartesian coordinate system. Because of
the commutation relations (4), ¢ and p in Eq. (16)
behave as a pair of conjugate variables. A straight-
forward calculation yields the following expression for
the phase integral :

B1— (B12—4B2€n)?
// dpdg=m .
Bap
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/ / S1(pq; e)dpdg

we write the integrand S1(pg; €) in two parts, i.e.,

S1(pg; =519 (pg; €+51?(pg; ),

a7

To calculate

(18)
where
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and
S1®(pg; €)

o
- (1/24)Hc[- 2
op dq oq 9p

We now calculate these two functions for the classical
Hamiltonian given by Eq. (16); we have

1ré2H, 9°H, 0%2H \?
519 (pg; e>=—[ ( ) ]s'wc—e)
8L 9p? 9¢> \dpdq
~ B SB+ 128°¢
(24826 — 88:e) -+ 12826 T (Hom 9. (21)

We now express S1V(pq;¢) in terms of H. and ¢
using Eq. (16)

0H. 6 9H,

]28"<Hc—e). (20)

H.=p:1(p+¢'¢") (22)

where we have neglected the second term on the right-
hand side of Eq. (16) because in the case of a polaron
it is much smaller than the first term. Putting y for H,
we get

519 (gy; €)= 3[B1%¢*—8B1p%y

+12(B2¢%%/8:) 18" (y—e¢).  (23)
Therefore
e / / $19 (pg; )dpdg
d b 1287¢°¢ dg
[ piw-spere-—— |1, a0
deJ ace) B p(EQ)

where we have changed the variable of integration
from p to y and p(eq) is the Jacobian of transformation;
a(e) and b(e) are the classical turning points and in our
case are given by

a(e)=—(¢/B1)"1/¢,

b(e)= (e/B:"1/s. (25)

In obtaining Eq. (24) we have used the following defini-
tion!! of the derivative of the Dirac’s d-distribution:

0

/ & (x)F () dz= — / " P ()i,

—00

(26)

where F(x) is an infinitely differentiable arbitrary
function of x. After carrying out the indicated opera-
tions on the right-hand side of Eq. (24) we obtain

© p® wr 2482p¢€
#f [ apasio s 9= (s——2). @)

1 1

U Hans Bremermann, Distributions, Complex Variables, and
Fourier Transforms (Addison-Wesley Publishing Co., Inc.,
Reading, Mass., 1965), p. 6.
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For S1®(pq; €) we have the expression
5 dy & Iy\? Ay /oy\2 9% 9y dy 9%/ay\?
59603 9= /295 = 2—= 2) 513= 9= (/28] (=) =2 2 242 2) =9 28)
op dqg 6q 9p 3p*\dq 9pdq dq 9p 3¢*\dp
and for our case
S19(pg; €)= (1/24)[(26:1—128:p— 48:¢%¢%) (28:4°C — 482479 1* — 4B20"¢°)
+168:¢%qp (28142 — 4B:4°q 1> — 4820"F%) (2619 — 4B2° — 48247 )
+ (28147 — 4824212 — 1282¢44?) (2819 — 4B2p* — 4B2¢°¢*p)* 10" (y—¢) . (29)

Simplifying this expression and putting $*+¢%*q®= /81, we obtain
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Now to calculate

/ [ S1? (pg; e)dpdg

we change the variable of integration from p to y,
integrate over y and ¢ and get (after some tedius but
straightforward calculation) the expression

i / / $1® (pg; €)dgdp
T R 368.%0¢  8085be
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To show that the first-order correction term

2 / / Si(pg; ex)dpdg

is much smaller than the phase integral

[ o

He en

we calculate the values of these two expressions for a
typical ionic material, say, CdTe and compare them.
Using the following values of the various physical

quantities for CdTe,? m=0.090mo, a=0.4 and 7w
=0.0213 eV, we find that the first-order correction term
is about 29, of the phase integral for the magnetic
fields of the order of 100 kG. Similar results are obtained
for other II-VI and I-VII compounds. Thus the energy
spectrum of a polaron in the presence of a magnetic
field is correctly obtained by using Onsager’s theory
even for small quantum numbers like n=0, 1, 2, etc.

Investigations of the energy spectrum of a polaron
in the presence of a magnetic field have been made by
several authors.®15 Tulub,”® for instance, finds that
the polaron effective mass for weak magnetic fields is
given by that of the field-free mass plus a term pro-
portional to (w./w)2. This result is derived for the case
of intermediate coupling, but the effective mass he
obtains does not approach the weak coupling result
to order . This is in disagreement with the results of
the present work. Hellwarth and Platzman® calculate
the free energy of polarons in a magnetic field and not
the energy spectrum. Hence, the comparison is not
immediately possible. Larsen'® has obtained the ground
state and the low-lying excited states of a polaron in a
magnetic field using a variational method closely re-
lated to the intermediate coupling theory of Lee, Low,
and Pines.! The results we obtain are quite similar to
those obtained by Larsen. Our procedure has the ad-
vantage of being simple and direct.

Throughout our work we have assumed that the
electron moves in a parabolic conduction band. Using

(1192615). K. Kanazawa and F. C. Brown, Phys. Rev. 135, A1757

B A, V. Tulub, Zh. Eksperim. i Teor. Fiz. 36, 656 (1959)
[English transl.: Soviet Phys.—JETP 9, 302 (1959)].

4R, W. Hellwarth and P. M. Platzman, Phys. Rev. 128,
1599 (1962).

15 D, M. Larsen, Phys. Rev. 135, A419 (1964).
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Kane’s'® theory we have calculated the variation of the
effective mass of an electron with the magnetic field due
to the nonparabolicity of the band. In the case of CdTe,
for instance, we find that this variation from the zero
field mass is about 1.5%, at 100 kG. The corresponding
variation in the polaron mass is about 49,. For GaAs,
however, the change in the effective mass due to the
nonparabolicity of the band is about 29, at 100 kG
whereas the variation in the polaron mass is about 0.4%.
It seems that, in most direct wide-energy-gap ionic
semiconductors, the effects due to the nonparabolicity
of the conduction band are relatively small.
Cyclotron-resonance experiments in several III-V

16 E, O. Kane, J. Phys. Chem. Solids 1, 249 (1957).
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compounds have been made!” and a small change in
the effective mass of an electron as a function of the
magnetic field is observed. In GaAs for instance, we
find that the observed variation of the cyclotron mass
with field is the same as we have calculated. Similar
measurements in II-VI compounds have not yet been
made.
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Fifteen phonon lines were observed in the first-order Raman spectrum of 6H SiC, using laser excitation.
Polarized light was used to identify the mode symmetry, and a large-zone analysis was used to classify
the modes and to display the results in what appear to be dispersion curves. All observed narrow lines are
consistent with our interpretation, and only two of the expected lines remain unobserved. A study of the
dependence of phonon energy on propagation direction shows that certain infrared and Raman active modes
have extremely little infrared strength (a consequence of the polytype structure of 6H SiC). Doublets in
the Raman spectrum give accurate measurements of the 4-8-cm™ discontinuities within the large zone.

I. INTRODUCTION

AMAN measurements have been greatly improved
by the use of laser light sources. In recent Raman
work the allowed optical phonons of ZnO?! and CdS?
have been fully identified. These crystals are uniaxial,
with wurtzite structure. 6H SiC belongs to the same
space group as ZnO and CdS (P6smc) but has more
atoms per unit cell,? and therefore has additional weak
modes accessible to Raman scattering. As a result of
certain special properties of phonons in SiC polytypes it
is possible to classify the observed weak modesin 6H SiC
and to display the results in what appear to be phonon
dispersion curves.
Many phonon energies have been reported for 6H SiC,
but most are zone boundary phonons, measured in
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luminescence,* indirect interband absorption,® and two-
phonon infrared absorption.® Polytype 6H has 12 atoms
per unit cell, hence 33 long-wavelength optic modes,
many of them allowed in first-order Raman scattering,
but few of them previously observed. Earlier Raman
work on SiC was done without a laser, and apparently
without polytype identification; only a few lines were
reported.” The residual ray reflection spectrum of 6H
SiC was analyzed by Spitzer et al.® to give fairly com-
plete information on the strong modes. Recently® an
additional weak absorption line was found at 19.9 .
This was subsequently identified as a fundamental
lattice line, the key to identification being an analysis of
phonon branches in the large zone.!
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