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It is demonstrated phenomenologically that as a result of first-order spatial dispersion an ‘“acoustical
activity” of transverse acoustic waves, the analog of optical activity, arises in certain crystal classes. Crystals
which are optically active are also found to be acoustically active. Furthermore, in the case of propagation
along high-symmetry axes, the effect manifests itself, as in the case of optical activity, as a simple rotation
of the plane of polarization of transverse acoustic waves. Acoustic effects of first-order spatial dispersion
which have no optical analog are also treated. Acoustical activity can also be inferred from the transforma-
tion properties of the acoustic phonons, and the acoustical activity of crystals may thereby be derived from
phonon-dispersion curves. An estimate of the magnitude of the acoustical activity of tellurium is so obtained.
The effects of first-order spatial dispersion on transverse-optical phonons and the optical properties which
arise from them are also considered. Practical problems involved in the observation of acoustical activity

are discussed.

1. INTRODUCTION

LTHOUGH optical activity is a well-established

phenomenon, its acoustical analog has, to our
knowledge, not been previously investigated. The effect
most often associated with optical activity, which is
exhibited by crystals lacking certain symmetry ele-
ments, is the rotation of the plane of polarization of
light propagating along optic axes. This rotation results
from a decomposition of the linearly polarized light
into right and left circularly polarized modes which
propagate coherently with different velocities and
superpose at any point in the crystal to form a wave
linearly polarized at a different angle. In the case of
propagation along directions other than optic axes,
the light propagates as right and left ellipitical polarized
modes having different velocities.

Similar considerations should apply to transverse-
acoustic waves. For crystals lacking certain symmetry
elements, we would expect the crystal to respond
differently to left and right circularly (or elliptically)
polarized acoustic waves. Furthermore, we would ex-
pect that, in the case of propagation along “acoustic
axes,” there would be a rotation of the plane of polariza-
tion of linearly polarized transverse waves.

Optical activity is known to result from first-order
spatial dispersion contributions to the dielectric con-
stant. Acoustical activity, correspondingly, should
result from first-order spatial dispersion contributions
to the elastic constants. We present here a discussion
of the effects of the first-order spatial dispersion of the
elastic constants and its effects on the propagation of
acoustic waves with specific application to acoustical
activity.
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2. SPATIAL DISPERSION
A. Electromagnetic Waves

Before proceeding with a discussion of the propaga-
tion of acoustic waves, let us review the effects of
spatial dispersion on the propagation of light waves.
The macroscopic linear response of a crystal to a light
wave is described by the dielectric constant, which
relates the electric displacement D to the electric field
E. For most cases, the dielectric constant is a function
of frequency only and does not depend on the wave
vector. A dependence of the dielectric constant on wave
vector occurs when the D at a given point depends on
the E not only at that point, but at neighboring points
as well, ie., the response is nonlocal.! Formally, one
expresses this dependence by writing the functional
form of the dielectric constant as e;;(w,k), and the
dependence of the dielectric constant on the wave
vector k is known as spatial dispersion. When the
magnitude of the nonlocal part of the dielectric constant
is small, €;;(w,k) may be expanded in a power series in
k, namely,

€i5(w,k) = €55 (@) +1gij1 (@) kit Bijim (@) ekmt - - (2.1)

Optical activity arises from the first-order terms
igiji(w)ki, and the tensor g;; is called the optical
gyrotropic tensor.

Because of time-reversal invariance and causality,
€:j(w) is symmetric, i.e., €;;(w) = ¢;;(w). [ This is a general
property which holds for any set of linear-response
terms connecting conjugate intensive and extensive
parameters F; and X, respectively (such as D; and E;),
whose contribution to the Hamiltonian has the form
>if Xi(r)F;(r)d?.?] Since the sign of k is reversed
when time is reversed, the obvious generalization in the
presence of spatial dispersion is e;(w,K)=¢:(w, —K).
It follows from this that the third-rank coefficient g;;;

LA, A. Rukhadze and V. P. Silin, Usp. Fiz. Nauk. 74, 223
(1961) [English transl.: Soviet Phys.—Usp. 4, 459 (1961)].
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of the first-order term in the expansion of ¢;;(w,k) has
the property giji(w)=—gsi(w). In transparent regions
of the spectrum, where the absorption of light is negli-
gible, e.-j(w,k) is Hermitian, i.e., Eij* (w,k)=e,~,~(w,k).2
Under these conditions g;;;(w) is real.

Optical activity cannot take place in crystals con-
taining symmetry elements such as a center of inversion,
or mirror planes perpendicular to, or containing, axes
of threefold or higher symmetry, which transform left
and right circularly polarized light into one another
for all directions of propagation.? In other crystal classes,
the effects of optical activity are present for light
propagating in general directions, but, because of
symmetry, are absent for certain propagation directions
such as those in, or normal to, a mirror plane, or along
a fourfold inversion axis. The symmetry elements also
determine the direction dependence of the optical
activity of waves propagating in different directions.
The same results can be obtained by determining which
coefficients g;;; vanishand which are related toeach other
under the various symmetry transformations. On the
basis of either procedure, one finds that optical activity
does not occur in centrosymmetric crystals, nor does it
occur in any cubic crystal which possesses reflection
symmetry. The optic axis of a uniaxial crystal is one of
threefold or higher symmetry. Therefore, light propa-
gating along the optic axis of such a crystal cannot
exhibit optical activity if the symmetry elements of the
crystal include a mirror plane or an inversion axis.
Simple rotation of the plane of polarization is, con-
sequently, found only in the so-called “enantiomorphus”
cubic and uniaxial crystals which lack mirror and
inversion symmetry.

Let us take as an example the dielectric tensor of a
low-symmetry uniaxial crystal, such as tellurium or
quartz, which has a Dj; point-group symmetry. The
dielectric tensor, to first-order terms in the spatial
dispersion, is given by

€11 ig1asks 0
(2.2)

e(w,k3)= [—ig123k3 €11 0
0 0 €33

for wave propagation along the optic axis, taken along
X 3. The propagation of light waves is described by the
equation

Ei—ni(n-E)= ¥/ Di= (*/MeyE;,  (2.3)

which is derived from Maxwell’s equations. Here v
is the phase velocity and n is the unit vector along the
propagation direction. When n is along the optic axis

2L. D. Landau and E. M. Lifschitz, in Statistical Physics,
translated by E. Pierels and R. F. Pierels (Pergamon Press,
Ltd., Oxford, England, 1958), pp. 104ff.

3 J, P. Mathieu, Les Theories Moleculaires du Pouvoir Rotatoire
Nat/u)rel (Centre National de la Recherche Scientifique, Paris,
1946).

4J. F. Nye, Physical Properties of Crystals (Oxford University
Press, London, 1957).
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X; we find, on combining (2.2) and (2.3), that

E, €11 igisks 0| [Ex

Ez =—2— —igusks €11 0 E2 . (24)
C

0 0 0 €3] | Es

It is then simple to show, using standard methods,
that the proper modes of propagation are the circularly
polarized modes E,=E,+FE, where the plus sign
corresponds to left and the minus sign corresponds to
right circularly polarized light.® Their phase velocities
are given by

'l):k2= 62/611:|:g123k3=62/1’1/i2 ’ (25)
where n,. are the corresponding refractive indices of the
circularly polarized waves. If a linearly polarized wave
propagating parallel to optic axis is incident on the
crystal, it will decompose into right and left circularly
polarized waves of equal amplitude. At a distance !
from the incident surface, their phase difference is
(wl/c) (ny—mn_).% The resultant of the two waves at that
point is a linearly polarized wave whose direction of
polarization makes an angle of (w//2c)(ny—n_) rad
with respect to the polarization direction of the inci-
dent wave. This rotation of the plane of polarization
is a direct congequence of the optical activity of the
crystal,

B. Acoustic Waves

Let us now consider the analogous situation in
acoustics. The macroscopic response of a crystal to an
acoustic wave is determined by the compliance elastic
constants. The elastic constants describe the linear
relationship between the stress and the strain. Unlike
D and E, the stress T and strain & are not vectors, but
rather second-order symmetric tensors. In full tensor
notation they are therefore describable by two indices
as Tmyn and 8., However, since the tensors are sym-
metric, the tensor components are independent of the
order of these indices so that they may be equally well
designated by a single index, in contracted form, as T';
and §&;, respectively.* The compliance elastic constants
can be written in a full notation as ¢mnpq, Or in a con-
tracted notation as c;;. In the case of static strains, the
relationship between stress and strain in contracted
notation takes the form T;=c;;§;, and there is an addi-
tional contribution to the free energy of the crystal
of the form VT:8;=Vc:;8:8;, where V, is the crystal
volume. Only the symmetric part of ¢;; contributes to
the free energy. When the applied strain is not static,
the resultant stress at any time can depend on the strain
applied at the same time, or at any prior time. As long
as the relationship between stress and strain is linear,

§ M. Born and E. Wolf, Principles of Optics (Pergamon Press,
Ltd., Oxford, England, 1964), 2nd ed., p. 30.
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we may express this dependence by the relation

Tu(i)= f " es(r) 81— ). (26)
0

A free energy can no longer be defined. However, the
applied strain contributes a term of the form Vo7:8;
to the Hamiltonian and this can be used to establish
the time-reversal symmetry of c¢;;.

T:(¢) and &;() can be described by an appropriate
superposition of plane waves. Taking any one such
wave, of frequency w, we have the linear relationship
Ti(w)=c;;(w)8;j(w) between the stress and strain
amplitudes of any such wave, where ¢;;(w) is given by

Cij(w)=/w csi(H)etetdt. 2.7

Since this linear relationship exists, and since the
stress and strain contribute a term to the Hamiltonian
of the above form, it follows from causality and from
the symmetry of such crystals under time-reversal
invariance that c¢;;(w), like €;;(w), must be symmetric,
Le., ¢ij(w)=cji(w).

Up to this point we have assumed that the inter-
action between stress and strain is a local one. If the
interaction is nonlocal; the elastic constants exhibit a
dependence on wave vector and take the form c¢;;(w,k).
Again from consideration of time-reversal invariance,
one arrives at the relation c¢;j(w,k)=c;;(w, —k). On
expanding ¢;;(w,k) in powers of k, one obtains

Cij(w, k) = ¢ij(w)+idsj, 1 (@)erteij im(@)kikmt- -+ . (2.8)

The tensor dq;,;(w) may be called the acoustic gyro-
tropic tensor. It follows, as in the case of light waves,
that d;;,,(w) is antisymmetric in the subscripts 7 and 7,
ie., dij,i(w)=—dj;,i(w), and real in the absence of at-

tenuation. Note, however, that d;;,; is actually a.

fifth-rank tensor dmape: and that the effect of symmetry
on d,;,; differs from its effect on gij.

We are now in a position to see how first-order
spatial dispersion affects acoustic wave propagation.
Acoustic propagation in a given direction does not
depend on the complete set of elastic constants, but on
a dynamical matrix [®] containing certain of the
elastic constants. The basic equation for propagation of
an acoustic wave along the X; axis of a crystal is®

(2.9)

In this equation u is the particle displacement, p is
the density, v is the wave velocity, and ¢sjs,(w,ks) is
the appropriate set of elastic constants, written in full
notation. For the case where the X; axis is an acoustic
axis having threefold or higher symmetry, and in the
absence of spatial dispersion, this equation takes the

Djn(w0,k8)thn=Csj3n (w0, ks)thn=prPu;.

¢ P. C. Waterman, Phys. Rev. 113, 1240 (1959).
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form

cosez O 0 (wa w1
0 s O | |uz|=pt*|us], (2.10)
0 0 C3333) (U3 Us

and in contracted notation it takes the form

U1 cae O 0 U1 U1
[‘.D:I U | = 0 cu 0 U2 =p7)2 Uz | . (211)
Us 0 0 C33 us u3

The matrix [D] is the dynamical matrix describing
acoustic-wave propagation along an acoustic axis. When
the effects of spatial dispersion are taken into account
(see Sec. 3) the dynamical matrix for optically active
uniaxial and cubic crystals takes the form

C2323 id13233k3 0
[D]= [—idlszssks Ca323 0
0 0 €3333
Caq idsasks O
= [—ida;;,aka Caa 0 ] (212)
0 0 C33

in full and contracted tensor notation, respectively.
On substituting this expression into (2.9), one finds
that the transverse modes are circularly polarized with
phase velocities 2.2= (1/p)(csatdsa,3k3). In analogy
with the optical case, the plane of polarization of an
incident linearly polarized transverse-acoustic wave
will be rotated by an angle ¢=3wl[1/9_—1/v,]. To
first order in ds4,3k3/cq4 the angle is given by

¢=35w"lp dss,s/cad. (2.13)
3. ACOUSTICAL ACTIVITY IN VARIOUS
CRYSTAL CLASSES

The dependence of d;;,; on crystal symmetry is more
complicated than that of g;;; since d;,; is a fifth-rank
tensor whereas g;;; is a third-rank tensor. We have seen,
however, that the effect of first-order spatial dispersion
on a transverse-acoustic wave propagating along a
crystal direction of threefold or higher symmetry is
similar to its effect on a light wave propagating along
such directions, the dynamical matrix being especially
simple in such cases. For the present, we restrict our
attention to acoustic propagation along axes of three-
fold or higher symmetry and along cubic [100] axes,
which, because of symmetry, must be acoustic axes.
It is clear from (2.12), which applies to cubic, trigonal
hexagonal, and tetragonal crystals that only components
of the form d;s33(2, =1, 2, 3) contribute to acoustical
activity along an acoustic axis. The coefficient dyss33 (or
dss,3) couples transverse modes with one another, while
dissss (or dss,3) and dagsss (or duss) couple transverse
modes to the longitudinal mode. Relationships between
the coefficients may be found by consideration of
crystal symmetry, using methods described in standard
texts.* It is easily shown that all coefficients must be
zero in centrosymmetric crystal classes. In all uniaxial
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TasiE I. Acoustical activity of uniaxial noncentrosymmetric
crystal classes for propagation along acoustic axes.

Active classes Inactive classes

(d1323350) (@13233=0)
Cs Dy Cso Csn S
Cs Dy Cy Dy, Dy
Cs D Cev

classes the coefficients dyss33 and dassss are zero, so that
there is no coupling of transverse to longitudinal modes.

Table I summarizes which noncentrosymmetric uni-
axial classes, respectively, can or cannot exhibit acousti-
cal activity for sound waves propagating along the
acoustic axis. The coefficient dissss must vanish in the
latter classes.”

There are two acoustic axes in cubic crystals, namely,
[001] and [1117], so that two sets of coefficients must
be considered. These sets are related, and in fact it is
convenient to calculate the entire set of dijrim coeffi-
cients. There are three noncentrosymmetric crystal
classes, T, T4, and O. In class T the nonvanishing
coefficients, referred to the cubic crystal axes, are (in
contracted notation)

(1) dis1=dss5,2=dss,3,
(2) d15,2=d26,3=d34,1,
(3) dis,3=d24,1=d3s,2,
(4) d45,3=d56,1=d64,2-

In class O, set (1) is zero and set (2)=—set (3) ie.,
dis,2=—dys,3. In class Ty, set (4) is zero, and set
(2)=set (3), i.e., dis,2=d10,3.

For a transverse wave propagating along [1007] axes,
the acoustical activity is determined by the coefficients
of set (4). Consequently, a rotation of the plane of
polarization may be expected in classes 7" and O, but
not in class T4. No coupling between transverse and
longitudinal modes results from any of these coefficients.

For transverse waves propagating along a [1117]
direction, the coefficient responsible for acoustic
activity is’

@' 15,5="$[3d15,2—3d16,5— 2d15,5] , 3.1)

where we have referred d’45,3 to a coordinate system
(«'1, '3, 4'3) along the crystalline [112], [110], and
[1117 axes, respectively. This term may be nonvanish-
ing in crystal classes 7' and O, but must be zero in class
T4 so that acoustical activity does not occur in the
latter class. Furthermore, since the [1117] axis is one
of threefold symmetry, there will be no coupling of the
transverse modes to the longitudinal mode in any of
these classes.

In summary, we note that for waves propagating
along an acoustic axis, acoustical activity will be ob-
servable in crystal classes possessing axes of threefold

"D. L. Portigal, Ph.D. thesis, University of Pennsylvania,
1967 (unpublished),
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or higher symmetry which do not have mirror planes
or inversion axes. The same classes are the ones that
will show optical activity for light waves propagating
along an optic axis. Also, note that in the absence of
spatial dispersion the transverse and longitudinal waves
propagating along these axes are pure modes, and that
first-order spatial dispersion does not mix the longi-
tudinal mode with the transverse modes.

Although the coefficients responsible for acoustical
activity along the high-symmetry axes are zero in a
T s-type crystal, such crystals do have two nonvanishing
sets of first-order spatial dispersion coefficients which
apparently contribute terms in the dynamical matrix
for waves propagating in general directions, in contrast
with the optical case, where no such coefficients appear.
It is of interest to understand how these coefficients
might affect the polarization of sound wave. It is not
difficult to show that these coefficients do not couple
polarization components which are normal to the prop-
agation direction. The argument is as follows: If, as
above, we consider the set of “transformed” coefficients
d'ijimn for propagation along a general direction des-
ignated as X's, coupling of the transverse polarization
components must involve the coefficient d’13033. How-
ever, since d'izp33=—d 53133, We can equally represent
this coefficient as a component of a fourth-rank pseudo-
tensor d’ijmm such that d’;sjs3=208;jsd"3333, where 8 is
the unit antisymmetric tensor. Referring this pseudo-
tensor to the crystal axes, d’ssss=0as:03i03183mbijim
=dyjimMNNimm, Where the a;; are the direction cosines
of the wave vector with respect to the crystal axes,
and n is a unit vector along the propagation direction.
Only terms in d;ijn that are completely symmetric in
i, J, I, and m will contribute to this sum. In class T,
this pseudotensor is equivalent to the elastic tensor
with the additional requirement that the components
are symmetric in the indices. The only nonzero com-
ponents are therefore dini=dssee=d333 and dise
= dy138= dg23s= d1219= d1313=da323. However, in class T4
there is an additional mirror symmetry, which causes
these components to be zero. Consequently, in T
crystals, first-order spatial dispersion terms do not
couple transverse-polarization components. They do
couple longitudinal components, and lead to modes in
which the polarization vector “rolls” along the direc-
tion of propagation. This aspect of wave propagation
warrants further study.

4. FIRST-ORDER SPATIAL-DISPERSION EFFECTS
ON PHONON-DISPERSION CURVES

First-order spatial dispersion also determines the
form of the phonon-dispersion curves. For example, one
may expect a splitting of the degeneracy of transverse
waves propagating along symmetry directions cor-
responding to acoustic axes, e.g., [100] and [111]
directions in the case of cubic crystals, and the [001]
axes of uniaxial crystals.
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The effect of spatial dispersion manifests itself in
the transformation properties of the acoustic phonons.
In acoustically active crystals the transverse phonons
which are degenerate at k=0 become nondegenerate at
finite k along acoustic axes. These nondegenerate states,
moreover, have characteristic right and left circular
polarization. This is a very general situation, which may
be best illustrated by example. For this purpose let
us again consider tellurium as a simple case.

In tellurium there are three atoms per unit cell, so
there will be nine branches in the w-versus-k curves.
Three of these branches are the acoustic and the other
six are the optic branches. Any phonon mode having
wave number k will transform under the same symmetry
operations as k. These operations form a group, and
each mode will transform as some representation of that
group. In general, modes belonging to different repre-
sentations will have distinct frequencies, although
accidental degeneracies will exist at isolated points in
the Brillouin zone. In tellurium, there are six symmetry
operations divided into three classes at the center of
the zone. The first class is the identity operation E.
The second class is composed of 120° and 240° rotations
about the threefold screw axis of the crystal. The third
class is composed of twofold rotations about three
equivalent binary axes normal to the threefold axis.
Its Brillouin zone is a hexagonal prism, whose long
axis is one of threefold symmetry.? Therefore, at the
center of the Brillouin zone, i.e., at k=0, the phonon
spectrum is represented by three irreducible representa-
tions, I'y, 'y, and 'y, having a character table shown in
Table II. The longitudinal acoustic mode transforms as
I'y’%, whereas the transverse modes, being degenerate at
k=0, must transform as T's.

The symmetry properties of a phonon propagating
along the trigonal axis will be described by the sym-
metry properties of a general point along the threefold
axis of the Brillouin zone. This point is symmetric
only under the operations E, and 120° and 240° rotations
about the threefold axis, each of which forms a dis-
tinct class. Due to screw symmetry the character table
is complicated.® However, in the long-wavelength limit
it takes a very simple form, as seen in Table III. As
k— 0, we have the compatability relations A;— T
or I'1; Ay and Ay — T'y. Therefore A, is the longitudinal
mode and A, and A; are the transverse modes propagat-
ing along the trigonal axis.

At k=0, the degenerate transverse normal modes

TasLE II. D; character.

m 1 1 1
’ 1 1 -1
Iy 2 -1 0

8 M. Hulin, Ann. Phys. (N. Y.) 8, 641 (1963); J. Phys. Chem,
Solids Suppl. 21, 135 (1965).
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TaBLE III. A Axis character.

(w=exp¥mi)

Ay 1
A 1
Ag 1

€ &~
€ E =

involve equal displacement of all atoms in the unit
cell in the plane normal to the trigonal axis. For small
k, the normal modes should not differ too greatly from
the £=0 modes. However, since A, and A; are distinct
at nonzero k, the modes are nondegenerate. Moreover,
the normal modes in the A, and A; representation must
be, respectively, multiplied by w and * under a 120°
rotation about the trigonal axes, and by o* and w
under a 240° rotation. In the A, representation these
conditions are satisfied only by the mode in which all
atoms in the cell move with the right-handed circular
polarization. In the A; representation, the conditions
are satisfied only if all atoms move with left-handed
polarization. Consequently, there are two distinct
circularly polarized modes at nonzero %, which become
degenerate when & — 0. Thus the existence of acoustical
activity can be inferred from the symmetry properties
of phonon-dispersion curves. The phonon-dispersion
curves of tellurium have been taken as an example,
but similar arguments will apply to all classes of trigonal
or higher symmetry in which acoustical activity may
occur.

It should be possible, of course, to obtain the magni-
tude of the acoustical activity along acoustic axes from
experimental or theoretical phonon-dispersion curves.
No neutron scattering measurements seem to have been
made on crystals which may exhibit acoustical activity.
However, Hulin? has calculated theoretical phonon-dis-
persion curves for tellurium which can be used to
obtain a theoretical estimate of the acoustical activity
of transverse waves propagating along the trigonal
axis of tellurium. Hulin’s calculations are based on a
model involving three force constants. The force con-
stants used in these calculations are based on older
values of the elastic constants, and differ on the average
by 109, from force constants calculated from the latest
values of the elastic constants. The phonon frequencies
of each acoustic branch were calculated at the Brillouin-
zone edge and the midpoint of the A branches. The
shape of the curves joining the calculated points was
deduced from general symmetry requirements, and
from elastic wave theory.? Using Hulin’s curves (Fig. 1),
one finds that the mean velocity 7 of the two transverse
modes at the midpoint of the A branches is essentially
equal to the transverse velocity at T'(k=0). The
fractional splitting of the velocities of the two branches
at the midpoint of the acoustic A branches is found to be
(v4—v_)/5=0.18. The symmetric splitting of the veloci-
ties of the two circularly polarized branches is con-

9 M. Hulin (private communication).
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sistent with the simple theory of acoustical activity
based on a first-order expansion of the elastic constants
in powers of %, and implies that the simple first-order
expansion of the elastic constant is physically meaning-
ful even at the midpoint of the A branch of tellurium.
From the expansion for the velocity difference of the
two modes, we find that the relevant acoustical activity
constant dgs,3 is 1.7X1078 cgs units. This leads, for
example, to a circular birefrigence (v,—12_)/7 of 1074 at
1 Gc/sec, or a rotation of the plane of polarization of
about 165°/cm at that frequency.

Note that the transverse-optical branches of acousti-
cally active crystals will also split into modes of right-
and left-handed symmetry at points (£>0) along the
acoustic axes. In tellurium there are two sets of such
modes which have I'y symmetry at £=0 and which have
A, and A; symmetry at points along the trigonal axes.
Hulin’s curves (Fig. 1) show that the transverse-
optical branches have a well-defined splitting along A.
The splitting is, in fact, rather large for the lower fre-
quency branches. The optical modes are both infrared
and Raman-active,and their splitting may be observable
in either the infrared-absorption spectra or the Raman-
scattering spectra. The splitting of the right- and left-
handed polarized transverse-optical modes may also
lead to an observable contribution to the far-infrared
optical activity of tellurium.

5. PRACTICAL ASPECTS

Since the rotation of the plane of polarization in-
creases as the square of the frequency, any attempts
to observe this effect should be carried out at as high
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a frequency as possible. On the other hand, the attenua-
tion of acoustic waves also increases rapidly with fre-
quency, and establishes an upper limit to the fre-
quency which varies from material to material. An
order-of-magnitude estimate of the rotation per unit
length, ¢/I, may be obtained by noting that (v,.—v_)/?
is or order ka/2m,'® where @ is comparable to the lattice
constant. On this basis, ¢/ is of the order of 1
rad/cm when the acoustic frequency is about one
gigacycle. This estimate is in agreement with that
obtained for tellurium from the theoretical phonon-
dispersion curves.

Note, however, that the effect of acoustical activity
can be masked by accidental linear birefringence that
is associated with crystal defects. A similar effect can
result from misalignment of the wave vector relative
to the acoustic axis. This effect of misalignment is
particularly serious for a trigonal acoustic axis, since
in this situation the linear birefringence varies directly
with the misalignment angle, whereas it varies as the
square of the misalignment angle along axes of higher
symmetry.® In tellurium, for example, 0.5° misalign-
ment results in a linear birefrigence of 2)X103,7 which
is an order of magnitude greater than the estimated
circular birefringence 1XX10~* at 1 Gc¢/sec, so that either
the frequency must be increased, or the misalignment
angle decreased, by an order of magnitude for measure-
ments to be feasible.

Lack of collimation of the incident beam constitutes
another serious limitation to the observation of acousti-
cal activity. Again, the effect will be particularly large
along a trigonal acoustic axis, since, as a result of
internal conical refraction, the intensity of the cir-
cularly polarized (‘“collimated”) modes can be ap-
preciably lower than that of the linearly polarized
“background” modes.” In the case of acoustic waves,
diffraction may well be the major source of “lack of
collimation.”

6. CONCLUSION

It was shown that due to first-order spatial disper-
sion an acoustical activity can occur in crystals which
exhibit optical activity. Moreover, it was demonstrated
that the magnitude of the acoustical-activity coefficients
of a given crystal might be deduced from experimental
or theoretical phonon-dispersion curves. The practical
problems involved in the observation of acoustical
activity were analyzed. Other interesting effects of
first-order spatial dispersion on the propagation of
acoustic waves in general directions were considered.
Finally, the effects of first-order spatial dispersion on
the transverse-optical vibration modes, and the optical
properties arising from them, were also pointed out.
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