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Acoustical Activity and Other First-Order Spatial
Dispersion Effects in Crystals*
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It is demonstrated phenomenologically that as a result of 6rst-order spatial dispersion an "acoustical
activity of transverse acoustic waves, the analog of optical activity, arises in certain crystal classes. Crystals
which are optically active are also found to be acoustically active. Furthermore, in the case of propagation
along high-symmetry axes, the effect manifests itself, as in the case of optical activity, as a simple rotation
of the plane of polarization of transverse acoustic waves. Acoustic effects of 6rst-order spatial dispersion
which have no optical analog are also treated. Acoustical activity can also be inferred from the transforma-
tion properties of the acoustic phonons, and the acoustical activity of crystals may thereby be derived from
phonon-dispersion curves. An estimate of the magnitude of the acoustical activity of tellurium is so obtained.
The effects of 6rst-order spatial dispersion on transverse-optical phonons and the optical properties which
arise from them are also considered. Practical problems involved in the observation of acoustical activity
are discussed.

l. INTRODUCTION

A LTHOUGH optical activity is a well-established
phenomenon, its acoustical analog has, to our

knowledge, not been previously investigated. The effect
most often associated with optical activity, which is
exhibited by crystals lacking certain synmnetry ele-

ments, is the rotation of the plane of polarization of
light propagating along optic axes. This rotation results
from a decomposition of the linearly polarized light
into right and left circularly polarized modes which

propagate coherently with different velocities and
superpose at any point in the crystal to form a wave
linearly polarized at a different angle. In the case of
propagation along directions other than optic axes,
the light propagates as right and left ellipitical polarized
modes having different velocities.

Similar considerations should apply to transverse-
acoustic waves. For crystals lacking certain symmetry
elements, we would expect the crystal to respond
differently to left and right circularly (or elliptically)
polarized acoustic waves. Furthermore, we would ex-

pect that, in the case of propagation along "acoustic
axes, "there would be a rotation of the plane of polariza-
tion of linearly polarized transverse waves.

Optical activity is known to result from first-order
spatial dispersion contributions to the dielectric con-
stant. Acoustical activity, correspondingly, should
result from first-order spatial dispersion contributions
to the elastic constants. We present here a discussion
of the effects of the Grst-order spatial dispersion of the
elastic constants and its effects on the propagation of
acoustic waves with specific application to acoustical
activity.
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2. SPATIAL DISPERSIOH

A. Electromagnetic Waves

Before proceeding with a discussion of the propaga-
tion of acoustic waves, let us review the effects of
spatial dispersion on the propagation of light waves.
The macroscopic linear response of a crystal to a light
wave is described by the dielectric constant, which
relates the electric displacement D to the electric field
E. For most cases, the dielectric constant is a function
of frequency only and does not depend on the wave
vector. A dependence of the dielectric constant on wave
vector occurs when the D at a given point depends on
the E not only at that point, but at neighboring points
as well, i.e., the response is nonlocal. ' Formally, one
expresses this dependence by writing the functional
form of the dielectric constant as e;t(to,k), and the
dependence of the dielectric constant on the wave
vector k is known as spatial dispersion. When the
magnitude of the nonlocal part of the dielectric constant
is small, e;;(to,k) may be expanded in a power series in
k, namely,

e;;(co,k) = e;t(to)+ig;tt((o)kt+It;;t (co)ktk + . (2.1)

Optical activity arises from the first-order terms
ig;tt(to)kt, and the tensor g;;t is called the optical
gyrotropic tensor.

Because of time-reversal invariance and causality,
e;s(to) is synitnetric, i.e., e;t(to) = et;(to). LThis is a general
property which holds for any set of linear-response
terms connecting conjugate intensive and extensive
parameters F; and X;, respectively (such as D; and 8;),
whose contribution to the Hamiltonian has the form
g;JX';(r)F, (r)dsr. 'g Since the sign of k is reversed
when time is reversed, the obvious generalization in the
presence of spatial dispersion is e;t(co,k)=et;(to, —k).
It follows from this that the third-rank coefficient g;;~

'A. A. Rukhadze and V. P. Silin, Usp. Fiz. Nauk. 74, 223
(1961) PEnghsh transl. : Soviet Phys. —Usp. 4, 459 (1961)g.
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of the 6rst-order term in the expansion of e;s(&o,k) has
the property gsst(co)= —g;;t(oo). In transparent regions
of the spectrllm, where the absorption of light is negli-
gible, ets(to, k) is Hermitian, i.e., e;;*(co,k) =e;;(to,k) s

Under these conditions g;;t(to) is real.
Optical activity cannot take place in crystals con-

taining symmetry elements such as a center of inversion,
or mirror planes perpendicular to, or containing, axes
of threefold or higher symmetry, which transform left
and right circularly polarized light into one another
for all directions of propagation. ' In other crystal classes,
the CGects of optical activity are present for light
propagating in general directions, but, because of
symmetry, are absent for certain propagation directions
such as those in, or normal to, a mirror plane, or along
a fourfold inversion axis. The symmetry elements also
determine the direction dependence of the optical
activity of waves propagating in diferent directions.
The same results can be obtained by determining which
coefBcientsg;;~ vanish and which are related toeach other
under the various symmetry transformations. 4 Qn the
basis of either procedure, one 6nds that optical activity
does not occur in centrosyommtric crystals, nor does it
occur in any cubic crystal which possesses reQection
syrrlmctry. The optic axis of a uniaxial crystal is one of
threefold or higher symmetry. Therefore, light propa-
gating along the optic axis of such a crystal cannot
exhibit optical activity if the symmetry elements of the
crystal include a mirror plane or an inversion axis.
Simple rotRtlon of thc plane of polRllzRtlon ls~ con-
sequently, found only in the so-called "enantiomorphus"
cubic and uniaxial crystals which lack mirror and
lnvcl sion syIDIIlctry.

Let us take as an example the dielectric tensor of a
low-symmetry uniaxial crystal, such as tellurium or
quartz, which has a Ds Point-grouP syIIlmetry. The
dielectric tensor, to 6rst-order terms in the spatial
dlspcrslonq ls glvcn by

&j.i g128~8

e(oo,kg) = zgtssks —err 0 (2.2)
0 0

for wave propagation along the optic axis, taken along
Xs. The propagation of light waves is described by the
equation

(2 3)

which is derived from Maxwell's equations. Here e

is thc phase velocity and I is the unit vector along the
propagation direction. When n is along the optic axis

L. D. Landau and E. M. Lifschitz, in Statistical, Physics,
translated by E. Pierels and R. F. Pierels (Pergamon Press,
Ltd. , Oxford, England, 1958), pp. 1048.

J. P. Mathieu, Les Theories Jtt/IoLecelaires dN, I'oueoir Rotatoire
Satlrel (Centre National de la Recherche Scienti6que, Paris,
1946).

4 J. F. Nye, Physsoat Proportsos of Crystals (Oxford University
Press, London, 1957).

Xs we ftnd, on combining (2.2) and. (2.3), that

&2 =——~g1~s&s
C2

0 0

ig12sks 0 E1

0 Es . (2.4)

&ss ~s,

where I+ are the corresponding refractive indices of the
circularly polarized waves. If a linearly polarized wave
propagating parallel to optic axis is incident on the
crystal, it will decompose into right Rnd left circularly
polarized waves of equal amplitude. At a distance l
from the incident surface, their phase difference is
(od/c) (st+ —st ).' The resultant of the two waves at that
point is a linearly polarized wave whose direction of
polarization makes an angle of (tol/2c)(st+ —I ) rad
with respect to the polarization direction of the inci-
dent wave. This rotation of the plane of polarization
is a direct consequence of thc optical activity of the
crystal.

B. Acoustic Waves

Lct us Ilow consider thc analogous situation ln
acoustics. The macroscopic response of a crystal to an
acoustic wave is determined by the compliance elastic
constants. The elastic constants describe the linear
relationship between the stress and thc strain. Unlike
9 and E, the stress T and strain 8 are not vectors, but
rather second-order symmetric tensors. In full tensor
notation they are therefore describable by two indices
as T „and 8~,. However, since the tensors are sym-
metric, the tensor components are independent of the
order of these indices so that they may be equally well

designated by a single index, in contracted form, as T;
and 8;, respectively. 4 The compliance elastic constants
can be written in a full notation as c „„„orin a con-
tracted notation as t,;;. In the case of static strains, the
relationship between stress and strain in contracted
notation takes the form T;=c;;8;, and there is an addi-
tional contribution to the free energy of the crystal
of thc form POT8s= tt Oc»88&& whclc Vo ls thc clystal
volume. Only the symmetric part of c;; contributes to
the free energy. %hen the applied strain is not static,
the resultant stress at any time can depend on the strain
applied at the same time, or at any prior time. As long
as the relationship between stress and strain is linear,

5 M. Born and E. Wolf, PrinciP/es of OPtics (PergaInon Press,
Ltd. , Oxford, England, 1964), 2nd ed., p. 30.

It is then simple to show, using standard methods,
that thc proper modes of propagation are the circularly
polarized modes E~——E,+Ii.„, where the plus sign
corresponds to left and the minus sign corresponds to
right circularly polarized light. ' Their phase velocities
are given by

(2.5)
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we may express this dependence by the relation form

T,(t) = cd(2) B,(t 2)—dr. (2 6)
0 C2s2s 0 N2 =p&

'2

0 0 cssss ss
(2.10)

A free energy can no longer be de6ned. However, the
applied strain contributes a term of the form VOT;8;
to the Hamiltonian and this can be used to establish
the time-reversal sylIunetry of c;;.

T„(t) and 8;(t) can be described. by an appropriate
superposition of plane waves. Taking any one such
wave, of frequency ~, we have the linear relationship
T, (44) = c;, (40) 8;(&4) between the stress and strain
amplitudes of any such wave, where C43(&0) is given by

c' (~)= c (t)e'""'dt (2.'/)

' P. C. %'atcrmaD, Phys. Rcv. 113, 1240 (j.959).

Since this linear relationship exists, and since the
stress and strain contribute a term to the Hamiltonian
of the above form, it follows from causality and from
the symmetry of such crystals under time-reversal
lllvallRIlcc tllRt c;I(40)) llkc $;I(40), Blllst bc sylllmctrlc)
I e, c'I(~) =ct'(~).

Up to this point we have assumed that the inter-
action between stress and strain is a local one. If the
interaction is nonlocal, the elastic constants exhibit a
dependence on wave vector and take the form c;;(40,k).
Again from consideration of time-reversal invariance,
one arrives at the relation c;;(44,k)=c;;(ar, —k). On
expand. ing c,;(&0,k) in powers of k, one obtains

c,;((o,k) =c;;( )+id;;, I(~)kl+e;;, I (a)klk„+ . (2.8)

The tensor d;; I(44) may be called the acoustic gyro-
tropic tensor. It follows, as in the case of light waves,
that d,;,I(co) is antisymmetric in the subscripts i and j,
i.e., d,;,I(co) = —d;;, I(&0), and real in the absence of at-
tenuation. Note, however, that d;;, ~ is actually a,
6fth-rank tensor d „~,~ and that the CGect of symmetry
on d,;,~ differs from its eftect on g;;g.

We are now in a position to see how 6rst-order
spatial dispersion affects acoustic wave propagation.
Acoustic propagation in a given direction does not
depend on the complete set of elastic constants, but on
a dynamical matrix [$7 containing certain of the
elastic constants. The basic equation for propagation of
an acoustic wave along the Xs axis of a crystal ls'

SJ~(40&k3)N3, =C3~'3~(44, k3)I~=pl| N3. (2.9)

In this equation u is the particle displacement, p is
the density, w is the wave velocity, and c»3„(44,k3) is
the appropriate set of elastic constants, written in full
notation. For the case where the Xs axis is an acoustic
axis having threefold or higher syrrunetry, and in the
absence of spatial dispersion, this equation takes the

&2s2s

[+7 2dI$233k$

0

~du2ss~s

Asms

0

0
0

&ssss

c44 id54, st| s—id 54,sks t, 44

0 0

0
0 (2.12)

in full and contracted tensor notation, respectively.
OII sllbstltlltlllg 'tllls cxplcssloll 111'to (2.9) olle flllds
that the transverse modes are circularly polarized with
phase velocities $/2 ——(1/p)(C44&d$4, 3k3). II1 Rllalogy
with the optical case, the plane of polarization of an
incident linearly polarized transverse-acoustic wave
will be rotated by an angle &=-2,cot[1/v —1/~y7. To
6rst order in d$4 3k$/c44 the angle is given by

$—2(0 lp d$4, 3/C44

3. ACOUSTICAL ACTIVITY IH VARIOUS
CRYSTAL CLASSES

(2.13)

Thc dePcndcncc of ds&, ~ on crystal sfxIlrnctry ls- morc
complicated than that of g;;~ since d;;, ~ is a fifth-rank
tensor whereas g;;g is a third-rank tensor. %C have seen,
however, that the effect of erst-order spatial dispersion
on a transverse-acoustic wave propagating along a
crystal direction of threefold or higher symmetry is
similar to its CBect on a light wave propagating along
such directions, the dynamical matrix being especially
simple in such cases. For the present, we restrict our
attention to acoustic propagation along axes of three-
fold or higher symmetry and along cubic [1007 axes,
which, because of symmetry, must be acoustic axes.
It is clear from (2.12), which applies to cubic, trigonal
hexagonal, and tetragonal crystals that only components
of the fhrm d;3133(i, 1=1, 2, 3) contribute to acoustical
activity along an acoustic axis. The coCKcient d132$$ (or
d34 3) couples transverse modes with one another, while
d13333 (or d33, 3) and d23333 (or d43, 3) couple transverse
modes to the longitudinal mode. Relationships between
the coeKcients may be found by consideration of
crystal symmetry, using methods described in standard
texts. 4 It is easily shown that all coe%cients must be
zero io centrosymmetric crystal classeg. Ig. all gniaxjgJ

and in contracted notation it takes the form

'Ng @44 0 0 Ng

[$7 N2 = 0 c44 0 N2 =p& N2 ~ (2 11).Ns. .0 0 ass. .es. .es.

The matrix [X)7 is the dynamical matrix describing
acoustic-wave propagation along an acoustic axis. When
the e6'ects of spatial dispersion are taken into account
(see Sec. 3) the dynamical matrix for optically active
uniaxial and cubic crystals takes the form
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TmLz I. Acoustical activity of uniaxial noncentrosymmetric
crystal classes for propagation along acoustic axes.

Active classes
{fg18283+O)

C3
C4
Ce

Cse
&4~
Ceo

Inactive classes
(dlssss o)

classes the codBcients d~333~ and d 33 3 are zero, so that
there is no coupling of transverse to longitudinal modes.

Table I summarizes which noncentrosymmetric uni-
axial classes, respectively, can or cannot exhibit acousti-
cal activity for sound waves propagating along the
acoustic axis. The coeScient d~3~33 must vanish in the
latter classes. ~

There are two acoustic axes in cubic crystals, namely,
$001] and (111],so that two sets of coeilcients must
be considered. These sets are related, and in fact it is
convenient to calculate the entire set of d;;g, ~ coeK-
cients. There are three noncentrosymmetric crystal
classes, T, Tg, and O. In class T the nonvanishing
coeKcients, referred, to the cubic crystal axes, are {in
contractednota. tion)

(1) dIs, I= dss, s=dss. s,
(2) dls, s dss, s ds4, 1 y

(3) dIs, a=ds4, 1=dss,s,
(4) dss, s dss, l d64, 2 ~

In class 0, set (1) is zero and set (2) = —set (3) i.e.,
dls, s= —dss, s. In class Tg, set (4) Is zel'0, aIld set
(2) =set (3), i.e., dss, ,=d1, ,

For a transverse wave propagating along L100] axes,
the acoustical activity is determined by the codBcients
of set (4). Consequently, a rotation of the plane of
polarization may be expected in classes T and. 0, but
not in class Tq. No coupling between transverse and
longitudinal modes results from any of these coeKcients.

For transverse waves propagating along a $111]
direction, the coeKcient responsible for acoustic
activity is~

d'„,=-',Pd„,,—3d, ,—2d, ], (3.1)

where we have referred d'4~, 3 to a coordinate system
(x'I, x's, x's) along the crystalline $112], L110], and
L111]axes, respectively. This term may be nonvanish-

ing in crystal classes T and 0, but must be zero in class
Tq so that acoustical activity does not occur in the
latter class. Furthermore, since the t 111] axis is one
of threefold symmetry, there will be no coupling of the
transverse modes to the longitudinal mode in any of
these classes.

In summary, we note that for waves propagating
along an acoustic axis, acoustical activity wiH be ob-
servable in crystal classes possessing axes of threefold

D. L. Portigal, Ph.D. thesis, U'niversity of Pennsylvania,
1N/ (IInPuhlished).

or higher symmetry which do not have mirror planes
or inversion axes. The same classes are the ones that
will show optical activity for light waves propagating
along an optic axis. Also, note that in the absence of
spatial dispersion the transverse and longitudinal waves

propagating along these axes are pure modes, and that
erst-order spatial dispersion does not mix the longi-
tudinal mode with the transverse modes.

Although the coefBcients responsible for acoustical
activity along the high-symmetry axes are zero in a
T&-type crystal, such crystals do have two nonvanishing
sets of first-order spatial dispersion coefBcients which

apparently contribute terms in the dynamical matrix
for waves propagating in general directions, in contrast
with the optical case, where no such coeflicients appear.
It is of interest to understand how these coefficients
might acct the polarization of sound wave. It is not
diKcult to show that these codBcients do not couple
polarization components which are normal to the prop-
agation direction. The argument is as follows: If, as
above, we consider the set of "transformed" coefficients
d';;~ „ for propagation along a general direction des-

ignated as X'3, coupling of the transverse polarization
components must involve the coefficient d'~~233. How-

ever, since d'~3233 ———d'23~33, we can equally represent
this coeKcient as a component of a fourth-rank pseudo-
tensor d';;~ such that d';3;33=8;;Sd'3333, where 8;;~ is
the unit antisymmetric tensor. Referring this pseudo-
tensor to the crystal axes, d'333~= ua;ee;e3ge3 d;;g
=d,;~ m;e,m~e, where the u3; are the direction cosines
of the wave vector with respect to the crystal axes,
and n is a unit vector along the propagation direction.
Only terms in d;;g that are completely symmetric in

i, j, l, and m will contribute to this sum. In class T,
this pseudotensor is equivalent to the elastic tensor
with the additional requirement that the components
are symmetric in the indices. The only nonzero com-
ponents are therefore d~~~~

——de~22= d3333 and d~~~g

=dues=d2233=dnxm=dxazs=d2323 However& in class ~d
there is an additional mirror symmetry, which causes
these components to be zero. Consequently, in Tq

crystals, erst-order spatial dispersion terms do not
couple transverse-polarization components. They do
couple 1ongitudinal components, and lead to modes in
which the polarization vector "rolls" along the direc-
tion of propagation. This aspect of wave propagation
warrants further study.

4. FIRST-ORDER SPATIAL-DISPERSION EFFECTS
ON PHONON-DISPERSION CURVES

First-order spatial dispersion also determines the
form of the phonon-dispersion curves. For example, one

may expect a splitting of the degeneracy of transverse
waves propagating along symmetry directions cor-
responding to acoustic axes, e.g., $100] and L111]
directions in the case of cubic crystals, and the t 001]
axes of uniaxial crystals.
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The eBect of spatial dispersion manifests itself in
the transformation properties of the acoustic phonons.
In acoustically active crystals the transverse phonons
which are degenerate at k=0 become nondegenerate at
finite k along acoustic axes. These nondegenerate states,
moreover, have characteristic right and left circular
polarization. This is a very general situation, which may
be best illustrated by example. For this purpose let
us again consider tellurium as a simple case.

In tellurium there are three atoms per unit cell, so
there will be nine branches in the ~-versus-k curves.
Three of these branches are the acoustic and the other
six are the optic branches. Any phonon mode having
wave number k will transform under the same symmetry
operations as k. These operations form a group, and
each mode will transform as some representation of that
group. In general, modes belonging to diferent repre-
sentations will have distinct frequencies, although
accidental degeneracies will exist at isolated points in
the Brillouin zone. In tellurium, there are six symmetry
operations divided into three classes at the center of
the zone. The 6rst class is the identity operation E.
The second class is composed of 120' and 240' rotations
about the threefold screw axis of the crystal. The third
class is composed of twofold rotations about three
equivalent binary axes normal to the threefold axis.
Its Brillouin zone is a hexagonal prism, whose long
axis is one of threefold symmetry. ' Therefore, at the
center of the Brillouin zone, i.e., at k=0, the phonon
spectrum is represented by three irreducib1e representa-
tions, F~, F~', and I'2, having a character table shown in
Table II. The longitudinal acoustic mode transforms as
I'~", whereas the transverse modes, being degenerate at
k =0, must transform as F2.

The symmetry properties of a phonon propagating
along the trigonal axis will be described by the sym-
metry properties of a general point along the threefold
axis of the Brillouin zone. This point is symmetric
only under the operations E, and 120' and 240' rotations
about the threefold axis, each of which forms a dis-
tinct class. Due to screw symmetry the character table
is complicated. However, in the long-wavelength limit
it takes a very simple form, as seen in Table III. As
k~0, we have the compatability relations h&~ I'&

or I"~, h2 and h3 ~ I'2. Therefore b, j. is the longitudinal
mode and 62 and 63 are the transverse modes propagat-
ing along the trigonal axis.

At k=0, the degenerate transverse normal modes

ALE II. D3 character.

Cg'CPCg

s M. Hulin, Ann. Phys. (N. Y.) 8, 641 (1963);J. Phys. Chem.
Solids Suppl. 21, 135 (1965).

Tmm III. 5 Axis character.

(ca =exp/e~)

involve equal displacement of all atoms in the unit
cell in the plane normal to the trigonal axis. For small
k, the normal modes should not differ too greatly from
the k =0 modes. However, since d2 and 63 are distinct
at nonzero k, the modes are nondegenerate. Moreover,
the normal modes in the 62 and 63 representation must
be, respectively, multiplied. by co and ~* under a 120'
rotation about the trigonal axes, and by co* and ~
under a 240' rotation. In the A2 representation these
conditions are satisfied only by the mode in which all
atoms in the cell move with the right-handed circular
polarization. In the 63 representation, the conditions
are satisfied only if all atoms move with left-handed.
polarization. Consequently, there are two distinct
circularly polarized modes at nonzero k, which become
degenerate when k —+ 0. Thus the existence of acoustical
activity can be inferred from the symmetry properties
of phonon-dispersion curves. The phonon-dispersion
curves of tellurium have been taken as an example,
but similar arguments will apply to all classes of trigonal
or higher symmetry in which acoustical activity may
occur.

It should be possible, of course, to obtain the magni-
tude of the acoustical activity along acoustic axes from
experimental or theoretical phonon-dispersion curves.
No neutron scattering measurements seem to have been
made on crystals which may exhibit acoustical activity.
However, Hulin has calculated theoretical phonon-dis-
persion curves for tellurium which can be used to
obtain a theoretical estimate of the acoustical activity
of transverse waves propagating along the trigonal
axis of tellurium. Hulin's calculations are based on a
model involving three force constants. The force con-
stants used in these calculations are based on older
values of the elastic constants, and dier on the average
by 10%%uo from force constants calculated from the latest
values of the elastic constants. The phonon frequencies
of each acoustic branch were calculated at the Brillouin-
zone edge and the midpoint of the d branches. The
shape of the curves joining the calculated points was
deduced from general symmetry requirements, and
from elastic wave theory. ' Using Hulin's curves (Fig. 1),
one Gnds that the mean velocity i of the two transverse
modes at the midpoint of the 6 branches is essentially
equal to the transverse velocity at I'(k=0). The
fractional splitting of the velocities of the two branches
at the midpoint of the acoustic b, branches is found to be
(&+—e )/8= 0.18.The syrnrnetric splitting of the veloci-
ties of the two circularly polarized branches is con-

s M. Hulin (private communication).
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FIG. j.. Theoretical phonon-dispex'sion curves for teHurium
along the ternary axis fafter M. Huiin, J. Phys. Chem. Solids
SuppL 21, 135 (1965)1.

sistcnt with the simple theory of acoustical activity
based on R Grst-order cxpRnslon of thc clRstlc constants
in powers of k, and implies that the simple 6rst-order
expansion of the elastic constant is physicaDy meaning-
ful even at the midpoint of the 6 branch of tellurium.
Prom the expansion for the velocity diBerencc of the
two modes, we 6nd that the relevant acoustical activity
collstaIlt d4s, s ls 1.7X10 cgs ulllts. Tllls leads, fol'

example, to a circular birefrigence (n+—e )/8 of 10 4 at
1 Gc/sec, or a rotation of the plane of polarization of
about 165'/cm at that frequency.

Note that the transverse-optical branches of acousti-
cally active crystals will also split into modes of right-
RIld left-handed sylllmctry Rt polllts (k)0) Rlollg tile
acoustic axes. In teHurium there are two sets of such
modes which have I 2 symmetry Rt k =0 RQd which have
h~ and hg symmetry at points along the trigonal axes.
Hulin's curves (Fig. 1) show that the transverse-
optical branches have a well-de6ned splitting along h.
The splitting is, in fact, rather large for the lower fre-
quency branches. The optical modes Rre both infrared
and Raman-active, and their splitting may be observable
in either the infrared-absorption spectra or the Raman-
scattering spectra. The splitting of the right- and. left-
handed polarized transverse-optical modes may also
lead to an observable contribution to the far-infrared
optical activity of tellurium.

Since the rotation of the plane of polarization in-

creases as the square of the frequency, any attempts
to observe this CBect should be carried out at as high

a frequency as possible. On the other hand, the attenua-
tion of acoustic waves also increases rapidly with fre-
quency, and establishes an upper limit to the fre-
quency which vaI'lcs from material to Hlatcrlal. An
order-of-magnitude estimate of the rotation per unit
length, P//, may be obtained by noting that (s+—s )/a
is or order ku/2Ir, lo where u is comparable to the lattice
constant. On this basis, It/t is of the order of
rad/cm when the acoustic frequency is about one
gigacyclc. This estimate is in agreement with that
obtained for tellurium from the theoretical phonon-
dlspcl sion cuI'vcs.

Note, however, that the CGcct of acoustical activity
can be masked by accidental /imear birefringence that
is associated with crystal defects. A similar CR'cct can
result from misalignment of the wave vector relative
to the acoustic axis. This CGect of misalignment is
particularly serious for R trigonal acoustic axis, since
in this situation the linear birefringence varies directly
%'ith thc InlsRllgnment RQglc %'hcreas lt VRI'lcs as thc
square of the misalignment angle along axes of higher
symmetry. 6 In tellurium, for example, 0.5' misalign-
ment results in a linear birefrigence of 2X10 ',~ which
is an order of magnitude greater than the estimated
cll'clllal bll'cf1'lllgellcc 1X iO Rt 1 Gc/scc, so 'that either
the frequency must be increased, or the misalignment
angle decreased, by an order of magnitude for measure-
ments to be feasible.

Lack of collimation of the incident beam constitutes
another serious limitation to the observation of acousti-
cal activity. Again, the cGcct will be particularly large
along R trigonal acoustic axis, since, as a result of
lntcI'QRl conlcRl 1cfr8,ctlon~ the lntcnslty of thc clr"
cula, rly polarized ("collimated") modes can be ap-
preciably lower than that of the linearly polarized,
"background" modes. ~ In the case of acoustic waves,
d16ractlon may well bc the ma3or soulcc of lack of
collimation. ."

It was shown that due to 6rst-order spatial disper-
sion an acoustical activity can occur in crystals which
exhibit optical activity. Moreover, it was demonstrated
that the magnitude of the acoustical-activity COCKcients

of a given crystal might be deduced from experimental
or theoretical phonon-dispersion curves. The practica1
problems involved in the observation of acoustical
activity were analyzed. Other interesting CGccts of
first-order spatial dispersion on the propagation of
acoustic waves in general directions were considered.
Finally, the CBccts of 6rst-order spatial dispersion on
the transverse-optical vibration modes, and the optical
properties arising from them, were also pointed out.

» L. D. Landau and E. M. Lifschits, Zlootrodynostror of Col-
tiN»our 3Mto, translated by J.B.Syites and J.S. Bell (Pergamon
Press, I td. , Oxford, England, 1958), p. 33tt.


