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Inversion Scheme for Obtaining the Fermi Surface
from the de Haas-van Alphen Effect*
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The relationship between the recent inversion scheme of Mueller for obtaining the Fermi surface from
de Haas-Van Alphen areas and the older scheme due to Lifshitz and Pogorelov is obtained. It serves as a
simple derivation of the latter inversion scheme.

INTRODUCTION

"KASUREMENTS of the de Haas —van Alphen
- ~ effect yield extremal cross sectional areas of the

Fermi surface as cut by a plane perpendicular to the
magnetic 6eld. It is a problem of considerable interest
to reconstruct the shape of the Fermi surface from such
measured areas. If the Fermi surface has a center of
symmetry, then at least one of the extremal areas is
that on the plane through the center of symmetry; we
shall call this the median area. U the Fermi surface has
the additional property that any straight line through
the center cuts the surface in only two symmetrically
disposed points (so that the magnitude of the radius
vector from the center to any point on the surface is a
single-valued function. of direction), in which case, also,
a median plane cuts the surface in a simple closed curve,
then Lifshitz and Pogorelov' (LP) have shown that the
Fermi surface is uniquely determined by knowing of
the median areas for all directions. In addition, they
have given an elegant formula for reconstructing the
surface from the median areas, but unfortunately this
formula is not useful for practical calculation.

More recently, Mueller' has shown how the use of
spherical harmonic expansions allows another form of
the solution of the inversion problem of reconstructing
the Fermi surface from median areas which not only
has practical calculational advantages over the method
of LP, but represents also a considerable improvement
over an earlier employment of spherical harmonics in
connection with the same problem by Shoenberg and
Stiles. ' Mueller makes no attempt to duscuss the rela-
tion of his result to that of LP. On the other hand, LP
derive their result from an integral identity' for which

no proof is given but which they state is readily veriied
by direct calculation. We have not been able to con-
struct a simple direct verification of this identity for
arbitrary functions dered on a sphere, but Kuerti'
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has supplied us with a proof for functions which can
be written as polynomials in sines and cosines of the
azimuth and colatitude. The exact class of functions
for which the formula of LP is valid is thus not clearly
deined.

In the present paper, we establish the connection
between the results of Mueller and LP by beginning
with the solution of the former and deriving the result
of the latter. This establishes the result of LP for those
cases where the radius of the Fermi surface as a function
of direction can be uniformly approximated by a series
of spherical harmonics. The connection between the two
forms of the result depends on two identities for the
Legendre polynomials which do not seem to be "im-
mediate consequences" of any of the well-known identi-
ties satisied by these polynomials but which can readily
be established by induction using the recursion relation
and the orthogonality relation for the polynomials. The
proofs of these identities are given in the Appendix.
The original identity of LP when applied to spherical
harmonics yields a further, more recondite, identity for
the Legendre polynomials for which no elementary
proof has so far been obtained. In a sense, the present
paper can be considered a "derivation for experimental-
ists" of the LP inversion formula.

DEMOTION

We designate the radius of the Fermi surface as
measured from its center of symmetry in the direction
of the unit vector e by E(e) and define p(e) by

p(e) =sRs(s) (~)

Further, let o($) be the median cross sectional area of
the Fermi surface on the plane perpendicular to the
unit vector g. Then

~(/)= — ~(t e)p(')«,
2Ã

where the integration is to be taken over all the direc-

tions of the unit vector 5 (over the area of the unit

sphere). Mueller proceeds by introducing the spherical

an appropriate parametrization of the integrals so that the
integrations involved in the identity can be readily carried out for
functions of the trignometric form referred to above. We are
grateful to Professor Kuerti for infor~i~g us of his results.
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harmonic expansions of o (]) and p(t):.(,")=2 "F"(~),

p(')=2 &i"F'i (&)

where we have used the fact that X is an even function
of e to limit the sununation to even values, we may re-
write (11) as

(4) p(') =X('0)+2' 2(2l+1) —Pi(0)
p, (o)

We shall require the identity for —1&I&1,

8(8 ]—N)=2~+ Pi(N)Fi *(t)Fi ($), (5)
X X(e,N)P&(~)du. (14)

p(8) =x(e,o)+P —,'(21+1)

lm

We now require one of the identities referred to in the
which is the generalization of the same formula for N=O introduction and derived in the Appendix, namely,
given by Mueller' and which can be derived by the (A6), to wr;te
same method. By the use of the addition theorem for the 1

spherical harmonics, y(e,u)
2l+1

Z F™*(~)F-(~)= P (~ f);
tO 4x

Eq. (5) can also be written as

(6)
—1 0

Pi(e)Pi(N) —P&(0)Pi(~)
X didg. (15)I

6(] f—e)=-,' p(21+1)P,(g j)P,(N),

which for e )=0 takes the form

(7) Here the prime has been removed from the sum since
X is an even function of I and hence the integral van-
ishes for odd /. Finally, if we set 0 $=e in Eq. (7), we
see that the sum on l in (15) yields the result of LP:

b(N) =-' p(2l+1)Pi(0)Pi(u).

Returning now to Eq. (2), substituting the expan-
sions (3) and (4), together with (5) for N=o, and using
the orthogonality relation for the spherical harmonics
one finds with Mueller' that

ni =Pi(0)Pi,

=x(&,0)+
' x(t,~)—x(',0)

de. (16)
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5(e—I)—8(m)
p(e) =X(',O)+ X(r,e) dndu

—1 0

whence

0!g7S

p(e)=P' Fi (e)
pi(0)

1
(~)&"*(~)l' "(')«
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The beneit of conversations with Professor %. L.
Gordon, Professor G. Kuerti, Professor A. J. Lohwater,
and. Professor P. L. Taylor, as well as the hospitality
extended to the author at Brookhaven National Labo-
ratories is gratefully acknowledged.

The first identity which we require,2l+1
~(t)Pi(& ~)d3

4m.Pi(0)
(10) ' Pi(N)

dg= (l odd and &1) (A1)
/Pg i(0)where the prime on the suxnmation indicates that only

ence values of l are to be included.
To continue, we rewrite (10) as

where

' Pi+g(N)
6"I=

21+3
Pi+i(N)dÃ

2Then, since, from (8),

serves only as a lemma for the proof of the second
identity (A6). The proof by induction proceeds as fol-

2l+1 lows: From the recurrence relation for the Legendre
p(~) =2' x(8,N)Pi(N)dN, (11) polynomials

2Pg(0)
(l+2)Pi+2(N) —(2l+3)NPi+i(l)+(l+1)Pi(N) =0, (A2)

A we have
y(a, N)=g(e, —u)=— 0(f)8(e &

—N)d(. (12)2'

x(l,o) =P'-', (2l+1)P&(0) x(~,u)Pi(N)de, (13)
l+1 'Pi(N)

de. (A3)
l+2 0 I
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on the rigo ht can be written asFor 0
l&1 h Im —1 to i;for

the orthogona i

r l we then have(A1) to be valid for l, we

'P~p(N)
dg=—

l+1

(i+2)lPg I(0)
(A4)

Q

rs' '
(A2) for N=o it followsrsion relationBut from the recurs'

. that

' PI+p(N) —PI+p(0)

l 1 12l+3

l 2 Pl(0)(l+2) (l+1)P(0) l+
(AS)

evaluate theve used, the Qrs t theorem to eva
the validityh Thon the rig t.

(AS) hof (A6) and using again

P~I(0) =—l
Pl-l(0),

l+1
(AS)

'""' p..(o)

ic
'

into (A4) yields (A1) forfor I replaced
ld f I,=i h(A1) clearly ho s o —, roofby l+2. Since c

induction is complete.
The second identity is

f
' PI(N) —PI(0)

P (o)

(l even and &0). (A6

ain hasF the recurrence relation one ag
'

loQ1

' PI(N)Ndu

(N2 g2) lip

(i—X~)i/2

Pl(N)dl,

(l even and &0)

(A9)

alid for/=0, its va
' 'ai o —,' lidit'

entit is trivially va i o
l'hdb '

d ti

d can be written ins et been obtaine, canhas ye
two equivalent orm .

'PI (I)—PI+p(0) 2l+3 PI+I(N)
dg p, (o)

(g—)p)i(2

PI(X'+I')"-dl = Pl(N)dl. (A10)

l+2 pQ

1 ' PI(pI) —Pl(0) 2l+3 1

l+2 p

l+1 ' Pl (I)—PI (0)

Ql+2 p

and (A6) canL of. Identities (Ai) anTote a
b use o g

hilt I'eqllll'e all aw
s presum y

ol nomials u r
s expansion; the s

11 ko ld d.j


