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To investigate the dependence of the thermodynamic properties of a magnetic system in an applied field
on the shape of the external boundary, we have studied the shape dependence of the free energy. Shape enters
the thermodynamic properties through the dipoiar sum, C =—(1/S) Z, (1—3 cos'S„)/res. The dependence
of the free energy on shape has been ascertained for ellipsoids by using a linked-cluster diagrammatic
expansion of the free energy. We have considered the full dipole-dipole interaction between the spins in
materials for which the magnetization is parallel to the magnetic 6eld, when applied along a principal axis
for the sample, and have found that if we write a pseudo-free-energy in terms of the local 6eld 2=Ho+4M,
or the internal field H;=Ho —D3f, the resulting function is independent of the shape of the sample. Here
Ho represents the applied Geld, 3II the magnetization, and D is the demagnetization factor of the sample.
Also, for a magnetic system in an applied field, the speci6c heat at constant local (internal) 6eld is the
same function of local (internal) field and temperature for all ellipsoidal shapes of the same material. The
same is true of the susceptibility to within a demagnetization factor.

INTRODUCTION

DIPOLE-DIPOLE coupling between spins exists
~

~

~

~

~ ~

~

~ ~

.k in all magnetic materials; its presence causes the
thermodynamic properties of the material to depend
on the shape of the external boundary of the sample.
For those materials in which this long-range interaction
provides the dominant contribution to the magnetic
ordering, we expect that their thermodynamic prop-
erties will strongly depend on the shape of the sample.
Whereas it has long been recognized that the suscepti-
bility of two samples of the same material will diGer,
the dependence on shape of the speci6c heat of a sample
in a magnetic field has received relatively little atten-
tion.

Hiley and Joyce' have shown that the specific heat in
zero Beld above T, is independent of shape, and that
the zero-field susceptibility of an Ising model with
long-range dipole forces has a simple dependence on
shape

x '(&) =xs '(~) —4',

where yo does not depend on the shape of the sample
and 4 is the dipole sum defined by Eq. (2) below. We
have extended their investigation by 6nding the shape
dependence of the speci6c heat and susceptibility for
finite magnetic fields. Furthermore, we consider the
full dipole-dipole interaction, not only the longitudinal
component of this coupling. As all the thermodynamic
properties of a system are derivable from the free
energy, we have chosen to study the shape dependence
of this quantity in finite magnetic fields.

The origin of this dependence on shape lies in the
long-range nature of dipolar forces. The shape of the
external boundary of a sample explicitly enters the

*This work was supported in part by the Air Force OKce of
Scienti6c Research, OKce of Aerospace Research, United States
Air Force, under AFOSR Grant No. 1258-67.

~ B. J. Hiley and G. S. Joyce, Proc. Phys. Soc. (London) 85,
493 (1965).
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where
4=4 p+Dp D, —

4o ———(1/Eo) g';(1—3 cos'0; )/r

(3)

is the lattice sum over a volume Vo close to the origin
(i), Ds is the demagnetization factor for the surface
enclosing the volume Vo, and D is the demagnetization
factor for the external boundary of the sample. The
values of the demagnetization factors D and DD lie
between zero for a cylinder and 47'- for a Qat disc per-
pendicular to the magnetization; for a sphere it is
4rr/3. The dipole sum 4's depends on the structure of
the magnetic sublattice and on the shape of the volume
Vo, for a simple cubic lattice and a spherical boundary
Co is zero. For other combinations Co can take on values
of the same order of magnitude as D, and its sign can
be positive or negative depending on the lattice struc-
ture and shape of the volume t/0. The dipole sums C

for samples which diBer only in shape will diGer only
in their demagnetization factors D; the first two terms
in Eq. (3) depend only on the crystal structure of the
sample.

To ascertain the shape dependence of the free energy

2 J. H. Van Vleck, J. Chem. Phys. 5, 320 (1937);J. A. Sauer,
Phys. Rev. 5'1, 142 (1940).' See, for example, J. H. Van Vleck, Ref. 2.
595

thermodynamic properties as the dipole sum

4 (s) = —(1/S) P;(1—3 cos'8")/res.

This sum is conditionally convergent, i.e., the sum
depends on the shape of the external boundary. We
shall only consider ellipsoidal shapes; for these the
dipole sum C in a large specimen is independent of the
position of the origin (i). With this restriction the
dipole sum can be decomposed into a sum about the
origin and a remainder which is accounted for by the
classical demagnetization factor, ' i.e.,
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of a magnetic system in a finite field we use the linked-
cluster diagrammatic expansion of the free energy as
developed by Brout, ' Horwitz and Callen, ' Englert, '
and Stinchcombe et a/. ' This expansion is preferable to
the low-field, high-temperature expansion introduced

by Opechowski' and Van Vleck' because it allows us to
obtain results that are valid for all temperatures and
fields provided the series expansion is convergent. We
consider our magnetic system to be represented by the
Hamiltonian

X=—gps8og;S;* —Q S; J, 'SJ

Finally, we derive the shape dependence of the specific
heat and susceptibility for samples in finite fields.

SHAPE DEPENDENCE OF THE FREE ENERGY

A. Ising Model

If we neglect all components of the interaction tensor
J,;, Eq. (5), other than the longitudinal, the Hamil-
tonian for the magnetic system reduces to that of the
Ising model with arbitrary spin

X= —gps8pgiS;* —Q "J"5'5'
where

J — g @gal T

where

j"=—~g~p&2 {(1—3 cos2P")/r;, :~}. (4')

T;,=—{u—3r;,i;,}.
~ 03v

u is the unit tensor whose Cartesian components are
8 p, and IIO is an applied magnetic field. An arbitrary
number of short-range exchange forces can also be in-

cluded in the above Hamiltonian by redefining the
coupling tensor J;;. The presence of short-range forces
only alters the value of Co, Eq. (3); the dernagnetiza-

tion factors Do and D are unchanged. As only the long-

range dipole forces contribute to the shape dependence
we will only talk about these forces, but all our results

apply equally well when short-range exchange forces
are also present.

We will first consider only the longitudinal part of the
dipole-dipole coupling between spins. In this approxi-
mation the Hamiltonian representing the magnetic
system is analogous to the one for the Ising model

with arbitrary spin and a long-range coupling constant.
All the operators commute and the free energy has been
expanded in a series by considering the operators as
c numbers. ' ' When we include the diagonal transverse
components of the dipolar coupling, the Hamiltonian
is analogous to the anisotropic Heisenberg model,

again with long-range coupling constants. The non-

commutativity of the operators is dealt with by using
time-ordered semi-invariants and averages. To arrive
at the shape dependence of the free energy for the full

dipole-dipole interaction we have to restrict our analysis

to those materials for which the magnetization is paral-
lel to the field when applied along a principal axis of the
sample; this ensures us that some oG-diagonal dipole
sums vanish. In each of the above cases, all the shape-
dependent terms in the series expansion of the free
energy are resummed by a special vertex renormaliza-
tion known as 8 renormalization, ~ therefore, the shape-
dependent terms are accounted for by an effective field.

4 R. Brout, Phys. Rev. 115, 824 (1959); 118, 1009 (1960).
~ G. Horwitz and H. B. Callen, Phys. Rev. 124, 1757 (1961).
F. Englert, Phys. Rev. 129, 567 (1963).

VR. B. Stinchcombe, G. Horwitz, Fz Englert, and R. Brout,
Phys. Rev. 130, 155 (1963).

8 W. Opechowski, Physica 4, 181 (1937).' See J. H. Van Vleck, Ref. 2.

where

and

pF = p—FO pF', — —

pFD ln t—re ~x&——

PF'=ln trpoe —sv.

The density matrix po is defined as

po
—g P&o/try -PKo—

By using the linked-cluster diagrammatic expansion of
Horwitz and Callen' (hereafter abbreviated as HC)
or Englert' we expand the perturbed part of the free
energy (7) as a series of semi-invariants

ln trpoe &"=g—M„(—V),
n=l

where the semi-invariant of the eth order M„ is defined
as

M„(V) = (8/i')" ~» o ln tr(e vpo). (10)

These semi-invariants are related to the thermodynamic
average of the perturbation V taken with respect to
the density matrix po, Eq. (8). For example

Mp ——ln tre—&~&,

M~(V) =tre P+zV/tre ~+z=trpoV= (V)0,

~.(V) =(V ).—(V)"

By realizing that the perturbation V is a sum of terms,

We consider the single-ion term as the unperturbed
Hamiltonian Xo .'

+0 gjiB+0gi ~i

and the remaining term which couples the spins as a
perturbation t/":

V g . .J, .g,zg. z

The free energy is defined as

e t'~=tre &+

or
—pF=ln tre ~+.

This can be written as
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{a) (b)

FIG. 1. Diagrams which give contributions to the free energy F',
{a) the single bond, (b) the triangle.

"The original expansion of Brout contained restricted sums
which lead to "excluded volume" diagrams. See R. Brout, Ref. 4.' For temperatures below the Curie or Noel point we must
furthermore stipulate that the sample is Nrfiformly magnetized for
the above to be true.

~~For the full dipole-dipole interaction and the Heisenberg
model, we will assume the sample use is large enough to neglect
magnetostatic modes.

each coupling a pair of spins, Brout' expanded the
free energy Ii' as a series of linked clusters. After re-

arranging the terms in Brout's expansion HC' were
able to write the free energy F' in the simple form

PF—'=Q (2P) "G
g 'M( ) Q J "Js(~ ~ ~ (12)

jjfg ~ ~ ~

This form of the expansion has the simple graphical
interpretation that each term (e, t) corresponds to a
topologically inequivalent diagram of e bonds between
m&is+1 spins. Each vertex of the diagram with p
bonds contributes a semi-invariant M~(S*) where
from Eqs. (10) and (8)

M„(S*)= (8/Ba) & ~„~ln tr(e 'po) (10')

and n=pgpeIIs, each bond contributes the factor Jg,
and 6„,& is related to the symmetry of the diagram.
The major advantage of this form of the expansion
over Brout's is the mathematical convenience of an
unrestricted sum over the coupling constants J;,. The
only diagrams that contribute to the free energy are
those that are entirely linked together, therefore the
name limbed-cluster expansion.

As examples of diagrams which contribute to the
free energy we have the single bond (a=i), see Fig.
1(a), which gives a contribution of

2PsMt'(S*) Z'~ Jv
where the 6rst-order semi-invariant is just the mag-
netization divided by SOs&. The triangle (m=3),
Fig. 1(b), contributes

(2P)s(1/3!)Mss(S') Q J"JsJs.
g j7c

The main task in determining how shape enters the
free energy is to 6nd u/L terms in the series expansion
(diagrams) containing the shape-dependent dipole
sum C. Shape only enters when the unrestricted sum

~ ~;;r,...J;;JI,~
~ ~ contains the sum"

Q~ J'~ = Jo= s&g'I e'C' (13)

The diagrams which correspond to these shape-depend-
ent terms contain pairs of spins which are singly
bonded. The simplest shape-dependent contribution
to the free energy comes from the diagram in Fig.
1(a). Only the sum Eq. (13) is shape-dependent. "

(b)

Fio. 2. Examples of how single bonds appear in diagrams; (a) with
one free end, (b) with both ends attached to subdiagrams.

All other sums, "e.g., P;J;pe) 1, and P;,sJ;;J;sJs;,
are absolutely convergent, and therefore independent
of shape. There are two ways in which single bonds,
or chains of single bonds, between spins appear in
diagrams. Either with one end attached to a diagram
and the other end free, see Fig. 2(a), or with diagrams
attached at both ends, Fig. 2(b). The most general
diagrams containing single bonds are hyper-Cayley
trees, i.e., the 8-reducible diagrams of HC. These trees
are open diagrams composed of single-bond chains
where instead of simple vertices we have hypervertices
which are, for our purpose, diagrams that do not con-
tain any single bonds; this type of a cluster is called an
¹irreducible diagram. '

The contributions from all possible hyper-Cayley
trees can be summed by using either the methods of
HC of 8 renormalization and subtraction of hyper-
bond-rooted from hypervertex-rooted diagrams, or the
similar approach of the irreducibly linked-cluster ex-
pansion of Englert. "Vhth these methods we can sum
an in6nity of diagrams by renormalizing each hyper-
vertex (8-irreducible diagram) by alternately append-
ing single bonds and other hypervertices in an in6nite
sequence. The contributions from the appended parts
can be summarized as'

M-=exp(ZsGs(~"/~~") j=~.(~), (14)

where M„, is the renormalized semi-invariant represent-
ing a vertex of the hypervertex and GI, is the self-
energy" of the appended part, which is itself renormal-
ized. Because of the structure of hyper-Cayley trees
each vertex of a hypervertex can only be renormalized
by single bonds, i.e., G&=0 for k/1. By using Eq. (14)
and the definition of the semi-invariant M„[Eq. (10 )j
we find

M„= (8/Bu) "eGi& ~s~& ~~~ ln tr(e e'ps)

=(8/Bn)"
~
~ln trIei~» 'pp} (15)

therefore, M„=M„(n+G,) .
Each free end of the added single bond can remain free
or be renormalized by either another single bond or
any of the hypervertices p; therefore, the renormalized
semi-invariant representing the renormalized free end
of an added bond is

M, =M, (n+G, ) —(P/Ar) Q,DJ „,
whe~e ( p/X) DIl, =G,M&—+, represents the contribu-
tion of a hypervertex, and the sum runs over all hyper-

'' These sums represent multiply bonded pairs of spins.
'4 See Ref. 6, Eq. (4.7).
"For a de6nition of the self-energy Gr„see Ref.~6, Sec. III.
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vertices, and vertices thereof, that can be attached to we define a pseudo-free-energy Ii&".'
the free end of a single bond. "From the definition of self-
energy" we find

where
Gi ——2PJpMi,.

(24)

(23)

=M (L), (18)

where the magnetization M is self-consistently calcu-
lated as

M =NgVsIMi(L) —(P/N) Q,DF&, I (19)

and the local field L is defined as

L=Hp+C. M. (20)

This renormalization is just what HC call 8 renormal-
ization. Each hypervertex of the Cayley tree perceives
the remainder of the tree through single bonds; there-
fore S renormalization is relatively simple.

The contribution to the free energy from all hyper-
Cayley trees is given as the free energy of the renormal-
ized hypervertices"

F= 'CM'+F, +g-F„ (21)

where Jf'„ is the renormalized free energy of the yth
hypervertex and Fp ——ln tre&g»~ '. Therefore, the subset
of all diagrams containing shape-dependent terms are
resummed by replacing the external field Hp in Fp and
the density matrix pp Eq. (8) by the local field L.

p
—sp&&sLs*/trsp&4sLs* (8')

As the bare hypervertices by definition do not contain
any shape-dependent contributions to the free energy,
we conclude that shape only enters the terms g~F,
through the renormalization of the semi-invariants
M„by using the density matrix p LEq. (8') j inst ad of
pp. The terms Fp+g~F~ are only implicit functions
of the shape through the local field:

F.+ZF, =nL, n (22)

Instead of using the Helmholtz free energy

dF = —SdT —MdHp, (23)

"We could also use

M, = exp[KG„(S/Sn)'v]Mg(a).

' See Ref. 5, p. 1760, Eq. (15), and p. 1772, Eq. (149).

this can be rewritten as pgpsCM by using Eq. (13) and
the definition of the magnetization M:

M =NgVs(S') =NgVs3IIi.

We conclude that the hyper-Cayley trees are accounted
for by the vertex renormalization

M =M„(pgIJs(Hp+C. M) )

The "free energy" F@(L, T) is the same function of
local field and temperature for all shapes; replacing the
external field by the local field in rip and the density
matrix Eq. (8') accounts for all shape-dependent terms
entering the free energy Ii~.

B. Heisenberg Model

If we neglect only the o8-diagonal components of the
dipole-dipole interaction and make the simplifying as-
sumption that the diagonal components are equal" the
resulting Hamiltonian is that of the Heisenberg model

K= gvsHpp;—S;* pe J,,S,'—S;. (4")

The thermodynamic behavior of this model has been
studied by Stinchcombe et al.' using a linked-cluster
expansion with time-ordered averages and semi-
invariants. The perturbed part of the free energy, i.e.,

PF~ = In trpp&sx s—P(xo+v) (26)

has been expanded as a linked-cluster series similar to
Eq. (12), but with two notable differences. As the
components of the perturbation V commute neither
amongst themselves nor with the unperturbed Hamil-
tonian Xp, the exponentials in Eq. (26) are expanded as

( 1)n
&P+o~—P(&o+~)—

~=p S e

P P

2'El'(P-) "~(Pi)j~Pi" dP-, (27)
0 0

where the operators V(P;) are in the interaction repre-
sentation and the symbol T represents the Dyson time-
ordering operator. The other notable diAerence is that
there are transverse ( j;,S;+S; ) as well as longitudinal
components of the interaction which couple the spins on
sites i and j.Because of these differences the expansion
of the free energy Ii' for the Heisenberg model is in
terms of time-ordered semi-invariants of mixed argu-
ments'p

M.-„(TIIrs"(l.)j")=II (~/~")-"I "=.
V t', V$

)&In(2' exp(g S&"'&(P,) l"') )p. (28)
Vs

The expansion of the free energy F' LEq. (26)] in time-
ordered semi-invariants has a graphical interpretation

"Equation (24) does not define a true free energy because MdL
does not represent the differential. external work done on the sys-
tem; the term MdL includes the mutual interaction of the spins.
This de6nition of a Pseudo-free-energy is the same as the free
energy P2 de6ned by A. H. Wilson, in Thermodynamics and Statis-
tical 3fechanics (Cambridge University Press, Cambridge, Eng-
land, 1957), p. 286."This simpli6cation in no way sects our conclusions about the
shape dependence of the free energy, because the sums Z;J;;*~and
Z;J;p& do not enter the free energy.

& pep Ref. 7, p. 157, Eq. (20).
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in terms of time-ordered diagrams which parallels the
diagrammatic expansion of the Ising model;" the new
features are: (1) the transverse bonds with arrows
pointing from the vertex containing S+ to the vertex
containing S, (2) the temperature labels P, on the
bonds, (3) that semi-invariants are integrated over all
temperatures from0 toP, and (4) the numerical changes
in the symmetry factors G&„,& Lsee Eq. (12)] because
of the transverse bonds. As before, the shape-dependent
terms only enter diagrams from which one can split
off from the unrestricted sum in Eq. (12) sums of the
type P,J;,. But now we must consider not only longi-
tudinal but transverse bonds as well; these new bonds
might conceivably contribute shape-dependent sums
to the free energy. A transverse bond with one end
attached to a diagram and the other free contributes to
F' the term 2PQ; J;;Ml(S+); this multiplies the con-
tribution to F' from the remainder of the diagram. The
contribution from the entire diagram vanishes because
the erst-order semi-invariant of a raising or lowering
operator is zero, therefore, no shape-dependent terms
come from transverse bonds with free ends. A nonzero
semi-invariant must have in its argument an equal
number of raising and lowering operators (S+, S ).
It is for this reason that a transverse bond cannot act as
the sole connection (single bond) between two points
in a diagram. The proof of this comes from realizing
that when one or an odd number of transverse bonds
are appended to a balanced hypervertex (nonvanishing
contribution to the free energy), the hypervertex will be
unbalanced because the number of raising and lowering
operators will be unequal. To compensate for this im-
balance another transverse bond must be added. When
one appends hypervertices to the free ends of the single
transverse bonds one is forced once more to add trans-
verse bonds on the appended hypervertex to maintain
the balance. Now let us consider trees with transverse
bonds connecting hypervertices. If an end of the tree
is a transverse bond the contribution of the tree to the
free energy vanishes; if the end is a hypervertex by
definition it has only one transverse bond attached to it
and once again the contribution vanishes because the
contribution of the end vertex (which multiplies the
remainder) is zero. We are thereby lead to conclude
that the only trees, i.e., diagrams with shape-dependent
sums, that contribute to P are those with longitudinal
bonds joining the hypervertices. For this reason the
transverse dipole sums

2.u, P.T .ll

do not enter the free energy.
To use S renormalization on these time-ordered

trees two necessary conditions must be fulfilled: (1)
that the addition of longitudinal bonds to a vertex
does nothing more than renormalize the vertex by re-
placing the applied 6eld Ho in the density matrix Eq."An excellent discussion of the linked-cluster expansions for the
Ising and Heisenberg models is given in an article by R. Brout, in
Magnetism, edited by G. T. Rado and H. Suhl (Academic Press
Inc. , New Vork, 1965), Vol. II A.

FIG. 3. Examples of longitudinal bonds which have a time-
ordered diagram attached to one of their free ends.

(g) by the local field I. Eq. (20), and (2) that the re-
normalization of the free end of a longitudinal bond by
time-ordered vertices does not depend on the tempera-
ture label attached to the longitudinal bond. As it has
been proven by Stinchcombe et al.22 that any time-
ordered vertex can be simply renormalized by longi-
tudinal (Cayley) trees, the first condition is satisfied.
By explicitly evaluating the contribution to the free
energy from diagrams in which a longitudinal bond is
appended to a time-ordered diagram, see Figs. 3(a)
and 3 (b), we have shown that the contributions do not
depend on the temperature labels on the longitudinal
bonds. In other words we have shown" that the inte-
grals

dP1 dP2M2(&S (Pl) S+(Ps) )

and
XM4(2'S+(Pl) S—

(P2) S'(P4) )

dPi dP2 dP~4(2'S+(Pi) S (Pe) S'(P4) )
0 0 0

XM2(TS+(Pl) S-(Pl) )Ml(TS+(P4) S-(Ps) )

corresponding to the free energy of the diagrams in Figs.
3 (a) and 3 (b) do not depend on the temperature labels,

P4 for the first integral and P4 for the second. One can
probably generalize this result to any vertex with one
longitudinal bond that is renormalized by time-ordered
diagrams. "' In the notation of Stinchcombe et cl.'4 we
write this as

Ml (S (Pl) )—+TM1(S (Pl) ), (29)

where the renormalization RT is i44dependerit of the
label Pl. For vertices with transverse bonds the re-
normalization produced by transverse loops (time-
ordered loops) depends on the temperature labels

Mls+1 (2'S+(Pl) ~ ~ ~ S*(p~i) )
= fb(Pi Pm+i) M"2~+1(TS+(Pi) " S*(Pled+1) ) (30)

It is only for the special case of no transverse parts in
the vertex (k=0, /=1) that the renormalization is
simple.

As the necessary conditions for S renormalization
are ful611ed, the contributions from all time-ordered

O' See Ref. 7, pp. 161-162, Eqs. (38—42).
"We have con6ned our calculations to a spin value s=q. The

effects of the noncommutativity of the operators are most pro-
nounced for this value of the spin, therefore, the conclusions we
draw are valid for all values of the spin.

~& P. M. Levy and R. B. Stinchcombe (to be published).
"See Ref. 7, Eqs. {93-94).
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hyper-Cayley trees can be summed by using this re-
normalization. The results on the shape dependence of
the free energy are identical to those for the Ising model,
i.e., the "free energy" Fz(1., T) is independent of
shape where the local field is the same as before Eq.
(20) and the free energy is a sum of contributions from
8-renormalized hypervertices. The ability to do this
renormalization rests on the fact that the renormaliza-
tion of the free ends of longitudinal bonds does not
depend on the temperature labels; if it did the tem-
perature labels would enter the renormalization in a
manner that would require a separate evaluation of
each term.

Only the longitudinal bonds give shape-dependent
sums C because at least two transverse bonds must con-
nect a pair of spins; transverse bonds only appear in
hypervertices. For this reason the shape dependence of
the free energy predicted on the basis of the Heisenberg
and Ising models is identical.

C. Dipole-Dipole Interaction

The Hamiltonian for the full dipole-dipole interaction
Eq. (4) contains in addition to the Heisenberg Hamil-
tonian, Kq. (4"), the oB-diagonal terms

S;S,
These additional terms lead to diagrams where points
are singly connected by o6-diagonal terms as well as
by diagonal transverse bonds. The renormalization of
these diagrams is difficult and it is not clear if trees
made up of these diagrams can be resummed by simple
8 renormalization. It is known that the shape depend-
ence of the free energy is more complicated" than that
discussed in the preceeding sections for materials where
the oB-diagonal sums

do not vanish. Complications arise for these materials
because the magnetization M is not parallel to the ap-
plied Geld Ho. Even if we apply the field Ho along a

"Marquard points out that for materials for which the off-
diagonal sums T"and T&' do not vanish, the inverse susceptibility

~/x= (2'/~) f t+& U4/2'") l
n 1

contains an unusual shape-dependent term in the coefFicient 83.
Shape dependence enters the coefIj.cient 83 through terms like

T'"T~"T"', ) =x, y.

Whereas the off-diagonal sums T'" are shape-independent, the
diagonal dipole sums T"" which are similar to the sum T", i.e.,
C, depend on shape. The usual shape dependence enters the inverse
susceptibility in the second term 8&/C as the sum T" or C. If
the sums T'" do not vanish shape-dependent terms T~* and T»
enter the inverse susceptibility in such a way that they cannot be
accounted for by an effective field, e.g. , the local field L.LSee C. D.
Marquard, Proc. Phys. Soc. (London) 92, 650 (1967), and
Doctoral thesis, University of Oxford, 1966, Appendix III, pp.
886-88 (unpublished). g This unusual shape dependence is no
longer present if one considers the inverse of the susceptibility
tensor x and finds (x„) ' instead of only the inverse of the element
g„.See H. Horner (to be published).

symmetry axis of the crystal, the magnetization will not
be parallel to the field when the principal axes of the
sample's external shape do not coincide with the crys-
tal's symmetry axes. If we confine ourselves to materials
for which M is parallel to He (when applied along a
principal axis of the sample), we are assured, as proven
in the Appendix, that the dipole sums T"*(X=@,y)
vanish (x, y, and s are the principal axes of the sample) .

With this restriction the only new lattice sum that
could appear in the free energy is the nondiagonal
transverse term T*&. By using arguments identical to
those used for the diagonal transverse bonds, these new

bonds cannot join two hypervertices in an open diagram
(tree). Therefore, they never exist as single bonds be-
tween spins, and the dipole sum T & does not enter the
free energy. As in the preceeding models, only the dipole
sum C contributes a shape-dependent term to the free
energy. Again the shape dependence of the free energy
is contained in the local field, and the "free energy"
F~(L, T) is the same function of local field and tem-

perature for all shapes of the external boundary of a
material. "

The rigorous proof of this result depends on the un-

proven assumption that the linked-cluster expansion is
convergent. " This is a reasonable assumption for the
paramagnetic phase of a magnetic system, and for the
ferromagnetic phase in a finite field provided we perform
the expansion in terms of the Holsteim-Primakog spin-
wave-like deviations from the ground state at absolute
zero as found by Holstein and Primakoff. "For other
magnetically ordered phases, e.g., antiferromagnetic
ordering, we must do an entirely new expansion with the
ordered-state configuration as a basis. An alternate
method of arriving at the shape dependence of the free
energy involves the use of a phenomenological argu-
ment" which contains some unproven assertions.

Suppose we carve out from a uniformly magnetized
sample a long thin cylinder parallel to the magnetiza-

"These remarks about the shape dependence should not lead one
to infer that the free energies for the three cases are identical.
This is not true because the hypervertices have entirely different
structures. Only the single bonds between the hypervertices are
the same and therefore the Ising, Heisenberg, and dipole-dipole
interactions share a common shape dependence of their free
energies.

~7 We have succeeded in resumming a subset of the infinity of
diagrams entering the free energy. If the series does not converge,
this summation is not valid.

"Y.Holstein and H. Primakoff, Phys. Rev. 58, 1098 (1940).
For an excellent review of the behavior of magnetic systems with
dipole-dipole coupling at low temperatures, see the article by
F. Eever, in IIandbuch der Physik (Springer-Verlag, Berlin,
Germany, 1966), Vol. 18/II, Secs. 12—17 and 27. Although trans-
verse demagnetization factors D~ and W enter the k =0 spin-wave
energy, they do not contribute to the ground-state (zero point
energy) or finite-temperature free energy of a large specimen
magnetized along the s axis; the volume of phase (k) space these
contributions occupy is negligible. However, if our specimen is
small enough so that we must consider magnetostatic modes, we
should expect to find that the transverse demagnetization factors
enter.

~9This argument is fairly common. See, for example, C. D.
Marquard, Doctoral thesis, Ref. 25, Appendix III, pp. 887—88
(unpublished) .
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tion. If we place this cylinder in an external field of
strength equal to the Geld inside the cylindrical cavity,
i.e., the internal field

H'=Ho —DM,
and

(BS/BT)pro(BT/BHp) s(BHp/BS) r = 1

that for constant applied 6eld Ho. By means of the
mathematical identities

its free energy is identical to that of the cylinder in the
cavity. This argument leads us to conclude that the
pseudo-free-energy Fz(H;, T) defined as

We fllid

(BS/BHs) & = (BS/BI.)~(BI./BH, ),

Fg(H;, T) =F(H;, T)+ ',DM'- (32)

is independent of the shape of the body. Prom their
de6nitions the di6erence between the internal and local
fields, Eqs. (20) and (31), i.e., Ca+De, is independent
of the shape of the sample and depends only on the
crystal structure of the material. Therefore the con-
clusion that the shape dependence of the free energy is
accounted for by the local 6eld also applies to the
internal Geld.

As this argument, valid for any magnetic material, is
substantiated by our analysis for paramagnetic and
ferromagnetic materials it strongly suggests that the
proper free-energy expansion for the antiferromagnetic
and other magnetically ordered states would give us the
result that Fz(I., T) [Eq. (25)] or Fz(H;, T) [Eq. (32)]
is the same function for all shapes.

Finally it should be emphasized that we have assumed
throughout that the dipole sum C [Eq. (2)] is independ-
ent of the origin (i); therefore, we must restrict our-
selves to ellipsoidal samples that are uniformly mag-
netized. If there are domains, our preceeding proof only
applies for fields greater than the demagnetization field,
for only then will the magnetization be uniform.

U~=(BI%) (PF~) ~, (33)

where the derivative is taken while holding the local
field constant. The specific heat at constant local held
is de6ned as

Cr, = T(BS/BT) r, = (BUg/BT) r„ (34)

where 5 is the entropy of the system. When written
as a function of I., this speci6c heat does not involve the
sum C and, therefore, is the same function of 6eld I
and temperature for all shapes of the same material.
The shape of the sample is accounted for in the local
field Eq. (20).

As it is practically impossible to vary the external
field in such a way as to keep the local field constant, it
is necessary to rt;latq the specifit; h|;at q,t constant L to

SHAPE DEPENDENCE OF THERMODYNAMIC
PROPERTIES

Having ascertained how the free energy depends on
the shape of a sample we now discuss the shape de-
pendence of some thermodynamic properties derivable
from the free energy. The internal energy U& is derived
fron1 the "free energy" Fz by using the relation

CT BM BT

1+~p
To relate the specific heat at constant applied 6eld to
that at constant local field it is necessery to know in
addition to C~„ the diGerential isothermal suscepti-
bility and the differential change of magnetization with
temperature for a constant applied Geld Ho, i.e., the
isoerstedic temperature coefficient. This relation enables
us to reduce to a common specific heat Cr, (I., T) the
specific-heat measurements in finite Gelds on samples of
various shapes of the same material. "The importance
of this relation and the experimental data necessary to
apply Eq. (35) is discussed by Levy and Landau. "
They have shown that the specific heat C~, (Hs, T) for
two sample shapes of the same material (dysprosium
aluminum garnet) can differ by as much as 40%.
Furthermore as the material used for their analysis
was in an antiferromagnetically ordered state the good
agreement between the specific heats CL, arrived at by
using Eq. (35) lends experimental support to the hy-
pothesis that the shape dependence of the free energy
of an antiferromagnet is accounted for by the local
6eld.

The speci6c heat at constant internal field is de6ned

Crr,. ——T(BS/BT)n, ——(BU~/BT)rr, . . (36)

The relation of this speci6c heat to the one for constant

"A. 8. Pippard, The E/ements of Ctassiccl Thermodynamics
(Cambridge University Press, Cambridge, England, 1957)."With results obtained by HC for the free energy, susceptibility,
and specific heat C~„we have calculated the specific heat CL, by
using the two approaches Eqs. {34) and (35);we have found that
the two results are in complete agreement.

s~ P, M, Levy and D. P, Landau, J. Appl. Phys. 89, 1128 (1968).

f& t'B (BI-/BHo) s
&BT r, &BT rr, (BI./BHs)r

By using this relation and the definitions of the local
field [Eq. (20)]and specific heat [Eq. (34)]we can write

Cu C~o= (1+4'xs)/(1+C»)
where X8 is the differential adiabatic susceptibility
(BM/BHs) s, and xz is the isothermal one. By using the
two thermodynamic relations"

C~ Ca, (T——/xr) (—BM/B T)rr '

and C~/Crr, =xs/xr, we find that
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external field is similar to Kq. (35):

Clr, (H;, .T) =Cia, (H;, T)+ '. (37)
DT(8M/8 T)~,'

1—Dyg

By using the definition of the "free energy" Fz LKq.
(24) j the magnetization is given as

M = —(BF~/BL) r. (38)

This magnetization M(L, T) is independent of shape.
It follows that the susceptibility given by

or

~&o r ~J- r 8&o p & —@'g I-, T

x~ '(L T) =g '(L, T) —C

depends on shape orrery through the explicit term C

and the implicit relation of the local field to C. The
function g(L, T) is just the "pseudosusceptibility"
(BM/BL) z and is the same for all Nnsrormly magnetized
samples of a material.

As it is also true that the magnetization M(H;, T)
is independent of shape, if follows that the suscepti-
bility can be written as

XT-'(H;, T) =g '(H, , T)+D, (4o)

where g(H;, T) is the pseudosusceptibility (BM/BH;)r,
this depends on shape only through the internal field.
The relation amongst the pseudosusceptibilities is

g '(H', T) =g '(L, T)—(~o+D ) (41)

Whereas the microscopic treatment favors the local
field, the macroscopic and concomitantly empirical
treatment favors the internal held.

To summarize we have found that the pseudo-free-
energy F&(L, T) is the same function of local field
and temperature for all uniformly magnetized samples of
a material, and that the magnetization M(L, T), spe-
ci6cheat C&(L, T) and "pseudosusceptibility" g(L, T)
are all independent of the shape of a sample. We have
also demonstrated that the shape dependence of the
magnetic susceptibility for finite 6elds, to within a
demagnetization factor, is accounted for by the local
or internal Geld. Whereas we have explicitly only con-
sidered dipolar forces all the above results hold equally
well when short-range exchange forces are also present.
Inclusion of these forces only alters the value of the
dipole sum Cs Kq. (3); it does not change the shape
dependence of the dipole sum C.

From this study we can not make any statements
about the shape dependence of the thermodynamic
properties of a magnetic material in zero applied field,
because tht: series expansions we havt: used may not

converge for zero field. GrifBths33 has developed an
argument that the thermodynamic properties of a
magnetic system in zero 6eld are independent of the
shape of the sample; for zero field domains will form in
the material in such a way that the sample is demag-
netized.
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APPENDIX

Marquard has shown'4 that the dipole sums T" and
T&' vanish, "if the lattice has at least twofold rotational
symmetry about the s axis (defined as the direction of
the magnetic 6eld); or if the lattice has at least three-
fold symmetry about an axis perpendicular to the
magnetic 6eld. '"'

To ascertain the conditions under which components
of the magnetization vanish we consider its transforma-
tion properties. The magnetization transforms under
rotations as a vector, thus for rotations p about an
axis, the magnetization transforms as e'~ where m=O,
&1. If the crystal lattice has a twofold or higher axis
of symmetry the transverse components m=&1 are
not allowed and the magnetization must lie parallel to
the symmetry axis (collinear with the magnetic field).
If the crystal has a symmetry axis perpendicular to the
magnetic field, transverse components of the mag-
netization ns=&1 will always exist because when one
refers the transverse components to an axis perpendicu-
lar to the field a component m'=0 is present; this com-
ponent is invariant under any rotation.

We conclude that the dipole sums T ' and &', and
the transverse components of the magnetization M and
M„vanish if the z axis is along a crystal axis with at
least twofold symmetry. We note that if the transverse
components of the magnetization vanish, then the
dipole sums T*' and T&' also vanish, but the vanishing
of the sums T*' and A' does not necessarily imply
M, =HE„=O. As long as we magnetize our sample along
directions for which 3f =M„=O, we are assured that
the dipole sums T ' and &' vanish. Finally if a crystal
has threefold and higher symmetry about an axis (the
z axis) the dipole sum T*" vanishes; for twofold sym-
rnetry it can exist. Also T ~ can exist for a crystal with
any axis of rotational symmetry perpendicular to the z
axis (direction of the field H,).
"R. B. GrifBths (private communication).
'4 See C. D. Marquard, Doctoral thesis, Ref. 25, Sec. 8, Chap. 3."C. D. Marquard, Doctor@1 &hesis, Ref. 25, pp. 334-3$

(unpublished),


