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A system of spins interacting with each other through the s-f indirect exchange interaction can exhibit
ferro- and antiferromagnetism alternately as a function of the Fermi momentum kz of conduction electrons
and the distance a between rare-earth atoms. This alternate behavior, however, depends critically on the
s fexchang-e parameter g,r(q) and, if g,r(q) decays too fast, only ferromagnetism appears. The stability
condition of these states is investigated in detail, and the following conclusion is obtained: In the regions
of kpa where the ferromagnetic energy is lower than any of the classical energies of antiferromagnetic states,
ferromagnetism is all that can appear at all temperatures, while in other regions of he many states, including
the ferromagnetic state, may be metastable, and magnetic transitions among them may be observed, but,
the ground state is one of antiferromagnetic states. The calculation of the stability condition resembles
that of the Kohn anomalies, and hence the magnetic structures of the system is shown to be closely related
to the Fermi surface.

elude that ferro- and antiferromagnetic states appear
alternately as the Fermi momentum k& of the conduc-
tion electrons is increased, or as the distances u between
the rare-earth atoms are increased.

At first glance, this approximation looks reasonable,
since the f electrons are closely bound inside the outer
shells on the rare-earth atoms, and the wave functions
do not overlap with each other. However, the constant
r(,&(q) is quite different from more realistic interaction
parameters r(,r(q) such as the one calculated by Watson
and Freeman. ' One of the objects of the present paper is
to illustrate that the oscillatory behavior of having
ferro- and antiferromagneticstates depends critically on
the functional form of g,r (q). The g,r(q) obtained by
Watson and Freeman decays too fast for large q and
yields only the ferromagnetic state for all values of k&

and a. If the range of the rl,r(q) exceeds a certain value
of q, however, the oscillatory behavior similar to that
found by Mattis appears suddenly.

Mattis used the criterion that the classical energy
of ferro- or antiferromagnetic states must be lower than
the paramagnetic energy. He also calculated the sta-
bility requirement that the spin-wave excitation ener-
gies of the ferromagnetic state must be real and positive
in the limit of long wavelengths and concluded that
this requirement yields essentially the same results as
the energy criterion for a large range of k&u values. The
classical energy is obtained by replacing the spins by
vectors, and it is, in fact, exact for the ferromagnetic
state at T=O, but is an approximate one for antiferro-
magnetic states. From the energy comparison alone,

C. INTRODUCTION

T is generally believed that the s-f exchange inter-

. . action between the localized f electrons and conduc-
tion electrons is largely responsible for the magnetic
properties of the rare-earth metals and alloys, ' Although
second-order perturbation theory of the s finteraction-
gives the effective interaction between the f electrons
in the form of the Heisenberg exchange Hamiltonian,
this effective interaction is long range and oscillatory
in real space. This long-range behavior is contrary to
the short-range interaction assumed in the conventional
Heisenberg theory of magnetism and makes the treat-
ment of the s-f interaction more diflicult. In fact, it is

no longer obvious to see what type of spin arrangements
appear in the ground state, ' whereas the nature of the
ground state in the simple Heisenberg model with a
limited number of exchange coupling constants r( is
easily recognizable from the signs and possibly the
values of the g's.

Mattis' has investigated the stability of the ferro-
and antiferromagnetic states by assuming a constant
s-f exchange parameter g,r(q) and neglecting the an-

isotropic field of the crystals. This has led him to con-

*Based on work performed under the auspices of the U.S.
Atomic Energy Commission and a National Science Foundation
Grant (GP-7330) .

See the review by T. Kasuya, in Magnetisni, edited by G. Rado
and H. Suhl (Academic Press Inc. , New York, 1966'), Vol. IIB,
Chap. 3.The theory was first formulated by M. A. Ruderman and
C. Kittel, Phys. Rev. 96, 99 (1954).

~D. Mattis and W. Donath, Phys. Rev. 128, 1618 (1962);
D. Mattis, ibid. 130, 76 (1963).

3 D. Mattis, The Theory of Magnetism (Harper and
Publishers, Inc. , New York, 1965), Chap. 7.

Rom, ' R. E. Watson and A. J. Freeman, phys, Rev, 152, 566 (1966),
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therefore, we cannot draw any de6nite conclusion as
to whether the ferro- or antiferromagnetic state appears.

In the present paper, we shall rely on the expressions
for the total energy E(Q) and excitation energies e, (Q)
obtained by the double-time Green function method.
under the Tyablikov decoupling process summarized
in Sec. 3.' Although the antiferromagnetic energy cannot
be calculated exactly, we find in Sec. 4 a very useful
theorem which separates the ferromagnetic regions
from regions of all other states. The theorem states
that all antiferromagnetic and screw structures whose
classical energies are higher than the ferromagnetic
energy are unstable in the present approximation.
Therefore, in the region where the ferromagnetic energy
is lower than any of antiferromagnetic classical energies,
ferromagnetism is all that can occur at all temperatures.
According to the discussion in Sec. 5, on the other hand,
several states including the ferromagnetic state can be
metastable in the classically antiferromagnetic regions,
and, hence, magnetic transitions among those meta-
stable states may appear. Consequently, transitions
from the ferromagnetic ground state to antiferromag-
netic states are impossible in the present model in the
absence of anisotropic 6eld, but the reverse is a possi-
bility. As is summarized in Sec. 6, energies of anti-
ferromagnetic states will be calculated only classically,
and, hence, it is not possible to draw a de6nite conclu-
sion as to which one of them appears as the ground
state, but the general trend of magnetic structures of
the system will become quite clear.

In Secs. 4 and 5, we will also calculate the relative
stability condition that excitation energies be real in
the limit of long wavelengths. The formulation resem-
bles the calculation of the Kohn anomalies in spin-wave
spectra, '' and the kgb values where an unstable state
turns to a stable state can be found easily from the
reciprocal lattice vectors. From the numerical results
in Sec. 6, in fact, we will 6nd that the relative stability
condition yields fairly complete information as to what
state becomes the ground state when a constant zl,f(g)
is assumed. This suggests that there may be an intimate
relation between the Fermi surface and the magnetic
structure.

2. HAMILTONIAN

I,et us assume that the direct interaction between

f electrons is negligible, while the exchange coupling
of the f electrons with the conduction electrons is given

by

H,y= E'p ggg, )(m—iki, emkm) expL il ~ (k2 —ki)—]
nyk1 n2k 2 1

X {+azkz+ ~aiki —SI— ++azkz- +agkz+S&+

+PCazkz+ +aikido Cazkz- +ark& —]S&z I ~ (2 1)
~ See, for instance, S. V. Tyablikov, Method irl, the Qucntzcm

Theory of 1lfageetism (Plenum Press, New Vork, 1967), Chap.
&III.

6 W. Kohn, Phys. Rev. Letters 2, 393 (1959).
7 E. J. %oil, Jr., and S. J. Nettel, Phys. Rev. 123, /96 (1961).

Here C„k+ are the Fermi destruction operators for spin
+-,', and zI,r is the s fex-change integral. The S,(')'s are
twice the ordinary Pauli spin operators (spin —,) for the
f electrons localized on lattice sites 1 (1=1 ~ .N), and
satisfy the following commutation relations:

where

LS, () S, ()] — 4S, ()g, ,

LS&~('), Si.,(0)] =~2S,~()„,,

S„()=—S,.()~iS,„(o).

(2.2)

(2 3)

The superscript (0) of the Si("'s indicates that the
coordinate system is 6xed in the lattice.

Ordinary second-order perturbation theory yields the
following effective interaction between f electrons:

with

Hzff =
2 Q Q J'(11—12) S&,'" 81,")z (2 4)

&2(N&1)

1 ~ ~ z{,f'(niki, m k )f„,k,
h& —2)=

n1k1. n2kg &nok2 &n1.ky

Here
Xexp(a(k2 —ki) ~ (11—12)]. (2.5)

f„k= {1+exp+(e„k—)(()]}—1 (2.6)

S),(0) = —sin(Q 1) S&„(o)+cos(Q 1) Si, (&&,

S&„(0)=cos(Q 1) S&„(@)+sin(Q I) S„,(@),

S, (0) — S, ,(g) (2.7)

where the S(@)'s also satisfy the commutation relations
(2.2), and Q. l is the angle in the fixed x-y plane that
the s' axis makes with the 6xed x axis. Substitution of

with p=1/ksT, p the Fermi energy, and ~ k is the one-
electron energy of the conduction electron with mo-
mentum k and band index e in the reduced zone
scheme.

In this paper we shall limit our discussion to the
system of spins interacting with each other by the
effective spin Hamiltonian H, qf and neglect the direct
eAect of the s-like conduction bands to the magnetic
properties. For convenience, we shall further assume
that the f electrons occupy sites on a simple cubic lattice
of spacing a. Systems of this type, for example, are found
in the rare earth-noble metal intermetallic compounds
having the CsCl structure.

It is convenient to describe the various spin con6gura-
tions observed in the lattice by using rotating coordinate
systems. The components S&,('), S&„('), and S~ () in the
fixed coordinate system (x, y, z) is then transformed
to the rotating system (x', y', z') with pitch Q as fol-
lows:
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Eq. (2.7) into Eq. (2.4) yields the Hamiltonian in the
rotating coordinate systems.

H, f( — 2 g'J(l) —12) {——,'-Lsin'-. ', Q (1&—12)]

xLS) +(Q)s), (Q)+s), (Q)s) (Q)]

+-'-I cos'-'Q (1,—1,)]LS) 'Q)s( 'Q'+S) 'Q'S) 'Q']

+(1/2i) LsinQ (1)—1,)]
x L(s) y —s) Q ) s),(Q) —s)„(Q)(s) (Q) s (Q))]

+LcosQ (1)—12) ]S,.&Q'S „&Q)}. (2.8)

3. SOLUTION OF THE GREEN'S FUNCTIONS

We turn in this section to the definition and method
of solution of the relevant Green's functions. As in
Bonch-Bruevich and Tyablikov' we define the Green's
functions involving the Heisenberg operators A (t) and

B(t) as follows:

(&A(t) I
B(t')))—=it)(t —t') (LA(t), B(t')]-), (3 1)

where ( ~ ~ ~ ) represents an average over a canonical
ensemble, 8(t) a step function, and L ] a commutator.
The equation of motion is then

E&(A IB))s=—(1/2~)&LA, B] )—((LH, A] IB))E,

(3 2)

where (( I ))& is the energy Fourier transform of (( I )).
The correlation function can then be written as

where the v's are wave vectors contained in the first
Brillouin zone of the lattice reciprocal to the space
lattice. The solutions are

G' (Q;E)
=G. +(Q; —E)

=L-2.(Q)/~]{LE+F.(Q)]/LE'-e, '(Q)]};
(3.7)

G'+(Q E)

(Q; E)

={.—2~(Q)/~]{B (Q)/LE' —'(Q)]}.
We have made the following definitions:

t„(Q) =2&r(Q) LI(Q) —2I(v)

(3.8)

——,
' (Q+ v) ——,'I(Q —v) ], (3.9a)

B,(Q) =2o (Q) L2I(v) —4I(Q+ v) ——,'I(Q —v) ],
(3.9b)

e (Q) {F2(Q) B 2(Q) }1/2

=2(r(Q) {LI(Q) —I(v) ]
XLI(Q),~I(Q+ v) ~I(Q v) ]}

()2 (3 9c)
with

normal way by searching for solutions of the type

((S, (Q)
I
S, &Q)))

=1V 'P exp{i« (1—1')]G;"(Q;L), (3.6)

(A (t) B(t') )= dE expL —iI'(t —t') ] I(P) =QJ(l)e'P'
1&0

(3.10)

X {1—exp( PF)}— and 0 (Q) determined self-consistently by the relation

X {1 ( ') L((A I B)) ((A I B)) ]} (3 3) La (Q) ] '=1V 'gLI„(Q)/e„(Q) ] coth-', pe„(Q) . (3.11)

We need to compute Green's functions of the type

&(s„.'"(t)
I
s„,"'(t') )), o, b=s, +, —. (3.4)

Setting up the equation of motion for the above func-
tions using Eqs. (2.8) and (3.2), we find a closed set of
equations under the following chain-breaking approxi-
mations:

((A(t)B(t) I
c(t') ))=(A)((B(t) I

c(t') ))

The average energy E(Q) is then

E(Q) =E'(Q)+E"(Q),

with the classical energy L'(Q) given by

E'(Q) = —2-&I(Q)

and the quantum effect E"(Q) given by

L"(Q) =-l&L"(Q) -1)I(Q)

(3.12)

(3.13a)

+(B)((A(t) I
c(t') )), (3 5)

where we will demand in state Q that (S),'Q')=0(Q)
and &S)+(Q))=0. The result is reduced to a 2X2 set of
equations among the ((S).&Q'(t)

I
S) 'Q'(t'))) with

0 =+, —,since the functions ((S),'Q'(t)
I
S) +(Q)(t') ))

vanish under these approximations. We solve in the

8 V. L. Bonch-Bruevich and S.V. Tyablikov, The Green F&unction

Method in StatzsticaI Mechanics (North-Holland Publishing
Co., Amsterdam, 1962).

——,,'~(Q) QLI(v)+ —,'I(Qyv) y-,'I(Q —«) ]
XLF.(Q)/'(Q)] coth2P ~, (Q)

—-';+LB„2(Q)/~. (Q) ]cothgP e„(Q) . (3.13b)

At this point it is convenient to separate the discus-
sion of the various ordered states into two parts, that
for the ferromagnetic state Q=0 and those for the
antiferromagnetic and screw structure states QWO.
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I(0))0, (4.2)

using Eqs. (3.12) and (3.13) together with the fact
that the paramagnetic energy is taken to be zero in
the present description. The classical energy comparison
between the ferro and the three types of antiferro-
magnetic states considered will be carried out numer-
ically and will be discussed in the following two sections.

One might feel uncertain in doing such comparison
of energies of distinct states. In fact, the values of the
antiferromagnetic energies evaluated classically are
higher than the exact energies, while the ferromagnetic
energy is calculated exactly at T=O, and, hence, the
classical energy comparison is always unfavorable for
the antiferromagnetic states. Fortunately, the following
theorem will eliminate this difhculty.

Theorem: If the ferromagnetic state satisfies the rela-
tive stability condition (4.1) for snsall v, and if the
exact ferromagnetic energy is lower than the classical
energies E'(Q) of an antiferromagnetic state or screw
structure state Q, then the state Q becomes unstable
against small deformations under the present approxi-
mation.

Consequences of this theorem are that, if the ferro-
magnetic state is the ground state, no other states can
be metastable, and thus, it is not possible to expect
any magnetic transition from the ferromagnetic state
to antiferromagnetic or screw structure states under
the s finteraction in the -absence of anisotropic fields.
Whether or not the ferromagnetic state is the ground
state can also be decided by comparing its energy with
the classical energies E'(Q) of all other possible states.

4. FERROMAGNETIC STATE (Q=O)

Here we shall investigate the stability of the ferro-
magnetic state. In general, for a state Q to be the
ground state, it is necessary to show either tha, t (a)
the excitation energies e„(Q) are positive definite for
all v, or that (b) the total energy E(Q) is the lowest
among all possible spin states. We must also show that
the magnetization 0 (Q) is nonvanishing and positive,
so that the ground state has, in fact, the desired long-
range spin arrangement. For the ferromagnetic ground
state, the stability condition (a) is given by

I(0) I(v) )0—, (4.1)

for all v, as is obtained from Eq. (3.9) .
It is not feasible, however, to calculate the validity

of the above inequality for all v, and, hence, we shall
limit in this paper the discussion of Eq. (4.1) to small
v and call it the relative stability condition. To supple-
ment this limitation, we also calculate a part of the
second condition (b), that is, (bi) the total energy
E(Q) is lower than the paramagnetic energy at T=O,
and (b2) the energy is in fact minimum among the
6nite number of states considered in this paper. For the
ferromagnetic state, the requirement (bi) is written as

As we shall discuss in Sec. 6, the reverse of the theorem
is not true, and, so if an antiferromagnetic state is the
ground state, the ferromagnetic or other states may
be metastable, and, hence, magnetic transitions to such
metastable states may be possible.

The theorem can be proved as follows. For a state
Q to be metastable, the energy must be a minimum, at
least, in the vicinity of Q. In classical approximation,
this yields

I(Q) ——',I(Q+v) —2I(Q —v) )0, for small v,

(4.3)

while, by assumption, the classical energy E'(Q) of the
state Q is higher than the ferromagnetic energy E(0),
and, hence,

I(Q) —I(0)«
For small v, the inequality is essentially equivalent to

I (Q) —I(v) (0, (4 4b)

because the difference I(v) —I(0) vanishes in the limit
of small v. Use of Eqs. (4.3) and (4.4b) in Eq. (3.9c)
leads to the conclusion that excitation energies of the
state Q are imaginary in the limit of small v, illustrating
the instability of the state Q against small deformations.

To calculate the stability conditions (4.1) and (4.2)
of the ferromagnetic state explicitly, we shall develop
an expansion method for the calculation of I(v). Use
of Eq. (2.5) into Eq. (3.10) yields the explicit expres-
sion of I(v), but to compute it, we need to assume the
behavior of I(v) to be well approximated by the follow-
ing two simplifications: (1) Wave functions for elec-
trons in the conduction bands can be given by plane
waves. Hence,

8.f'(» k')f~

(1V )~, (5'/2m*) (k"—k')

Xexp/i(k' —k —v) ~ lj, (4.5)

where the band indices are removed and instead the
unlimited k's are used. (2) The g,r(k, k') depends
only on

~

k' —k
~

and can thus be written

a.r(k, k') =a.r(l k'-k l). (46)
This is Kasuya's assumption, ' but Overhauser" has
proved that this approximation becomes rigorous when
a 6-function potential replaces the Coulomb potential
in g,f. More recently, Watson and Freeman' have
shown that the rigorous calculation of g,r by the use of
orthogonalized-plane-wave (OPW) and Hartree —Fock
atomic functions yield the approximate relation (4.6)
quite well, at least for Gd.

Let x be the reciprocal lattice vectors appropriate to
the space lattice. Then the index k' in Eq. (4.5) must

'T. Kasuya, Progr. Theoret. Phys. (Kyoto) 10, 45 (1956)."A. W. Overhauser, J. Appl. Phys. 34, 1019 S (1963).



satisfy the relation

k'=lr+v+x.

where

U(l «+~ I; r) =P, (I «+~I)g-1

(4.8)

dk k~ln, 4.9
2k+

I «+el

Use of Eqs. (4.6) and (4.7) in Eq. (4.5) yields

I(«) =(k ~)Df Zlr'(I «+~ I) U(l «+~ I' 2') }—I(0)

Case 1.Kasuya's g,r(q)

In line with Kasuya' we shall assume that g,r(q)
behaves as follows: When q is much smaller then the
first reciprocal lattice vector i~i, g,r(g) decreases slowly
as q increases, but as q approaches a critical value which
is close to but smaller than i~i, g.r(g) starts to decrease
«pidiy and becomes neg»gi»«or V& I

., I. Then the
conditions (4.14) and (4.15) become

I(0)—I(v) = (kpe) D

X Ig.r'(0) U(0) —g,P(v) U(v/2kp) }&0, (4.N)

I(0) = (ki a) D
l&i &1~st

X{y.g(0) U(O) —X-1 g y,, (k) U(k/2k, ) }&O,

and where kg is the Fermi momentum. The self-energy
term J(0) Wo is subtracted in Eq. (4.8) because it is
excluded in the definition (3.10) of I(v) while the
first term on the right of (4.8) automatically includes
it. %hen T=o, the Fermi function k~ can be replaced
by a step function, and the integration involved in
U(l v+x I; 2 =0) can be carried out explicitly yielding

U(l «+i~ I; 2'=0) —= U(l «+i~ I/24)

1 (1—x') x+11+ ln, (4.11)
2 2$ s—1

x=
I
v+x I/2k'. (4.12)

Since the temperature dependence of U(l «+i~ I; T) is
shown to be very weak, U(l «+i~ I; 2') can be well
approximated by U(l v+x I/2k') . Consequently I(v)
can be regarded as a temperature-independent quantity
given by

I(«) = (4o)Dl gaP(l v+~ I) U(l «+» I/2k~)

—1V-'Qg, y'(k) U(k/2ki ) }. (4.13)

Thus our relative stability and energy conditions read

I(0) —I(«) = (k.o) Dl Zl A.~'(x) U( /2k. )

—g,rs(l «+i~ I) U(l v+ii I/2kp) j}&0, (4.14)

I(0) = (kpa) D[ Qg,r'(~) U(~/2ki )

—

lit-idly,

rs(k) U(k/2k, ) }&O. (4.15)

Ke can now show that the assumed functional form
of g,r(g) is critical for satisfying the relative stability
and energy conditions (4.14) and (4.15) for the ferro-
magnetic state. %e shall examine three cases.

G(x) =L2U'(x)/xj+U" {x); x=—a/2k', {4.19)

and g (x) is the number of reciprocal lattice vectors with
a constant magnitude

I
x

I
while the prime superscripts

over U(x) denote differentiation with respect to the
argument. The relative stability condition (4.18) is
then written

1——',Qg(K) G(z/2kp) &0. (4.20)

We must be careful in applying the condition (4.20) .
As 1s sllowil 111 Fig. 1, G(x) djverges at x=1, snd the
Taylor expansion breaks down in the vicinity of the
singularity, but we still find that the expansion (4.18)
is an excellent approximation to (4.14) for small v
when

I
1—x

I
&0.05. We note that the divergence of

G(~/2k') yields kinks in the spin-wave dispersion curve
which are known as the Kohn anomalies. e In the limit

(4.1"I)

so that the ferromagnetic state is stable for all values
of kgb.

Case 2. Q,r(q)=g, r(0)=const. for all q

In contrast to case I, we 6nd that the conditions
(4.14) and (4.15) are not always satis6ed, so that
fcl romagnctism ls not always posslbl. According to
the numerical analysis of the semiclassical approach
by Mattis, ' one 6nds alternating regions where the
stability conditions are satisfied and violated. This
suggests that some type of antiferromagnetic ordering
is taking place in the appropriate regions.

Here we shall investigate the stability condition
(4.14) analytically in the limit of small v. For small
v a Taylor series expansion of Eq. (4.14) yields

I(0) —I(v) —-',
I (kgb) Djg,r'(0)

xj1—g-;Lg(.)]G(./2k. ) }(./2k, )»0 (4.18)
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FIG. 1. Plot of G(x) = {'2/x)BU'/8x+O'V/Bx', where x—=It/2k~
ana v(*)= ,{i+P—(t—+)j»—j» I(*+t)l(*—t) ll.

x = (2s/o) (riP+n2'+ria') "', (4.21)

where e&, 02, and 03 are integers, and ei=e~=re=0 is
not included. Since the minimum values of x is 2s/a,

of long wavelengths ~0, such kinks may shift a spin-
wave dispersion curve upwards (downwards) and
change the otherwise negative (positive) sign of the
curve to positive (negative). If this situation occurs,
the Kohn anomaly is considered to be responsible for
the stability of ferromagnetism, and, in turn, the result-

ing stability becomes intimately related to the Fermi
surface through the value of the Fermi momentum k~.

Let us illustrate this situation more explicitly by
evaluating the expression on the left of Eq. (4.20) . In
our simple cubic lattice the values x are given by

the values of G(~/2k~) for aH ~ are found to be positive
Rs long Rs kpcgÃ. In pRI'tlculRl foI' small kgQ Rll the
G(g/2k+) are small and the sum 2+„g(a)G(~/2ki)
converges to a value less than one. The condition
(4.20) is then satisfied, and a positive dispersion curve
results. However, as the value of kpu approaches 2.0,
the sum becomes greater than I, and the inequality
relation (4.20) breaks down. The resulting instability
persists in the region 2.0&kpa&x. As the value of
kpa becomes greater than m; the first term in the sum
—,'g(ai) G(ai/2k~) which involves the 6rst nonzero set of
reciprocal lattice vectors L~ and is the dominant term
in the sum, changes sign while the rest of the G(z/2ki ) 's
stays small. This results in the change of sign of the
slope of the dispersion curve to plus, and represents the
kink passing through the origin. Again then the condi-
tion (4.20) is satisfied yielding stability of ferromag-
netism. With a further increase of k~a, this condition
is again violated at around k~u 3.8, since the negative
contribution from the second set I(2 of reciprocal lattice
vectors becomes dominant. As ca &%2', the sign of this
second term changes and passing through the resulting
Kohn anomaly stabilizes ferromagnetism, etc. This
oscillatory behavior persists with the bringing-in of
higher sets of reciprocal lattice vectors x inside of the
singularity. In fact, we have calculated the expression
to tile left of Eq. (4.20) illinlellcally, and tile i'eslllt ls
suIIlmarized ln Sec. 6.

We also calculate I(0) numerically and plot the
values versus kpa. From these results we will find that
the regions where the energy condition (4.15) is
satisfied is essentially the same as the region obtained
from the relative stability condition (4.20).

Case 3. General g,&(q)

Watson and Freeman4 have used more realistic
methods for determining g,r(g) and concluded that the
actual situation lies between the limiting cases 1 and
2. The reahstic g,r(g) is considered as a decaying and
oscillating function of q. The expression {4.14) for
small v can then be expanded as:

I(0) 1(~)=(k&a)D}.f~8~f'(0) —F68 r'(~)g(~)G(~/2k~) }(i'/2k~)'

+{—28 r (0) (2k~8r'(0) ) (~/2k~) —
3 Z8r(x) (2ki 8.r'(x) )g(~) &(~/24) (~/2k~)'}

a+0

+ j —La.r(0) ((»,) a,r"(O) )+(2k.g., (O) ) j
—-'ZLA. r( ) ((2k )'8.r"( ) )+(2k 8.r'( ) )'jg( ) U{ /2k ) }(./2k ) ])0, (4.22)

where the function

H(x) =LU(x)/xj+ U'(x) (4.23)

also has a singularity at x= I as is illustrated in Fig. 2.
If the derivative of g,r(q) at q=o, g,r'(0) is negative,
then the 6rst part of the second term on the right of

Eq. (4.22) becomes dominant, since this part is propor-
"ioilal to i'. The condition (4.22) is then satisfied, and we
only need to investigate the energy condition (4.15), If,
on the other hand, g,r'(0) is positive, ferromagnetism
is obviously unstable. However, y„'(0)
taken as zero, and the major contributions to the in-
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equality (4.22) appear from the constant term
isLQ,P(0)j and terms involving G(x„) and H(x„) where
the values of x„are in the vicinity of the singularities
of these functions. The relative stability condition
(4.22) is then simplified to

2 ZLA&f (")/A~f (o) 7g(~.)8(~./2kip) &o (4 24)

where

g(~„/2ki ) =G(z„/2kp)

+4[2k',g'(~„)/g„g(a„) jH(~„/2k'). (4.25)

We note that the third term in Eq. (4.22) does not
have a singularity and hence does not contribute
significantly to (4.24) .

As long as g,f(~) varies gradually and the value of
$2kpg f'(~)/g, r(~) j is not exceedingly large, the first
term in (4.25), G(a/2ki ) will dominate over the second
term, and g(~/2ki) will resemble G(~/2k@). The con-
dition (4.24) is then similar to (4.20) and will, in
principle, exhibit alternating regions of kpu where the
inequality (4.24) is satisfied and violated. If the

pg f (~„) decays with increasing ~„so that

the contribution from the sum on the left of Eq. (4.24)
will decrease as compared with the corresponding term
in Eq. (4.20) . In fact, the value of the sum will remain
less than 1 at ca 2.0, so that the first region of ferro-
magnetism becomes somewhat wider but cuts out
before kJ a=x. At kpu &m, the 6rst term of the sum,
g(~i)g(~&/2k+), changes sign, and the accompanying
Kohn anomaly puts the system back to ferromagnetism
just as in Eq. (4.20). Since

I g,f(~2)/g, f(0) I
is still

smaller than
I g,f(~i)/g, r(0) I, this second ferromag-

netic region may become even wider until we find that
the relative stability condition for the ith region will
continue up to the (i+ I) th region except in the narrow
vicinity of the singularity of G(~;/2k&) . In this region
the Taylor expansion used in obtaining Eq. (4.22) is
invalid, and the instability is merely a fictitious one.
Beyond the ith region, therefore, ferromagnetism must
be stable for all kpc. This tendency will be accelerated
if g,f(g) decreases faster, until we 6nd in the Kasuya
limit, where i=1 that ferromagnetism is stable for all
kgb.

5. ANTIFERROMAGNETIC STATES (QWO)

Since many antiferromagnetic or screw structures
which have lower classical energies than the ferro-
magnetic energy can be stable against small deforma-
tion, it is more dificult to decide which one of them is
the ground state. In Sec. 6, we shall rely mainly on the
calculation of classical energies E'(Q) in predicting the
order of these states. However, it is possible to obtain
more de6nite conclusions in some respects. According

0.5 l.0 l.5 2.0
X~

FIG. 2. Plot of H(x) = U(x)/x+BVf8x.

to the discussion in Sec. 4, for instance, the exact ener-
gies of these antiferromagnetic states are in fact lower
than the exact ferromagnetic energy at T=O, and,
hence, the ferromagnetic state cannot be the ground
state in these regions. The theorem in Sec. 4 also indi-
cates that all states which have higher classical energies
than the ferromagnetic energy are unstable. Conse-
quently, we need to consider those metastable states
whose classical energies are lower than the ferromagnetic
energy.

As it is not feasible to look. for all possible metastable
states, we shall limit our discussion in this paper to the
following three antiferromagnetic states:

(5.1)
The ferromagnetic energy Z(0) as well as the classical
energies Z'(Q) of these three states are always extrema,
since

L~~'(Q) /~Q j= —k&L»(Q) /~Q j=o,

for Q =0, Qi, Qm and Qa. (5.2)

There may be other spiral structures which are meta-
stable. For example, spin-w'ave spectra evaluated
numerically by Woll and NetteP suggest such a possi-
bility in the hexagonal closed pack lattice, but we shall
not investigate it in this paper.

There is a very important point to be discussed before
applying the Green function method to those anti-
ferromagnetic states. It is well recognized that the
method can be applied without diKculties to the
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"ground" state Qo which has the lowest classical energy
E'(Q,). However, we find difhculties in calculating
metastable states whose classical energies E'(Q) are
higher than the "ground" state energy E'(Qa) but
lower than the ferromagnetic energy E(0). Although
excitation energies «„(Q) of such states are real in the
limit of small v, showing the stability against small
deformation, at f(nite v the «„(Q) may become imagi-

nary, because I(Q) I(v) i—n the parentheses on the
right of Eq. (3.9a) turns to negative when v Q(). It is
also impossible to eliminate cases that the F„(Q) be-
come negative, because I(Q) is no longer an absolute
maximum. Those imaginary or negative values are un-

pleasant to handle. In fRct, the VRlue of the probability
of 6nding spin waves given by

{5 (q) 5' («)) )+y'„(())g~(Q) )

=5~'(Q) F(Q)/"(Q) j coth2 f)3"(Q) } (5 3)

may become negative if F„(Q) is negative, and it is
undetermined at T=o if «„(Q) is imaginary since the
expression on the right of Eq. (5.3) is written as

lim (-1)L~'(Q) F,(Q)/I «, (Q) Ij cot2 fI I3«(Q) I}.

(5.4)

The above situations illustrate apparent contradictions
jnvolved in the treatment and suggest the breakdown

of the Green function method, because the value on

the left of Kq. (5.3) should be positive by definition.

This limitation of the method may be serious in some

problems, since we have to always carry out the calcu-

lation based on the "ground" state Qo. For instance,
the total energy E(Q()) calculated by (3.12) and (3.13)
may not be the lowest, even though the classical energy

is the minimum. Furthermore, it is dificult to apply
the method in predicting a possible phase transition

to another state, say Q, at finite temperature, for the
exact free energy of the state Q has to be calculated

starting from the energy of the ground state Qo. H the

phase transition would exist, a kink should appear in

the free-energy curve and the long-range ordering of
spins will change to that of the excited state Q beyond

thjs kink. It is obvious thRt such Rn exRct CRlculRtlon

js not feasible. What we would like to do, in practice,
is to calculate an approximate free-energy curve perti-
nent to the excited state Q starting from the metastable
state Q and neglecting the absolute minimum in the
energy curve at Q0. It is really a serious drawback of the
Green function method that phase transitions between
ordered phases cannot be calculated in a conventional

We shall now turn to the calculation of the relative

stability condition that excitation energies are rea]. in

the limit of small v. Use of (3.9c) and the assumptions

(1) and (2) of Sec. 4, we expand «.(Q.;) as follows:

"(Q') =2~(Q') fG'LI(Q') —I(o)3}'"(~/2k~), (5 5)

where

C'= —(k~&) I)ZsI:g(»'*) jf8.x'(»'*) G(»'*/2k~)

+'4g r(»' )L(2k )pg f (»' ))II(»' /2k )

+2LA.i( '*) ((2k~)'ki" (»'*) )+ ((2k~) 8.i'(»'*) )'j
&& U(»,*/2k, ) }&O. (5.6)

We have introduced a new variable x,*=Q,+i«, and
the fi«.;*}are then the reciprocal lattice vectors which
are newly created over fi«} owing to the lower sym-
metry of the appropriate antiferromagnetic states.
According to tile tlleolelil ill Sec. 4, I(Qi) —I(0) Iilust
be greater than zero for the state Q; to be stable, and,
hence, the condition that excitation energies are real in
the limit of small v is written as C;&0 as it appears
in Eq. (5.6) . This relative stability condition is similar
to (4.20) and (4.24), and is satisied only for certain
values of k~u. We shall again investigate three cases.

I(o) —I(Q) &0, Qwo, (5.7)

and hence antiferromagnetism is impossible for all k~a
at any temperature.

Case 2. g,~(q) =g,~(0)=constant

In the Mattis limit, ' I(Q,) —I(0) is no longer always
negative, since I(Q;) oscillates in a similar manner as
I(0). The numerical results in Sec. 6 will show, how-
ever, that the oscillation of I(Q~) is out of phase with
I(0), demonstrating alternative appearances of ferro-
and antiferromagnetisms. The relative stability condi-
tion (5.6) for the excitation energies is simplified as

—Qg{» *)G(» */2k) ))0 (5.8)

As is shown in Fig. 1, the value of G(»;*/2k)) for
a,*&2k~ is positive, and hence, the above conditions
cannot be satisfied unless

K$ md@ Q 2k+ a (5.9)

Consequently, the antiferromagnetic states cannot
appear unless the following conditions are satished:

kpu) m/2 for Qi,

kr u) @2m/2 for Q, ,

ki a&%3m./2 for Q;, (5.10)

Case 1. Kasuya's g,r(q)

For the Kasuya-type functional dependence' we see
immediately that the Q s, as well as any QWO state,
are never stable since from {4.16) we have



STABILITY OF F ERRO- AND ANTIF ERROMAGNETISM

I,O

0.8

0.6

FrG. 3. PlOt Of VariOuS ref (q) /g, y(0)
used in the calculation of I (Q) versus
q. The simply decaying curves are
obtained from the expression
g,y(q)/g, y(0) = (1+r /16) i exp( —Bg~)
with 8=0.1, 0.5, and 0.8, while the
curve obtained by Watson and Free-
man is reproduced by the expression
cos-', (mq) exp-,'(—q).
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indicating the appearance of the ferromagnetic state
for small values of kpa. For large A~a, however, C;
oscillates about zero in a similar manner as the expres-
sion on the left of Eq. (4.20), but effectively out of
phase with it. The origin of this oscillatory behavior
is again due to the Kohn anomalies in the spin-wave
dispersion curve. More explicitly, the inequality (5.8)
is violated for k~a)2.5 for Qi, k~u&3. 2 for Q2, and
ki a &4.0 for Q3 because the second term on the left
of Eq. (5.8) becomes dominant but still negative.
Beyond the singularities of G(a,~*/2k'), that is, ki a
(+5)—',7r for Qi, (g6) 2s for Q2, and (+11)2s for Qa,
however, the second term turns positive, yielding the
passing through of a kink in the limit v—&0 of the dis-

persion curve. The inequality (5.8) is then satisfied
again and so on.

Case 3. General g,~(q)

In the case of general g,~(q), the relative stability
condition (5.6) may be simplified to

g(~'i—*)B(~ i*/2k~) —ZL8 r(~'.*)/l x(~'i*) j'
n=2

Xg(li;„*)g( K/2k ))i0. (5.11)

As before, an antiferromagnetic state cannot occur un-
less the value of kpa exceeds the appropriate value listed
in Eq. (5.10) . As long as the value of g,r(~,„*)decreases

4—
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I
i A5I

A2 I
I

ferro

l
I

FIG. 4. Plot of I(Q) versus k&c for
the ferromagnetic state Q =0 and the
three antiferromagnetic states QI,
Q2, and Q3. A constant g,~(q) is
assumed in the calculation. Regions of
kate where the relative stability con-
dition is satisded are illustrated in the
lower part of the Ggure.
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Fxe. 5. Plot of I(Q) versus kg@
for the ferro- and antiferromagnetic
states Q=O, Qq, Q~, and Qz. The
8=0.1 curve in Fig. 3 is assumed for
8 i(q)/8 ~(0)

kFa

with increasing ~;„*,Lg,y(s;„*)/g, r(a, |*)$ is less than 1,
and it becomes increasingly di5.cult for the second term
to dominate the first term on the left of (5.11). There-
fore, the region where the antiferromagnetic state is
stable becomes wider. Because of the drastic change in
values at the singularities of g(z,*/2k~), however, the
second term turns to positive, and the inequality (5.11)
is satisfied at approximately the same point as the case
where g,r(q) is constant. Finally, the ith region of the
antiferromagnetic state will continue up to the (i+1)th
region, and the state becomes stable for all au beyond
the ith region. This tendency is exactly parallel to that
obtained for ferromagnetism.

in particular, illustrate the drastic changes in ordering
when various forms of g,r(q) are introduced.

The numerical calculation has been carried out as
follows: First we computed the values of I(Q) for

Q =0, Qi, Qs, and Qs, and plotted the values versus
kgu in Figs. 4 to 8. To compute the values, the expan-
sion (4.15) is used and the following forms of g,r(q)
are assumed:

(1) g.r (q) /g, r (0) =const.

(2) A.f(q)/a*f(0) =(1+q'/16) 'e '";
8=0.1, 0.5, and 0.8.

6. RESULTS AND DISCUSSION (3) g,y(q)/g, y(0) =cos-,'(s.q) e «'. (6.1)

%e turn in this section to a discussion of the mag- To illustrate the ranges of the interactions, the values
netic ordering that results from the present model and, of the above functions versus q are plotted in Fig. 3.
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FIG. 6. Plot of I(Q} versus kpu for
the ferro- and antiferromagnetic
states Q=O, Q~, Q~, and Qs. The
8=0.5 curve in Fig. 3 is assumed for
8.~(V) /8.z(0).
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Fio. 7. Plot of E(Q) versus kro for
the ferro- and antiferroraagnetic states
Q=O, Q„Q„and Q,. The 8=0.8
curve in Fig. 3 is assumed for
8.~(f)18*r(o)
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As is seen in the figure, case 3 figs to the numerical
g,r(q) obtained by Watson and Freeman' fairly well,
while case 1 corresponds to the Mattis limit. ' The
three functions belonging to case 2 lie between those
two extrema. In particular, we note that the one with
8=0.1 resembles the Jgy obtained by Watson and
Freeman by using the 8-function interaction and the
Hartree-Pock atomic functions. The form of Jgp was
originally suggested by Overhauser. "

As wc have discussed iil Eq. (5.2), tllc cllcl'gics of
the four states considered here are extrema. As long as
no other states are stable, therefore we can read o&
the magnetic structure of the ground state with a par-
ticular kgu value in Figs. 4 to 8 by searching for the
max I(Q). In the regions of kI a where I(0) is a maxi-
mum, the ferromagnetic state is all that can occur at

any temperature since all antiferromagnetic states are
unstable. The I(0) in these regions also satisfies the
condition (4.2), further confirming the stability of the
ferromagnetism. In Figs. 4 to 8 these ferromagnetic
regions are indicated by arrows connected by dotted
lines and marked as "Ferro."

In the regions where I(QI) &I(0), one of the anti-

ferromagnetic states may be the ground state. In the
classical approximation, the state with maximum I(Q)
ought to be the ground state, but it is not certain if
the ordering remains unchanged when the quantum
correction 8"(Q) is included, and, hence, we shall not
discuss it any longer. There a,re also some possibilities

of observing transitions from the antiferromagnetic

ground state to other excited states including the ferro-

magnetic excited state at 6nite temperatures.

Fio 8 Plot I(Q) versus kro for
the ferro- and antiferroinagnetic 1
states Q=O, QI, Qs, and Q, . The 8
%atson and Freeman curve in Fig. 3
is assumed for g,((g}/g,((0}.
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Let us now examine the diGerences in the magnetic
ordering patterns as a function of g,r(g). Figure 4
shows the case where g,r(g) is constant, while, in Fig.
5, the g dependence of the g,r(g) resembles that of
Overhauser. In those two cases, the patterns are
essentially the same. In regions where 0&k&u&1.7,
4.4 &kgu &5.3, etc., the ferromagnetic state appears. If
the value of k&u increases gradually from 1.7 to 4.4,
the antiferromagnetic states A1, A2, A3, A1, and A2
will appear one by one in the given order until, finally,
the second ferromagnetic region follows. After the
second ferromagnetic region, we observe again the anti-
ferromagnetic states A2 and A3, and so on.

When the value of 8 involved in g,y(q) increases, the
range of the interaction g,r(g) becomes narrower, and
ferromagnetic regions tend to dominate over other
states while the antiferromagnetic states gradually
diminishes. This tendency is clearly shown in Figs. 6
and 7, and, finally, antiferromagnetic regions disappear
completely for essentially all k&u in Fig. 8, where the
g.&(g) simulates the one given by Watson and Freeman.
As is seen in Fig. 3, this g,r(q) falls off very rapidly
and is effectively equivalent to the g,r(g) assumed by
Kasuya. '

So far we have compared the total energies of the
four distinct states Q to decide which one of them should

appear as the ground state at a particular k~u value.
Although those four states are energy extrema, we are
not yet certain if they are energy minima or maxima
in the vicinity of the pitch parameters Q. To check
the relative stability, we have calculated, in the case
of constant g.~(q), the expression on the left of the
inequality (4.20) or (5.8), and illustrated the regions
where this condition is satisfied in Fig. 4. As is seen
from the results, the relative stability condition gives
essentially the same results as the energy calculation,
suggesting that the relative stability condition alone
might give fairly complete information as to which of
these four states becomes the ground state.

If this is the case, we might argue that the magnetic
structure of the present system is intimately related to
the Fermi surface through a mechanism which resembles
the Kohn anomalies in spin-wave spectra. The reasons
are as follows: When the values of kpu is small, ferro-
magnetism is stable and all antiferromagnetic states
become unstable. As the value of k~u increases, how-

ever, the antiferromagnetic states A1, A2, and A3 ap-
pear one by one in the given order. The k&u values where
the energy curves cross over and the change in the
magnetic structure which takes place in Fig. 4 can be
predicted by the simple relation k& ——z,*/2 or a/2
without the energy calculation. At k&=gK' OI gK the
expression on the left of Eq. (5.8) or Eq. (4.20)
diverges, and, in the k&u region just beyond the diver-
gence, the magnetic structure of the system changes to
that of the state Q; to which the reciprocal lattice
vector x* or x belongs.

As the Fermi surface deforms from the free-electron
sphere, the value of k~ will change, and, hence, the
regions where the relative stability condition for a par-
ticular state is satisfied will change. Consequently, we
may find changes in the magnetic structure of the sys-
tem.

As seen in Fig. 4, this simple criterion does not work
so well for large kgu values even though the relative
stability condition still reproduces the general tendency
of the magnetic structure found by the energy calcula-
tion. There are also some exceptions such as the region
3.1&k+u&3.8, where the relative stability condition
predicts erroneously ferromagnetism even though anti-
ferromagnetism is preferred energetically.

If the g,r(g) decays with increasing q, the antiferro-
magnetic regions obtained from the stability condition
(5.11) becomes wider while the energy calculation
tends to narrow and finally diminish the antiferromag-
netic regions. With a decaying J,y(g), therefore, the
relevance of the Fermi surface to the stability of anti-
ferromagnetic states becomes obscure, and in the
Kasuya limit, no relation will remain because anti-
ferromagnetism no longer appears. On the other hand,
both the relative stability condition and the energy
criterion yield wider regions for the stability of the
ferromagnetism suggesting a more intimate relation
between the Fermi surface and the ferromagnetic
stability.
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