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Calculations of the coefficient of ¢? in the expression for the energy e of a long-wavelength spin wave
have been performed for a model of a ferromagnetic metal with short-range particle interactions in the
low-density limit. A single s-like energy band of tight-binding form is considered in a face-centered cubic
crystal. First- and second-neighbor interaction integrals are included in e(k) as arbitrary parameters. In
contrast to previous work, the effective electron interaction which enters the spin-wave calculation is not
the bare potential, but is closely related to the two-particle ¢ matrix. It is found to be possible to satisfy
the spin-wave stability criterion for the ferromagnetic state as well as the #-matrix criterion for the occurrence
of ferromagnetism at reasonably low particle densities for a wide range of values of the band parameters,
and for interaction strengths of the order of the bandwidth.

I. INTRODUCTION

T is now well understood that the itinerant electron
theory of ferromagnetism predicts the existence of
spin waves as low-lying excitations in a ferromagnetic
metal when proper account is taken of electron correla-
tion.! However, the computation of spin-wave energies
is still quite difficult and requires the use of simplified
models. It follows from general considerations that
when the wavelength of a spin wave is long, its energy
E must be related to the wave number ¢ by

E=Dg, (1.1)

in which D is a constant. Experiments have adequately
confirmed the validity of this expression for ferromag-
netic metals,? and values of D have been determined in
numerous cases.

We shall focus our attention on the calculation of D,
this calculation being considerably easier than that of
the entire dispersion relation. Edwards has recently
given an exact general expression for this quantity
which is valid for arbitrary band structure and for any
assumed interaction between electrons.? This expression
cannot be evaluated practically in the general case, so
we shall discuss here a particular model for which
definite results can be obtained.

This model considers only a single energy band, with
electrons which interact only when they are on the
same lattice site. The model is precisely defined by the
Hamiltonian

H= ;e(k) Gk‘,TCk,—f— VOZ”“ i),y (12)
o 7

where e(k) is the band energy, the ¢y, e, are creation
and annihilation operators for a Bloch state of wave
vector k and spin o; Vy is the assumed matrix element
of the electron interaction, and the ;) are the
number operators for electrons with up (down) spin in
localized (Wannier) states on lattice site R,.

1 For a critical review of itinerant electron theory, see C. Herring,
in Magnetism, edited by G. Rado and H. Suhl (Academic Press
Inc., New York, 1966), Vol. 4.

2T, G. Phillips and H. M. Rosenberg, Rept. Progr. Phys. 29,
285 (1966).

3 D. M. Edwards, Proc. Roy. Soc. (London) A300, 373 (1967).
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This Hamiltonian has been studied by many authors.
A few basic references are listed below.#5 Equation
(1.2) is certainly a gross oversimplification if applica-
tions to real materials are contemplated. It does, how-
ever, furnish a situation in which many approximation
schemes which may be applied to actual metals can be
tested by comparison with exact results for the model.
In addition, it is possible to extend the model either by
including other bands, or by extending the range of the
electron interaction to include nearest-neighbor lattice
sites, while retaining some of the solvable characteristics
of the simple expression.”

The properties of the eigenstates of the Hamiltonian
(1.2) have been the subject of considerable controversy.
In the next section, we review some of the discussions
concerning the possibility of a ferromagnetic ground
state, with emphasis on techniques which are applicable
when the density of particles is low. One of the major
objectives of this paper is to attempt to answer the
question as to whether the ferromagnetic state of the
system can be, in the low-density regime, stable against
spin-wave excitations. We answer this question affirma-
tively through the procedure of making an explicit
numerical calculation of D for a specific model of a
ferromagnetic metal. The essential results of Edwards’s
theory, on which our calculations are based are also
summarized in Sec. II. The model we employ is de-
scribed in Sec. III. The numerical computations and
their results are presented in Sec. IV. In Sec. V, certain
approximations made in the calculations are evaluated,
and shown not to lead to serious error. The conclusions
are summarized in Sec. VL.

II. SPIN WAVES AND THE # MATRIX

The question as to whether, for arbitrarily strong
interaction strength V,, the Hamiltonian of Eq. (1.2)
possesses a ferromagnetic ground state has provoked
much discussion. Nagaoka showed, for the case of a
nearly half-filled band, which was of the simplest
tight-binding form, that for some lattices and in the

4 J. Hubbard, Proc. Roy. Soc. (London) A276, 238 (1963).

6 J. Kanamori, Progr. Theoret. Phys. (Kyoto) 30, 275 (1963).

6 M. C. Gutzwiller, Phys. Rev. 134, A923 (1964).
7]. Callaway, Phys. Rev. 140, AG18 (1965).
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limit Vg—c0, a ferromagnetic ground state is obtained.?
Edwards has, however, expressed doubts as to the
generality of Nagaoka proof: Is it actually restricted to
the case of only one electron more or less than required
to give a band exactly half-full?® Penn'® and Alexander
and Horowitz!! have found that configurations with
magnetic order, but of a nonferromagnetic type can, in
some ranges of the interaction strength, be the ground
state of the system when the energy of this state is
evaluated in the Hartree-Fock approximation.

In this work we study the properties of the system
when the density of particles is low. In this limit,
{-matrix techniques can be applied,*” and it has been
shown that the paramagnetic state of the system will
be unstable with regard to an unsaturated ferromagnetic
state provided that a certain inequality is satisfied

G(er) 21, (2.1)

where G(er) is the density of states at the (paramag-
netic) Fermi energy and /, is the low-energy limit of a
two-particle /-matrix element defined by

b= lim ((EK), (2.2)
t(Ea K) = VO[]- - VOQ(E7 K) ]—1: (23)

S(E,K)

0 [AEE) e WK/ o]

= (2n)? E—e(K/2+k) —e(K/2—k) k.

(2.4)

Here n(x) is a unit step function. The integral is
restricted to values of the wave vector such that states
K/2+k and K/2—k are both unoccupied.

The ¢-matrix method furnishes an exact low-density
treatment of a system of fermions with short-range
repulsive interactions in the following sense: If ¢ is the
scattering length associated with the interaction, the
¢ matrix gives correctly all the terms in the total energy
of the system of order ks% krfe, and kr'a®. Terms of
higher order than ks?(kra)? are present in the ¢ matrix,
but the complete perturbation series for the energy
contains additional terms which are not included in
the ¢ matrix.

The first interaction term in the total energy, that of
order kr?(kpa) may be found correctly by neglecting K
and E in (2.4). In this case,

G(0, 0) =—31(er), (2.5)
where
8 [®-al, [ G
I(er) = (21r)3/ o P fF = de. (26)

8Y. Nagaoka, Phys. Rev. 147, 392 (1966).

°D. M. Edwards, J. Appl. Phys. 39, 481 (1968).

10 D. R. Penn, Phys. Rev. 142, 350 (1966).

1S, Alexander and G. Horowitz, Phys. Rev. 164, 642 (1967).
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We may, in the same limit, allow e to approach zero in
Eq. (2.6):

G(e)

I(ep)—I(0) = / de.

]

I(0) is the average value of 1/e over the entire band. It
is, however, useful to retain the ez dependence in Egs.
(2.5) and (2.6) since the use of this G appears to give a
rather good approximation to the total energy, at least
in the case of a parabolic band, at higher densities
where the calculation is more complicated.’? Use of the
exact expression for the Green’s function § [Eq. (2.4)]
enables one to obtain correctly the second interaction
term in the total energy, which is of order ks?(kra)?.
The principal physical effect incorporated in this term
is exclusion: The interaction of two particles in the
system is subject to the restriction that they can scatter
only to unoccupied states.

Equation (2.5) leads to the following approximate
expression for f:

to=Vo[14+3Vol (er) 17, (2.7)
which may be used in the criterion for a ferromagnetic
instability. It is particularly to be noted that when Vy
becomes large, # becomes independent of ¥V, This
result must occur, since in the limit of very large V,,
the system being described is essentially a hard-sphere
Fermi gas, in which the interaction strength is irrelevant,
and the low-density properties of the system are
described by the scattering length. It may also be
shown that in the large-V, limit, the criterion for
ferromagnetism, which then takes the form

2G(er) /1(er) 21, (2.8)
is independent of a multiplicative factor in e(k), for
example the total bandwidth, and depends therefore
only on the shape of the band.

It is possible to construct artificial band structures,
defined by postulating a density of states, in which the
criterion for ferromagnetism (2.8) is satisfied, even in
the strong form in which I(er) is replaced by I(0).
However, the question as to under what circumstances,
if any, it if possible to satisfy the inequalities (2.7) and
(2.8) for realistic band structures has not been studied
in much detail. We will return to this question below
in Sec. IV.

An additional criterion for ferromagnetism is fur-
nished by the condition that the ferromagnetic state
must be stable with result to the formation of spin
deviations. This can be conveniently expressed by the
requirement, with regard to Eq. (1.1), that D must be
greater than zero. Calculations of spin-wave energies
based on the Hamiltonian of Eq. (1.2) have been made

12 J. Callaway and R. K. M. Chow, Phys. Rev. 145, 412 (1966).
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by several authors.3%¥-1 These calculations are quite
easy if the random-phase approximation (RPA) or an
equivalent is used, and they yield the result

D(RPA) = (1/6n) Lij«» (V2% (k) —2 | Ve(k) |2/Vop}.
(2.9)

The superscript (0) on the summation indicates that
only states occupied in the ground state (here con-
sidered to be the completely ferromagnetic state) are
included in the sum. The quantity # is the number of
electrons in the system (#<2N, where there are N
lattice sites), and p=n/N.

This result has some desirable properties: For in-
stance, ferromagnetism will not be obtained for an
exactly filled or half-filled band, in agreement with
Nagaoka.® However, except in these cases, the ferromag-
netic state will always be stable if V; is sufficiently
large. This result is inconsistent with the results of the
t-matrix approach we have previously described. This
inconsistency is serious, and would be expected to lead
to an overestimate of spin-wave energies for all V. We
are lead to the conclusion that Eq. (2.9) must be wrong,
and that probably, at least at low densities, V, in Eq.
(2.9) should be replaced by f.

Roth has shown that Eq. (2.9) can be improved by a
variational method, in which a trial wave function is
assumed for the ferromagnetic system containing a spin
deviation.!® This wave function makes some allowance
for electron correlation beyond that incorporated in the
RPA. We will, however, work with Edwards’s theory of
spin waves in ferromagnetic metals in which, as was
mentioned above, an exact general expression for D
is obtained.* When applied to Eq. (1.2), Edwards’s
theory yields an expression for D resembling Eq. (2.9)
except that Vj is replaced by a k-dependent effective
interaction U (k) which reduces to # as it should in the
limit of a low-density system.

Edwards’s theory yields the following expression for
D for the one-band Hamiltonian of Eq. (1.2):

D=(1/6n) g("’ {V2e(k) —2 | Ve(k) [2/U (k)
—2>"0 T(k, k') Vee(k) - Vi'e(k) }. (2.10)

As in regard to Eq. (2.9), the superscript (0) indicates
that only occupied states are included in the sum.
U(k) is the k-dependent effective interaction which
will be studied in detail below. The third term represents
the contribution of so-called nondiagonal diagrams.

18T, Tzuyama, Progr. Theoret. Phys. (Kyoto) 23, 969 (1960).

4 F, Englert and M. M. Antonoff, Physica 30, 429 (1964).

5 A, K. Rajagopal, H. Brooks, and N. R. Ranganathan, Techni-
cal Report No. ARPA-11, Harvard University, 1964 (unpub-
lished) ; A. K. Rajagopal and H. Brooks, in Proceedings of the In-
ternational Conference on Magnetism, Nottingham, 1964 (The
Instsitute of Physics and The Physical Society, London, 1965),
p. 55.
6T, Roth, J. Phys. Chem. Solids 28, 1549 (1967); J. Appl.
Phys. 39, 474 (1968).
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This will be estimated subsequently, and shown to be
entirely negligible for the densities of interest here.

The effective interaction U(Z) is given in the low-
density limit by

Uk)=(1/N) 2@ fk,p),  (2.11)
with
f(&, p) =Vo{1+(Vo/N) X' [er+e(k+p—q)
+e(q) —e(k) —e(p) T (2.12)

It is particularly to be noted that the sum on q in Eq.
(2.12) includes only unoccupied states (we use a prime
on the summation to indicate this), while the sum on p
in (2.11) is restricted to occupied states. In this
expression er is the Fermi energy in the ferromagnetic
state.

It is easy to show that in the low-density limit
f(k, p) reduces to f, the low-density limit of the ¢
matrix. This occurs because in the low-density region
e(q), which refers to an unoccupied state, must be
larger than e(k), e(p), or er; all of which refer to
occupied states and also e(k+p—q)~e(q). Then

f(&, p) =Vo/[1+3Vel (0) J=t. (2.13a)

Furthermore, it will be a reasonable approximation, for
densities which are not too large, to replace I(0) by
I(er), just as was done in Eq. (2.5):

(&, p) =Vo/[1+5Vol (er) ].

We have examined the adequacy of this approxima-
tion for f(k, p) in two cases in which the results of the
calculations to be described below, and which are
based on Eq. (2.13b) turn out to predict spin-wave
stability (D> 0). The method of doing will be described
in Sec. V; we will, however, anticipate the result here.
The corrections to Eq. (2.13) resulting from exact
evaluation of Eq. (2.11) are not large at low densities,
and (at least in the cases investigated) are such as to
favor the stability of the ferromagnetic state. In
addition, the corrections due to the inclusion of the
third term in (2.10); that is, the portion involving
T'(k, k) appear to be completely negligible.

III. MODEL BAND STRUCTURE

We will now describe the model band structure on
which the computations of D are based. We assume an
s-like band in a face-centered cubic lattice, including
second-neighbor interactions. This band is described
by the function
E(k) = Ey+E; (cos3k.a costkya

-+ cosik.a cosk.a+ costk,a costk.a)
+ Ey(coskza+ coskya+ cosk.a). (3.1)
Equation (3.1) contains three arbitrary coefficients
E,, E,, and E, in addition to the lattice parameter a;

(2.13b)
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TasLe I. Critical points of the energy band [Eq. (3.1)]. P; indicates that the saddle point is a minimum in one direction and a
maximum in two; P» refers to the opposite situation. 2 or 2’ refer to saddle points located at points of the type k= (2x/a) (1, y, )
or k= (x/a) (0, 3, z), where y=(1/7) cos[1/(4R+1)]; 2= (1/x) cos[—1/(4R+1)], and those obtained by symmetry from the ones

listed.
R X(1,0,0) W(1,1%,0) L3, 3, %) r(o,0,0) ZorZ
—0.5<R<0 Min Saddle (P:)  Saddle (Pi) Max No
0<R<0.15 Saddle (P;) Min Saddle (Py) Max Yes (12P,)
R>0.25 Saddle (Ps) Saddle (P1) Min Max Yes (12P;)

however, only one parameter is essential. This is the
ratio R of second- to first-neighbor interactions,

R=E,/E,. (3.2)

E, may be chosen so that E(k) =0 at the minimum of
the band, and then when R is introduced, D depends
explicitly on E; only as a multiplying factor (in the
limit of large V,).

Attention is focused on the face-centered cubic
lattice and the energy band (3.1) for the following
reasons. If E;>0, and R is small in magnitude, the
density of states has a peak in the lower portion of the
band which results from the presence of closely spaced
critical points. If R=0, there is actually a logarithmic
singularity in the density of states, since there is a line
in the zone face connecting W and X on which the
energy is constant. (The Brillouin zone for the face-
centered cubic lattice is shown in Fig. 1 for reference.)
A peak in the density of states near the bottom of an
energy band favors ferromagnetism for low particle
density. By including the parameter R we avoid the
computationally troublesome and physically unrealistic
singularity; by varying it we can shift the position of
the band minimum and the other critical points.

This position of the critical points is described as a
function of R for R in the range from —0.5 to +0.5
(with R=0 excluded) in Table I. Varying the number
and position of the critical points through changes in R
alters the density of states. This gives us a convenient
method of investigating the effect of changes in band
shape on the tendency to ferromagnetism.

Calculations somewhat similar to those we describe
here have been performed for a tight-binding band in a
simple cubic lattice by Katsuki and Wohlfarth.*” The
band they considered is a special case of Eq. (3.1)
obtained by setting E;=0. The present work refers to a
situation of greater physical significance; since Eq.
(3.1) is a rough approximation to the band structure of
nickel near the Fermi energy although real nickel has
many addition complications, principally low-lying d
bands. In addition, we include the effect of shape
alterations, and compute the effective interaction
rather than treat it as an arbitrary parameter.

In addition to the parameters contained in the

17 A, Katsuki and E. P, Wohlfarth, Proc. Roy. Soc. (London)
A295, 192 (1966).

formula for the energy band [Eq. (3.1)], the inter-
action strength V, enters the theory as an arbitrary
parameter. However, when we express the band energies
in terms of E;, we may also introduce the dimensionless
ratio Vo/E;. Since the width of the energy band is
roughly 4F;, this amounts to measuring the interaction
strength in terms of the bandwidth. We will, however,
eliminate this parameter explicitly by going to- the
strong-interaction limit: V>4 E; in which D becomes
independent of V. Although this situation is probably
unphysical insofar as values of V, appropriate to real
metals probably do not satisfy this condition,® its use
will enable us to answer the question of principal
interest here: whether for low densities, the ferromag-
netic state can be stable with respect to spin-wave
excitations for any interaction strength. Anticipating an
affirmative answer to this question, it will also follow
that the ferromagnetic state is stable for V,/E; greater
than some minimum value, which can be estimated
rather readily.

IV. COMPUTATIONAL PROCEDURES
AND RESULTS

In Eq. (2.10) and similar formulas, we replace

(/W) E-[e/ (7] [ @,
k
where Q is the volume of the unit cell (3a® for the face-
centered cubic lattice). Also, let
e=n/N.

The quantity p is the number of particles per lattice
site: We refer to p as the particle density from here on;
and we consider p<K1. We drop the third term in Eq.

(4.1)

ke

F16. 1. Brillouin zone for the face-centered cubic lattice. Points
and lines of symmetry are indicated.
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(2.10), which becomes
D=[2/6(2r)%]
2| Ve(k) |2

X / & [vze(k)— TS

In this equation, the unit step function has the effect of
ensuring that only occupied states are included. We
also have

U =[%/(n)7] [ @ aler—e(®) 1/, D). (43)

] ler—e(k)]. (4.2)

In the strong-interaction limit Vi>>E;, we have
1 @
fk,p) (2m)°

. nle(q) —er]
X /dqep+e(k+p—q)+e(q)—e(k)—e(p) '

For future use, we note some useful symmetry
properties of U(k) and f(k, p). These results are not
restricted to. the large-V, limit, but apply whatever is
the value of V,. Let « be any operator in the crystal
point group (in this case the cubic point group). We
know that e(ak) =e(k). It follows that

Ulak) =U(k),
f(ak, ap) = f(k’ p):
flak, p) = f(k, &7'p).

The computation of U (k) is seen to involve a double
integral; one part over the unoccupied portion of the
Brillouin zone, and the other involving the occupied
nortion. In the rigorous evaluation of f(k, p), it is
aecessary also to include the umklapp processes. U (k)
must be determined throughout the occupied portion of
the zone so that the integral for D [Eq. (4.2) ] may be
performed. This calculation must be repeated for each
value of the Fermi energy er and each value of the
parameter R considered. However, the evaluation of
U(k) for a single value of k and of the parameters er
and R requires a very substantial amount of computing
time even for a relatively small mesh in the Brillouin
zone. We have, therefore, adopted the procedure of
approximating f(k, p) as follows:

1/f(k, p) =31 (er)

in the limit of large V. The quantity I (er) is defined by
Eq. (2.6). The approximation becomes exact as ez—0.
This approximation enables the evaluation of D to be
carried out accurately in other respects for a wide
range of the parameters ¢ and R. Subsequently, we
have checked the validity of Eq. (4.6) for a small
selection of values of the parameters (in the region in
which the ferromagnetic state is predicted to be stable).
Those results will be described in more detail in Sec. V;
however, the conclusion is that use of Eq. (4.6) is good
to about 10 or 15% in the determination of U(K) for

(4.4)

(4.5)

(4.6)
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densities in the interesting range. In addition the

accurate value of U is larger than the approximate

value: That is, the corrections favor ferromagnetism.
Use of Eq. (4.6) gives

U (k) =2p/1(er). (4.7)
This result is independent of k. We thereupon obtain

D=[0/6(2r)%]
% / FHLVe(k) — (I (er) /) | Ve(k) [ZJn[er—e () .
(4.8)

We have computed D for a selection of values of R;
and for a given R, as a function of Fermi energy ep.
Since the Fermi energy is determined by the particle
density through

p=[2/(20)7] [ @k aler—e(i)],

this amounts to determining D as a function of particle
density. At the same time, it is possible to check whether
the t-matrix criterion for ferromagnetism in the strong-
interaction limit, Eq. (2.8) is satisfied. Since this
pertains to unsaturated ferromagnetism, we would
expect that it would be somewhat easier to satisfy Eq.
(2.8) than the spin-wave stability criterion; since
I(ep) is a decreasing function of ep, this means that
Eq. (2.8) would be satisfied at lower densities.

Calculations were performed by numerically inte-
grating Eq. (4.8) using a cubic mesh inside 1/48 of the
Brillouin zone. Each mesh point was assigned an
appropriate weight according to symmetry. The com-
puter program was constructed so that I(er) and
G(er) were determined at the same time. The accuracy
of the numerical calculations is determined by the
number of mesh points at which the integrands were
evaluated. It was found to be feasible to use a mesh of
unit cubes in which the point X (see Fig. 1) was as-
signed coordinates (64, 0, 0). This mesh contains
24 225 nonequivalent points in the basic 1/48 of the
zone. This mesh is not adequate for very small values of
R (| R| <0.01) and some calculations were also made
in these cases using a mesh containing approximately
8 times as many points in which X was assigned
coordinates (128, 0, 0).

Some indication of what can be accomplished with
the mesh size chosen is indicated in Fig. 2, where the
density of states is shown for R=0.1, as constructed
using the mesh containing 24 225 points. The density of
states is essentially a differential quantity and tends to
fluctuate significantly if an inadequately large number
of mesh points are used. While some statistical noise
obviously is present in the results, the critical points
show clearly. An integrated quantity, such as I(er)
should be given quite adequately. It was found to be
possible to satisfy both criteria for ferromagnetism at
reasonably low densities (p<0.15) for R within each of
the three ranges of values listed in Table I, The value

(4.9)
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F16. 2. Density of states for a tight-binding s band in a face-
centered cubic lattice [Eq. (3.1) ], with R=0.1. These results were
obtained by numerical sampling, using 24 225 points in 1/48 of the
Brillouin zone. The position of critical points in the band structure
is indicated.

of the density for which the spin-wave stability criterion
is shown is in Fig. 3. These results are in accord with
expectations based on Ref. 7, and are summarized
below.

(1) There is a minimum value of p below which
(for each R) it is impossible to satisfy either criterion.
(2) The criteria become satisfied for values of e which
lie near a peak of the density of states. (3) The spin-
wave stability criterion is, in each case we have in-
vestigated, satisfied for a higher value of er [and smaller
I(ep)] than is Eq. (2.8). (4) If we turn the band
around, that is, choose E; in Eq. (3.1) to be negative so
that the band minimum is at T, it is found to be
impossible to satisfy either criterion until somewhat
higher densities are achieved. The difference illustrates
the fact that ferromagnetism at low densities is favored
by a peak close to the bottom of a band. However, the
case of R=0, in which there is a logarithmic singularity
at e=0 (with E;>0), is somewhat anomalous. We do
not find this to be a particularly favorable case; and in
fact the singularity in G(er) causes I (er) to diverge as
e#—0 so that ferromagnetism is not obtained at very
low densities in this case either. (5) If the limiting
value of I(er), I(0), is used in Egs. (4.8) and (2.8), it
is still possible to satisfy the ¢-matrix criterion for a
ferromagnetic instability for some values of er and R,

Fic. 3. The lowest value of the particle density for which the
spin-wave stability criterion (D>0) is satisfied is shown as a
function of R. The changing position of critical points with R (see
Table I) is seen to produce substantial changes in this value.
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4.0
;1.35
3.0 1.30
A5
1.0F .10
.05

o .35 A 15 0
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1-.10

F16. 4. Curve (a): I(ep) is shown as a function of ey for R=0.1
(left-hand scale). Curve (b): Ratio (D/v) of spin-wave effective
mass to band effective mass at W is shown for R=0.1 as a function
of ep as determined from detailed numerical calculations. Curve
(c): Same as (b) except that the approximate formula of Eq.
(4.11) is used.

but the spin-wave stability criterion apparently can not
be satisfied. The value of I obtained in this way is
large compared to a reciprical bandwidth. This situation
results from the dominance of the low-energy' peak in
the density of states in the computation of 7(0). That
a similar conclusion holds in the case of a tight-binding
s band in a simple cubic lattice may be deduced from
the calculations of Katsuki and Wohlfarth? using the
value of I(0) given in Ref. 7 for this case.

The value of the coefficient D can be compared with
the corresponding quantity for the electron energy
band. In the case of the random-phase approximation
one has,'8 for a parabolic band for which e=~k?,

D/y=1—4ex/5Vep. (4.10)

Our approach leads to a similar result for a parabolic

2.5

2.0

V min

0.0 1 1 L 1

F1c. 5. Ratio of minimum value of the interaction strength
Vmin, to the bandwidth W, for which the spin-wave stability
criterion is satisfied is shown as a function of particle density for
R=0.1.

8 C, Herring, in Magnetism, edited by G. Rado and H. Suhl
(Academic Press Inc., New York, 1966), Vol. 4, p. 370.
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band in which ¥} is replaced by 2/I(er):
D/y=1—2I(er)er/5p.

Equation (4.11) will be only a rough approximation in
our caselsince the energy band [Eq. (3.1) ] with £;<0/s
not parabolic for the energies of interest to us. Quantita-
tively, Eq. (4.11) furnishes a reasonable estimate of
the value of e at which D=0, but the values of the
ratio D/y tend to be high by a factor of 2, if we take vy
from the behavior of ¢(k) at the band minimum. In
Fig. 4 we show as an example, D compared with the
density-of-states effective mass at the symmetry point
W (which is the band minimum) for the case R=0.1.
I(er) is also shown.

We can also use our results to determine the minimum
value of V, such that the system is stable against
excitation of spin waves. This is easily done using Eq.
(2.13b) to determine f(k, p). Let us denote this value
of Vo by Vmin. Since by definition, if V= Vi, D=0,
we have from Eq. (4.2)

Vmin - g fd3k [ Ve(k) P ﬂ[éF‘f(k)]
143V mind (er) p [d% Vie(k) nler—e(k) ]

This equation is easily solved for Vpmin. It is convenient
to express the results in terms of the dimensionless ratio
of Vmin to the width of the band W. For example, if
0<R<0.25, the bandwidth W=F;(4+42R) and for-
mulas for W for other values of R are easily obtained.
Typically Vo/W is a number reasonably close to 1.
Results in one interesting case (R=0.1) are shown in
Fig. 5.

V. ADEQUACY OF APPROXIMATIONS

(4.11)

. (4.12)

In this section, we report the results of an investiga-
tion into the adequacy of two of the principal approxi-
mations made in these calculations. We will first
consider the neglect of the k and p dependence of
f(k, p) and second, the omission of the terms involving
T(k, k') in Eq. (2.1).

In order to study the first of these questions, we have
used Eq. (4.4) to calculate U (k) for the case of R=0.1,
e#=0.15 and R=0.05, ¢=0.12. These are situations in
which ferromagnetism is predicted by the approxima-
tions discussed previously. The calculation of f(k, p) is,
relatively, quite lengthy because of the necessity to
take account of umklapp processes. These were in-
cluded; however, as a result most of the computations
had to be done with a mesh containing only 89 points in
1/48 of the Brillouin zone, in which the point X is
assigned coordinates (8, 0,0). A few values of f(k, p)
were determined using a mesh based on X = (16, 0, 0).
The essential results were the following: f(k, p) turns
out to be slowly varying in both k and p. When U (k)
is calculated from f(k, p), the values of this function
for the occupied k in the mesh did not vary from the
average value by more than 15% in any instance. The
average of U(k) obtained from D as finally computed
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corresponds to an effective value of I(er) smaller by
about 109, than that obtained from Eq. (2.6) using
the same size mesh for the integration. It appears,
therefore, if the effective interaction is computed
exactly according to Edwards’s theory, the result
tends to favor the stability of the ferromagnetic state at
low densities—at least in this example—with respect
to our approximation. This result does not apply to a
one-dimensional system where use of I(er) exaggerates
the tendency to ferromagnetism. Likewise, use of
I(ep) will probably not be valid at high densities. In a
high-density limit, corresponding for instance to a
nearly half-filled band, an alternative expression must
also be used for U (k)3

We now consider the correction due to the inclusion
of the third term in Eq. (2.1). Let the contribution
from this be denoted by AD:

AD=—(1/31) 3O T(k, k') Vie(k') - Vie(k). (5.1)

In the low-density limit, Edwards obtains for this
expression®

AD=—(1/3n) g;“’ L/ k) /UK UK ]
X Vie(K) - Vie(K'), (5.2)

where f(k,k’) and U(k) are the functions previously
defined. Edwards points out that AD would vanish by
symmetry if f(k, k’) were constant. We have estimated
this term using the values of f(k, p) whose computation
was described above. We did not carry the evaluation
through to completion because it became apparent that
its contribution must be less than 19, of the second
term in (2.10) for the parameters considered (R=0.1,
er=0.15). This results because of the large amount of
cancellation between positive and negative terms in Eq.
(5.2), which in turn occurs because f(k, p) varies only
slowly. We can conclude, therefore, that the neglect of
AD is an excellent approximation for the low-density
region.

VI. CONCLUSIONS

We have numerically evaluated the coefficient of ¢ in
the expression for the energy of a long-wavelength spin
wave in a model ferromagnet of face-centered cubic
lattice structure with a single energy band and short-
range interactions. The calculations were performed
according to Edwards’s theory, in the low-density
limit. It was found to be possible to satisfy the criterion
for stability against spin-wave excitations for reasonable
values of the band parameters and, at the same time,
the f-matrix criterion for the occurrence of ferromag-
netism. Values for the spin-wave effective mass are
obtained which are reasonably consistent with those
obtained in simpler theories (RPA with a parabolic
band) provided that the unscreened contrast inter-
action Vy is replaced by an expression based on the
¢ matrix.



