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10' while the right-hand side is less than 10'. In fact
the right-hand side of Eq. (A1) can be neglected com-

pared to the left-hand side until the k values are
approximately 10' cm '. Thus in the vicinity of H;=
co/y Eq. (2a) is a valid approximation. For the acoustic

mode near P;=co/y, Eq. (A1) yields approximately

(P2 P 2) /P 2 —g2/$ 2

Since j a'/k032
~

025X10 ', it is permissible to let
k'= koP in the vicinity of H, =co/y. This gives Eq. (2b).
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We investigate the eGects of the mean free path on the spin susceptibility of almost ferromagnetic metals.
Using these results, we calculate the low-temperature specific-heat contribution of the spin fluctuations.
While the term linear in temperature T is unaffected by the mean free path, we find that the T'ln T contri-
bution is rapidly modified by impurities, in contrast to the phonon case.

I. INTRODVCTION

S PIN Ructuations in almost ferromagnetic fermion
systems have recently received very much atten-

tion. Such systems have an appreciably enhanced static
spin susceptibility, indicating that the exchange inter-
action is important but not quite strong enough to lead
to a ferromagnetic instability. For example, it was
shown by Berk and Schrieffer' that in metals like Pd
spin Quctuations lead to a change in the effective mass
and can suppress superconductivity. Furthermore,
Doniach and Engelsberg' made the important observa-
tion that in liquid He' spin fluctuations are responsible
for the deviations of the temperature dependence of the
speci6c heat from a Sommerfeld law. In Ref. 1 as well

as in Ref. 2 it was furthermore shown that one can
calculate the self-energy of the electrons due to exchange
scattering in a simple fashion by formally introducing a
propagator' for the paramagnon or spin Ructuations.
There are several common features between the self-

energy due to paramagnons and the one due to phonons.
However, as we show here, these similarities hold only

in the limit of infinite mean free path, which is the only
case for which exchange-enhanced spin fluctuations
have been studied up to now. Since scattering centers
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'We will use the terminology "propagator, " despite the fact
that paramagnons are not elementary excitations of the system,
and note that this is permissible in the spirit of the RPA.

are present in most physical situations, we want to
study their inhuence on spin fluctuations in this com-
munication. The physical consequences for such
quantities as the electronic self-energy and the elec-
tronic specific heat are discussed.

Our aim is to study first how the paramagnon
propagator changes if a mean free path due to scattering
centers is introduced. This is done in the next section.
It turns out that for momenta q such that ql«1, where l
is the electronic mean free path, the paramagnon propa-
gator changes drastically and becomes one which is of
the diffusion type. The calculations are done by a
standard vertex renormalization procedure. In Sec. III,
we show how this change in the paramagnon propagator
for q/«1 can inhuence various physical quantities by
studying the specidc heat and the effective mass due to
spin fluctuations.

It is found that the effective mass at zero temperature
and hence the term in the specific heat which is linear
in T are practically independent of mean free path.
The contribution to the speci6c heat which is of the
form T' lnT, however, is replaced by T' ln(T+T; ~),
where T; p is of the order of the impurity scattering
rate times a reciprocal susceptibility enhancement fac-
tor. Thus, at low temperatures, this correction term
goes over into a T' law, which has the same temperature
dependence as many other contributions. We contrast
this situation to the phonon case, where the T' ln T con-
tribution to the electronic specific heat is not sensitive
to mean free path. A magnonlike contribution of the
form T'~' is found for temperatures below T; ~, whose
coeQicient is proportional to the three-halves power of
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the impurity density. Our present calculations are con-
sistent only to lowest order in the density and cannot
resolve the existence of such high-order terms in the
specific heat.

+ +

II. EXCHANGE-ENHANCED SPIN SUSCEPTI-
BILITY FOR FINITE MEAN FREE PATH

In this section, we study the exchange-enhanced spin
susceptibility in the presence of randomly distributed
scattering centers. We will sometimes call this quantity
the paramagnon propagator, keeping in mind that
rigorously their analytic properties are slightly different.
The calculations are done by applying a standard
vertex renormalization procedure (see Ref. 4). We
note that the spin susceptibility at zero temperature,
y(1, "o), can be written in terms of diagrams as shown
in Fig. j. Here solid lines denote the electron Green's
function G(p, "),03 denotes the third Pauli spin matrix,
and A(q, coo) is a renormalized vertex which in the case

x (q, e.)
2p, g

-T" Wp, u& I P+ ls+++o W

F&G. 1. Diagram for the calculation of the spin susceptibility.
h. (q, oro) is the renormalized o.g-vertex. Solid lines indicate electron
Green's functions.

of a free electron gas is equal to 0.3. In the presence of a
strong exchange interaction and randomly distributed
scattering centers, the vertex h(q, "0) is the solution of
an integral equation, which in terms of diagrams is
shown in Fig. 2. A solid line denotes now the electron
propagator in the presence of exchange and impurity
scattering. A dashed line indicates exchange scattering
and a dotted line scattering by an impurity. Before we
discuss this vertex equation we notice that in the
absence of scattering centers, the vertex equation leads
to the same sequence of diagrams for the susceptibility
which has been discussed by WolR5 and others in a
generalized random phase approximation (RPA) and
similarly by Izuyama et al.' Since we want to concen-
trate on the eRects of mean free path in this investiga-
tion we take a simple model for the exchange inter-

Fto. 2. Diagrammatic equation for the renormalized vertex
h. (g, cd). A dashed line indicates the exchange interaction and a
dotted line connects two impurity scattering events at the same
impurity site.

action, namely, an s-wave scattering potential denoted
by V..

Furthermore, we do not consider the self-energy due
to exchange interaction in the electron Green's function
while calculating the susceptibility. That these are
reasonable assumptions can be inferred from the work
of SchrieRer and Berk.~ Those authors showed that
this model reproduces the long-wavelength static
susceptibility which would be calculated from a Inore
sophisticated approach, including the self-energy cor-
rections. In writing down a vertex equation of the form
shown in Fig. 2 we have neglected all overlapping dia-
grams of the type shown in Fig. 3. These can be left
out because the important contributions to the corre-
sponding integrals come when the intermediate states
lie close to the Fermi surface. However, the overlapping
diagrams of Fig. 3 require that over most of the range
of integration the intermediate states lie far from the
Fermi surface. This contribution is a factor (ppl) '
smaller than the one from the corresponding diagrams
without overlap. Thus we will discard them. The argu-
ment given here is the same which applies for neglecting
overlapping impurity diagrams and overlapping im-
purity-phonon diagrams. However, it is clearly not
valid if the exchange interaction is so strong that we are
in the immediate vicinity of the ferromagnetic insta-
bility. Since the diagram t Fig. 3(a) ) can be regarded as
a reoormalization of the exchange strength V„namely,
V,'=V.t-1+0((Pp/) ')], we see that the present ap-
proach breaks down when 1—X(0)V, is of the order
(P~l) ' Here, E(0) .denotes the single spin density of
states at the Fermi surface.

4A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski,
Methods of Quantum Field Theory in Statistical Physics (Prentice-
Hall, Inc. , Englewood Cliffs, N.J., 1963).' P. A. Wol6, Phys. Rev. 120, 814 (1960); D. L. Mills and P.
Lederer, Solid State Commun. 5, 131 (1967).

6 T. Izuyama, D. J. Kim, and R. Kubo, J. Phys. Soc. (Japan)
18) 1025 (1963).
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' J.R. SchrieBer and N. F. Berk, Phys. Letters 24A, 604 (1967).

Fto. 3. Diagrams which have been left out because of their
smallness in the calculation of the susceptibility.
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We write the vertex equation of Fig. 2 in the form

~(p, ;q, )=G(p, )G(p+q, + o)

d p dpi
X o.p+zV, A(p'r or'; q) pro)

+~' IN(p —p') I'~(p' ~ q ~p) 2, (1)
d p

Here I; is the concentration of impurities and zz(p —p )
is the impurity scattering potential. Since for small
values of g we are dealing with the renormalization of
an s-wave vertex, we note that only isotopic scattering
by the impurities is important. We introduce the mean
free time r by

;i=-;L~,x(0)] I I(e) Iz d0.

dor' J(or' )

From Eq. (4) and from the fact that G(p, or) contains
only the impurity self-energy, as discussed above, it
follows that J(or; q, pro) is independent of V.. Thus, we
may identify the numerator of Eq. (6) with

dor J(or r q, pro)
(7)

where g; o"' (q, ooo) denotes up to a factor 2rtzs'E(0)
the spin susceptibility of an electron gas which contains
scattering centers but otherwise is noninteracting. With
this notation, Eq. (6) can be written in a more compact
form as

In order to solve Eq. (1),we make the following ansatz:

G(p, or) G(p+q, op+pro) Q(q, orp)

& —r '~t&i I) &0)

where we have introduced the function

J(or q orp) =
I 2zrS(0) ] '

d'p
X G(p, or) G(p+q, or+pop) 2, (4)

By inserting Eqs. (3) and (4) into Eq. (1) one obtains

do&' J(pr')
Q(q, pro) = 1—X(0)V.i, (5)

1—r 'J(or' )

H we insert this formal solution of the integral equation
into Eq. (3) and calculate the spin susceptibility
y(q, orp) with the renormalized vertex A. (p, ~o; q, orp), we
obtain

dM J(or )
x(q ) =2z '&(0)

By inspecting Eq. (7) together with the defining Eq.
(4), one notices that for infinite mean free path Eq. (8)
reduces to the usual exchange enhanced susceptibility.
Furthermore, in the limit V,=O and pro=0, Eq. (8) is
identical with the static spin susceptibility of impure
metals, which was 6rst calculated by de Gennes. ' For
the purpose of this work, we restrict ourselves to the
small frequency and small-wavelength case (cop/pp«1,

q/pr «1) but do not impose any limitations on poor and
q/. In evaluating Eq. (7) we make use of the fact that
the function J(or; q, orp) has been discussed in detail in
Ref. 8 for orle

——0, the static limit. Generalizing these
results to finite coo one obtains

znz' 1 E(or)+E(o&+orp)+q'rJ or; q, orp —— —ln
4zr'E(0) q E(or) +E(or+pro) —qj

'

where the function E(or) is defined by

E(or) = (i/2/) +sgnor (pp'+2zrzpr)» . (10)

Because of the sgn function in Eq. (10) the integration
of J(or' q, orp) with respect to op separates into three
distinct regions. For positive coo these regions are given
by (1) or( —prp, (2) —pro(or(0, and (3) io)0. In
region (2) the terms E(~o) and E(or+pro) almost cancel,
so that the logarithm is a sensitive function of Mp.

However, in regions (1) and (3) no such cancellation
occurs and the coo dependence may be neglected since
otrp/op«1. Thus in these regions J(or; q, orp) can be re-
placed by J(or; q, 0) . Furthermore, in the integral over
J(or; q, 0) we may ignore the restriction that M has to be
outside the interval —coo to 0, so that we are left with

dho J(pr; q, orp)

+i, ' ' . (11)
+" dor J(or; q, 0)

1 r'J(or; —q, 0)

The second term in Eq. (11) is readily identified as the
integral for the static susceptibility in the presence of
impurities which was calculated by de Gennes. ' Since
in the small q range under consideration there is essen-
tially no difference between this susceptibility and the
one for a free electron gas, we may replace this term by
(1).In the first term we use the fact that or/or;«1 in
that interval so that J(or; q, ~oo) can be written as

arroz' 1 i//+q+oro/zrrJ or; q, pro — —ln-. 12
4zr/lr(0) q i// q+orp/or-

With these simpli6cations the susceptibility given by
Eq. (11) can be written as

zz+zzro+ 1
x; o"" (q, orp) = 1 ——,'(I+zuo) ln

zz+izzo —1

(qr pro)
x(qr o) zs +( ) 1 ~(0) V

1—-'(il ) ln
I+zgp —1

' P. G. de Gennes, J. Phys. Radium 23, 630 (1962).

(13)
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where we have introduced the quantities u=ppp/ques,

up ——(/q) '. We note at this point that the numerator of
Eq. (13) comes from the evaluation of the particle-hole
"bubble" in the presence of a mean free path, while the
denominator is the result of the vertex renormalization,
that is, the sum over the impurity ladder diagrams. For
~p=o, the renormalization factor takes the familiar
form 1—(ql) ' arctan(ql). By substituting this result
into Eq. (8) we find for the exchange-enhanced spin
susceptibility in the presence of impurities

x(q ppo) = 2ys'N(0) a.(q, ipo)

u+iup+1
X 1——,'(iud) ln . —N(0) V,n(q, nip), (14)

@+esp —1

where n(q, o&p) is given by

Q+ iso+ 1
0.(q, o~o) =1——,'(a+imp) ln . . (15)s+ Lsp '1—

We now discuss Eq. (14) in certain limiting cases.

(a) qi))1 and qps))pip. In this case we expect that the
paramagnon propagator will strongly resemble the
propagator without impurities. Expanding Eq. (14)
with respect to I, up we obtain

7t(q, pop) =2liasN(0) [1——,'prus+i(-, 'prN —2Nup)]

X51—N(0) V, (1—s'prus) —i(-,'prN —2Nup) ] '. (16)

One readily finds that Im7t (q, a») has its maximum
va1ue at

pi= (2/m. ) (1—N(0) V.) (1——',prlp+ (2/s-) Np), (17)

and is given by

MaxI Imx(q, pop) ) =p&'N(0)/t 1 N(0) V j (18)

Thus one 6nds that a finite mean free path leads to a
shift and a reduction (or additional broadening) of
the peak in the imaginary part of the spin suscepti-
bility. The positions of the peak of Imx(q, pip) are in-

dicated in region II of Fig. (4) by a straight line.

FIG. 4. Representation of the small-frequency —small-momen-
tum region of the spin susceptibility, including mean free path.
The lower solid line indicates the maximum of the spectral
function. Note in particular that the linear (paramagnon) rela-
tionship of region II is changed to quadratic in region I: The
shaded portion of region I is referred to as a diffusion region in the
text. For convenience the scale has been greatly changed.

2»PN(0)
X(q, ~o) =

1—N(0) V, Dq' ippp
'—

with the "eGective" diGusion constant

GDp

(2o)
kg

D= —',(spies) (1—NV, ).
The peaks in Imx(q, pip) occur at oip=Dq'. The

quadratic relationship between cup and q is indicated in
region I of Fig. (4) .

It is shown in the next section that the drastic changes
seen in Eq. (20) as compared with Eq. (16) have im-
portant consequences for physical quantities such as the
electronic speci6c heat and self-energy.

III. APPLICATION TO THE SPECIFIC HEAT

One of the interesting results of the spin-Quctuation
theory is that the low-temperature specific heat of
almost ferromagnetic Fermi systems behaves as

C„(T)=,'m*P, T+qTs-in(T/e, )+.", (21)

where g is large because of the strong exchange enhance-
ment. %e now investigate the inQuence of mean free
path on this result. We will find that the term linear
in T is unaGected by mean free path while the term
T'lnT disappears at low temperatures, that is, for
2' & (r)-i(1—N(O) V.).

The situation is different in the ordinary electron-
phonon system. Although the low-temperature specific
heat takes the same form' as Eq. (21), we show that it
is unaffected by mean free path.

There is a simple physical reason for the difference
in these two systems. The peculiar logarithmic term in
C„arises because of the special momentum dependence
of the "boson" spectral function. For phonons and
paramagnons in pure metals this function depends only
on the ratio o&/k in the small frequency, small momen-
tum regime which is important for the low-temperature
speci6c heat. When impurities are introduced the
phonon spectral function still retains this dependence,
but as discussed in the previous section the paramagnon
propagator changes to an co/k' dependence. This all-
important change leads to the disappearance of the
logarithmic term for paramagnons at low temperature.

G. M. Eliasberg, Zh. Eksperim. i Teor. Fiz. 43, 1005 (i962)
[English transl. : Soviet Phys. —JETP 16, 780 i1963l].

(b) ql((1. In the long-wavelength limit we find by
expansion

X(q ~o) =21 ~'N(0) (qi)'

X&(1-NV.)(qi) -3( «) -3~:]-.
If considered as function of the complex variable cop,

x(q, o~p) has two poles on the negative imaginary pop

axis. For cop«q~p only the pole close to the real axis is
important and the other pole, which is far from the
real axis, can be neglected. This leads to a diGusion type
of equation for x(q, pip) of the form
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0IZ(PF, Pp)

Bpp P0=0

E(0) VP
p'dp'x(p', 0)+O(T ).

4PF'

(23)
Here P, is a cuto8 momentum of order PF. Equation
(23) shows that in the calculation of m* only the
static susceptibility enters. But as pointed out before
this quantity is essentially independent of mean free

We prove now that m* and hence the Sommerfeld
term in C„are unchanged by mean free path. For this
purpose we have to calculate the self-energy Z(p, pp) at
T=0 and use the connection

m*/m=1 —Re(az/app) ~„0.
Such a calculation can be performed without difFiculty
since diagrams with overlapping impurity and exchange
lines may be neglected, as discussed in the preceding
section.

Since we want to consider finite temperatures, we
write the self-energy in terms of temperature Green's
functions4 as follows:

Z(p, i40„) =iV.'TQ, G(p', i40„)
d'p

2'

Xx(p —p', i(~.—~ ) ). (22)

Here G(p, ipp„) is the electron Green's function in the
presence of impurities and x(p, i40„) is the paramagnon
propagator which is obtained from the causal suscepti-
bility with exchange and mean free path. We show next
that in Eq. (22) G(p, i40„) may be replaced by the
Green's function in the absence of impurities. In order
to see this one has to write Eq. (22) after proper
analytical continuation in terms of spectral functions
)see, for example, Ref. 4, Eq. (21.26), where the analog
has been done for the phonon casej. Then one notices
that there appears always an integral of the electron
spectral function ImG(p, 40) over the energy 0F, which
can be carried out alone. Since the energy integral of
the spectral function is unity, regardless of broadening,
it is seen that the mean free path broadening of the
intermediate-state electron Green's function leads to no
eGects on the self-energy and can be neglected. Thus,
all the mean free path dependence of Z(p, pp) must
come from the mean free path dependence of the
"boson" propagator. From this we can immediately
conclude that there will be no effect on Z(p, pp) and
hence on the specific heat in the phonon case since the
phonon propagator is essentially unaffected by mean
free path.

With these simpli6cations for G(p, 40) we may write
in the standard manner

~&(PF Pp) &(0)V'
BPP 4PF'

+", ~f(Po')
dP0 r X(P & Pp Pp) &—co 0

path' for P(2PF. Thus m* itself at T= 0 is independent
of mean free path and the Sommerfeld term in the
speci6c heat is unchanged.

In order to study mean free path effects on the
T' lnT term in the speci6c heat, one would have to
calculate the terms of higher order in pp and T of the
self-energy. In these calculations the dynamical sus-
ceptibility enters and big e8ects are expected. However,
there is a simple way in which one can see directly the
effect of mean free path on the T' lnT term. For this
purpose we generalize the considerations by Brenig
et al.' concerning the free energy corrections due to
spin Quctuations to our situation and write

6V oo NVc

d F=—,d'k de dX
(2s)'

norm(Q 40+0~)
XIm

' ' '
. —g; 0~a™(lr,40+i')

1'—Xx' no™lr cv+Zrl

X I-', +(.~.-1)-'}. (24)

In general, one has to insert the temperature-depend-
ent susceptibility x; 0

' (lr, 4d+ip) into Eq. (24).
However, if one is interested only in a possible T4 lnT
term in hF, then the temperature dependence of
g; pno~(k, 40+i') can be neglected. "The same is true
for the term —,

' in the last bracket of the integrand of
Eq. (24). In performing the integrations in Eq. (24)
one has to distinguish between the regions I and II of
Fig. 4. In region I we replace g; ono™(lr,40) by an ex-
pression similar to Eq. (19).The appropriate integral to
evaluate in that region is

AFg = — dX dk ku

X}Dpr(1 —~) 2&4+~03-~ (»)
where we have left out contributions which do not
depend on V,. Here D0 ——

3 V~l/3. After performing the
integration, we calculate the corresponding contribution
to the specific heat hC~. We And

AC4 ——(0.5)PF'(T/T ) 0"LPFl(1—X(0)V )] "'+0(T').
The magnonlike T'f' term in this result represents a
correction to the free energy which is proportional to
e l". However, our diagrams, while correct in the RPA,
have left out other contributions which are at similarly
high order in e;, under the assumption

PF/(1 —E(0)V,)))1.
Thus we believe this contribution should be dropped in
the framework of the RPA.

In regiOn II We apprOXimate Z;,no™(q, 400) by an ez-
pression similar to Eq. (16). In that case, the important

'0 W. Brenig, H. J. Mikeska, and E. Riede1, Z. Physik 206, 439
(1967).
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integral to investigate is

3y &VV'o j.
A F2———— dX dk d(d

cd% 0
3

region II e —1Pa)

nVp ——irk(1 —X) '

(26)

where we have set 6=2iiIP, fi E—(0) V,$/m Riedel"
has shown for the pure case that the factor in front of
the T' lnT term has to be changed by ~~ because of addi-
tional "boson" contributions which are not yet obtained
in a treatment of the above form. They result from
bosonlike thermal excitations of the paramagnon spec-
trum. The same is found true in the present case if
Riedel's analysis is used. . Thus the over-all factor of the
term T' In(T+T; o), xo, should become o. The result
obtained this way is identical with the one which is
obtained from Kq. (24).

In the absence of scattering centers {r '=0) this inte-
gral gives the T4 ln T contribution to the free energy. In
our case, however, such a term does not appear in d P2.
The reason for this is that we now have a cutoff at low
momenta. More specifically, the T' lnT term is changed
now into a term of the form T'ln(T+T;, ), where
Ti~o ls equal 'to oP (1—E(0)Vg) (PPl) . Thlls foI'
T'&T; ~ there will be only a T'contribution of the spin
Quctuations to the electronic specidc heat in RPA.

We now return to the self-energy approach and
examine in detail the mean free path corrections to the
higher-order frequency terms contained in Eq. (23).
We divide the momentum integration again into the
regions (lq) ~~1 and use the approximate Kqs. (16) and
(18) for the susceptibility in those regions. The result
is found to be

Q(pI, po) = A (poo+n'poT'} ln
{po+Timo) &

2piliI 1—S 0 V,

with

iron(0) V.fo
64;oD —&(0)V.j ' (27}

where we have dropped the term linear in po since we
have discussed it before. We see by inspection that in
the limit of inanite mean free path (ro, -~) there are
terms in Eq. (27) which are logarithmic in po As shown
in Ref. 2 (see also Ref. 9 for the phonon case) they lead
to T' lnT contribution to the speci6c heat. However,
for fmite slit the logarithmic po dependence disappears
for po T mo(1, and hence there can be no logarithmic
temperature contribution to the specilc heat either.
By using the standard relation' between ReZ(PI, oi)
and C, (T) we fInd, approximately,

C, (T)=-,'m*P, T+-,'6~(P o/O') To InL(T+ T;,)/ej,

(28)

IV. CONCLUSIONS

The purpose of this paper has been a study of the
mean free path e6'ects on the spin susceptibility of
strongly exchange-enhanced Fermi systems. An applica-
tion of our 6ndings to the low-temperature speci6c
heat showed no e6ects for the Sommerfeld term but
altered the next higher-order temperature term;
namely, from a To lnT to a T ln{T+Ti o) behavior
Lsee Eq. (28)]. The ratio T; o/8 is of the order
(PIl) ' and thus much smaller than 1. As a result
only the low-temperature contributions of the spin
fluctuations are effected by impurities (T(T; o((e).
For PI i~300 and E(0)V.~0.95, we estimate 2';, to
be 2—5'K.

Thus in contrast to the phonon case where we showed
that the T'lnT contribution is essentially unaffected
by mean free path we 6nd that impurities strongly
modify the paramagnon contribution to the T'lnT
term. For this reason, we are pessimistic about the
possibility of observing such a term in disordered
alloys. We suggest that very pure systems with large
exchange enhancement may exhibit a T' lnT term due
to spin Quctuations, but that this term is very sensitive
to the addition of impurities, We note that at T& T; ~
other temperature corrections to the specific heat, such
as the magnonlike T@2, can occur. These corrections,
however, are all of higher order in the impurity con-
centration, and are not necessarily correct in the RPA.
Calculations to higher order do not appear feasible at
present.
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