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Boundary-Value Problem for Magnetoelastic Waves in a
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A boundary-value problem using traveling-wave magnetoelastic normal modes is solved for the case of
a ferromagnetic metal 61m attached to a substrate. A specialization is made to certain spin-wave resonance
experiments in the vicinity of 57,8 GHz, reported recently by Weber. For the dc magnetic field perpendicular
to the plane of the film, the general dispersion relation for coupled electromagnetic, spin-wave, and acoustic
modes is described. The eGect of damping on the shape of the dispersion curves is discussed. For the choice
of conductivity, the eddy-current exchange e8ects in the magnetoelastic crossover region are shown to be
small. An expression for the power absorption by the 61m as a function of dc magnetic 6eld is calculated
assuming that the spins are pinned on the film surfaces. The magnetic 6eld shift of a particular spin-wave
resonance peak as a function of frequency through magnetoelastic crossover is computed. Values of the
magnetoelastic constant b and the phenomenological phonon relaxation time ~ obtained by Weber are ad-
Justed slightly to take into account the eftect of the glass substrate: b is decreased from 6.87XIO' to 6.66&&
10' erg/cm', and r is increased from 0.90XIO ' to 1.00&(IO "sec.

INTRODUCTION

r 1HE observation of a magnon-phonon interaction in
spin-wave resonance (SWR) by Weber' (referred

to as W) constitutes the first evidence of plane magneto-
elastic waves' ' of well-defined frequency and wave
number in a ferromagnetic metal film. Previous
work, ~" concerned with acoustic wave generation and
detection by the films, has invoked magnetic inhomoge-
neities'~i2 and/or surface effects' ' to interpret ob-
served results —a single magnetoelastic crossover fre-
quency could not be identified. A basic reason for this,
in addition to the fact that some of the films had
inhomogeneous magnetization, was that the acoustic
wavelength at the frequencies used ( 9 GHz) was of
the order of the film thickness. The diagonalization
procedure for the Hamiltonian containing a one-
magnon —one-phonon term, valid for a bulk crystal, is
no longer applicable when the inverse film thickness is
comparable to the magnon or phonon k number. "
Thus plane magnetoelastic waves, which would be
expected only if the above diagonalization were allowed,
are unlikely to be found at such frequencies in the thin
films. At the frequency ( 60 GHz) of the W experi-
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'H. E. Bommel and K. Dransfeld, Phys. Rev. Letters 3, 83
(1959).

7 M. Pomerantz, Phys. Rev. Letters '7, 312 (1961).
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Letters 1, 198 (1962).
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"This fact was in essence 6rst pointed out in Ref. 7 and was
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Ref. 12.

ment, however, the wavelength of the degenerate spin
waves and phonons is less than —,'0 of the film thickness

( 6000 A). Thus the bulk theory is expected to be a
good approximation and magnetoelastic waves become
good normal modes of the system.

In the present paper use is made of the traveling-
wave magnetoelastic normal modes to solve a boundary-
value problem for the film attached to a substrate. "
This treatment differs from that used in W, where the
analysis initially uses superpositions of characteristic
functions to represent the spin wave and acoustic wave
in the film. "Curves of the magnetic field shift of a given
SWR as a function of frequency in the crossover region
are obtained. The numerical treatment is confined to
one of the experimental cases in W. The SWR tuning
curve obtained here agrees closely with the prediction
of W for the case of the substrate-free film, and in turn
the prediction of W fits his experimental points except
on the two wings of the curve. In the presence of the
substrate the values of 7. and b, the phonon relaxation
time and the magnetoelastic constant in the film,
respectively, must be adjusted slightly in order to
maintain the agreement with W. It is found that for the
glass substrate the ~ value is increased from ~0.90' 10 "
to i.00&10 " sec and the b value is decreased from
~6.87X10' to ~6.66X10' erg/cm'.

It is not surprising that the method of W and the
present treatment give essentially identical results in
the case of the substrate-free 61m. In W the actual spin
wave and phonon in the film are treated, whereas in the
present paper the two magnetoelastic waves, linear
combinations of which yield the spin wave and the
phonon, are dealt with. In fact, for the case when the
spin-wave and phonon "skin depths" are much greater
than the film thickness, it is possible to obtain from the

' This problem, for the case of a substrate-free 61m, was brieRy
treated earlier by the author in a Lincoln Laboratory Group
Report, No. 826-0029, 1961 (unpublished).

"V. A. Iglnatchenko and E.V. Kuz'min, Zh. Eksperim. i Teor.
Fiz. 49, 78$ (1965) t English transl. :Soviet Phys. —JETP 22, 547
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formulas presented here precisely the Eq. (5) of W for
the Geld shift of the SKR, For the spin-wave and
phonon relaxation times appropriate to the experi-
mental case, it turns out that these "skin depths" are
of the order of the Glm thickness. As a consequence of
this, the resonance line is broadened somewhat, but the
position of the peak is apparently not appreciably
shifted. Such "skin depths" arise in the present treat-
ment because it is a traveling-wave steady-state theory
in which the frequency is taken as real and the wave
numbers as complex.

The approach used here is similar to that of Ament
and Rado"; that is, the system of coupled equations of
motion is supplemented by Maxwell's equations for a
good conductor and in the boundary-value problem use
is made of the electromagnetic boundary conditions
(continuity of tangential components of electric and
magnetic fields). For the conductivity value chosen it
turns out that the electromagnetic content of the
magnetoelastic waves is small. In other words, the
region of magnetoelastic crossover is well isolated from
the eddy-current exchange region. This fact makes it
possible to decouple the electromagnetic boundary
conditions from the spin-wave and phonon boundary
conditions. This simplifies considerably the solution of
the boundary-value problem.

It is also assumed in the boundary-value problem
that the spins are completely pinned on the film sur-
faces. The basis for this assumption rests on the experi-
mental observation" that the SWR peak positions fit
the expected spin-wave dispersion relation, i.e., co~ k .
This means that the spin-wave modes are indeed
trigonometic functions of position and hence that they
require some form of surface spin pinning in order to be
excited. It is recognized that the pinning may not in
fact be complete, but complete pinning is nevertheless
assumed in order to simplify the derivation.

The parameters appropriate to the experimental case
of W treated here (his sample 2) are listed as follows":
magnetization M=1083 Oe, exchange constant 2=
1.12X10 ' erg/cm, gyromagnetic ratio &=18.82X10'
rad/sec Oe, sound velocity (transverse) in the film
ci=3.10X10' cm/sec, density of film p=8.40 g/cm',
composition of film is 70—30 permalloy, temperature
of experiment is 77'K, thickness of film d=6170 A.,
half SWR linewidth 1/yT= 85 Oe, SWR order number
p=23, crossover frequency (consistent with cv=c&k,
where k= pm/d) f= 57.8 GHz, difference between
maximum and minimum magnetic field deviation on
SWR tuning curve bB =88.5 Oe, frequency width
between maximum and minimum magnetic Geld devia-
tion Sf=3.52 GHz, and finally we have chosen a con-
ductivity o=1.6X10' mho/cm, which gives a skin
depth 8~5&10 ' cm at 57.8 GHz.

In Sec. I, the general dispersion relation for the
coupled electromagnetic, spin-wave, and acoustic

W. S. Ament and G. T. Rado, Phys. Rev. 97, 1558 (1955).
~7 R. Weber (private communication) .

modes is described; the eAect of damping on the shape
of the dispersion curves is discussed. The solution of the
boundary-value problem is described in Sec. II and the
power absorption formulas are presented. In Sec. III
the numerical results are discussed; also given is a
discussion in terms of the dispersion diagram of how the
SWR tuning curve arises.

I. PROPAGATION CONSTANTS

A. General Dispersion Relation and Eddy-Current
Exchange Effect

This section begins with a discussion of the general
dispersion relation for the coupled electromagnetic,
spin-wave, and acoustic modes. The modes are circu-
larly polarized in a plane perpendicular to the 2' direc-
tion, the direction of the dc magnetic field and the film

normal, and rotate in the sense which produces reso-
nance. When expj(&ot —ks) dependence is assumed,
where co is real and k complex, a simultaneous solution
of Maxwell's equations, the equation of motion of the
magnetization, and the appropriate acoustic wave
equation yields the following relation:

2A k'k' 47rM—~k' —k '~— =0, (1)
M ' " '

pMcP(k' —k ') (1—-'jPk')

where

k '= (M/2A) (o)/p H; j(1/pT—) )—
k,2= (co2/ci2) (1—j(2/(ur) ).

Here b is the appropriate magnetoelastic constant for
the film (8, in a cubic crystal), H;=H, 4mMis the- .
internal magnetic field and H, is the applied magnetic
field, T is the phenomenological spin-wave relaxation
time (for Landau-Lifshitz damping 1/yT is replaced
by XH;/pM, where X is the Landau-Lifshitz relaxation
frequency), and r is a phenomenological phonon
relaxation time.

Equation (1) is a cubic equation in k'. In the appro-
priate magnetic Geld or frequency regions the three
solutions will correspond to predominantly electromag-
netic, spin-wave, and acoustic modes. For the situation
in the W experiment there are two magnetic field
regions in which Eq. (1) reduces approximately to the
product of a quadratic and a linear equation in k'.
These regions are centered about H;=co/y and H, =
co/p 2AsP/McP and corr—espond to the eddy-current
exchange region and the magnetoelastic region, respec-
tively. In the eddy-current exchange region, Eq. (1),
becomes approximately

(k' —k~') (k'+2j/P)+j(47iM'/AP) =0, (2a)

k' —k '=0, (2b)

while in the magnetoelastic region Eq. (1) becomes
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MAGNETOELASTIC WAVES IN A METALLIC FILM

than 1.6X10' mho/cm had been chosen, the eddy-
current exchange-damping contribution would make up
an appreciable fraction of the StA'R linewidth in the
magnetoelastic region. Since the exchange contribution
is proportional to (cojy H;—) ', a narrowing of the line-
width with increasing S%R order number would then
be observed. "The fact that the observed linewidths are
essentially independent of order number" over a con-
siderable I'egloll surrounding p= 23 Illay be all lndlca-
tion that the value of 0 chosen has not been greatly
underestimated. At the lower microwave frequencies
the magnetoelastic region begins to merge with the
eddy-current exchange region and the situation in
general becomes considerably more complex. It is
assumed in this paper that the regions are well separated.
and that the electromagnetic content of the magneto-
elastic waves is small.

B.Magnetoelastic Waves

When Eq. (3a) is solved for the propagation constant
k the result is

k, = I (M/4A) [(H+Hor+H, ) i(1/yT—+1/yr')

+ (F'+iF")Ils)I"', (5a)

k,= {(M/4A) DH+H. ,+8...) —i(1/~T+ 1/qr')
—(I"+iF")Ils) l"' (5b)
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ks, s= ks, s'+ks, s"

H, = 2Aas/M= bs/MPC1s,

H = (te/y —H;),

The real and imaginary parts of the propagation con-
stants ks and ks for b =6.66X10"erg/cms and r~ oo are
plotted versus magnetic Geld in Figs. 3(a) and 3(b).
The 6gures illustrate the effect of increasing the spin-
wave damping in the absence of acoustic damping. A
similar qualitative change in the curves would occur if
the acoustic damping were increased for zero spin-wave
damping. " It may be noticed that curves d and e of
Fig. 3(a) simply cross one another: There is no mag-
netoelastic gap in this case. It can be shown by ex-
amining the square root of F= F'+iF" on the complex
plane that a gap does not exist if the following condition
is satisfied:

)
1j&T 1/&r

~
) (2AlM) I2ts(es/«) l (6)

For b=6.66X10r erg/cm' the right-hand side of this
inequality has the value 240 Oe at 57.8 0Hz. Thus the
condition is well satisGed for the curves e of Figs. 3(a)

~ P. Pincus, Phys. Rev. 118, 658 (1960).Such a narrowing was
anticipated earlier in Ref. 16.

~' This has been shown by R. Weber (see Ref. 17}for the case of
nonzero spin-wave damping.
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(b)
Fn. 3. Wave-number-versus-magnetic-6eld curves in the

magnetoeiastic region for b =6 66X10' erg/cms, r=s ~, and for the
various values of the spin-wave damping, 1/yl', given in (a). (a)
Real part of wave numbers. The magnetoelastic gap is not present
in curves d and e. (b) Imaginary part of wave number. The curves
for the experimental case lie between curves a and b.

and 3 (b). Curves d of Figs. 3(a) and 3 (b) apparently
just satisfy condition (6). The curves for the experi-
rnental case (b=6.66X10' erg/cm', r=1.00X10 I sec,
and 1/yT= 85 Oe) are not shown but lie between curves
a and b on Figs. 3(a) and 3 (b). Thus the condition (6)
is clearly not satis6ed in the experimental case.

Condition (6) lends itself to a simple physical inter-
pretation. If the condition is multiplied on each side by
y, it can be shown by using Eq. (5) that the right-hand
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side is equal to the minimum frequency splitting of the
two branches in the absence of damping. Now if the
term 1/~' is viewed as a kind of effective acoustic
relaxation frequency, condition (6) states that if the
dijeremce in effective relaxation frequencies of the
uncoupled spin-wave and acoustic modes exceeds the
minimum frequency separation of the branches then
the magnetoelastic gap is "washed out. " If, however,
both modes are heavily damped but have comparable
dampings, the condition (6) states that the gap is still
present. If the dampings become so large that the real
and imaginary parts of each propagation constant
become comparable then critically damped and un-

coupled waves exist; but the discussion here is con6ned
only to the case where the imaginary part of each
propagation constant is much less than its real part.
The latter is readily seen by comparing the ordinate
scales of Figs. 3(a) and 3(b).

It is also interesting to note the behavior of the
damping of the magnetoelastic modes with magnetic
Geld. For the curves d and e in Fig. 3(b) the condition
(6) is satisfied and this is why the curves do not inter-
sect: the predominantly acoustic mode (upper curve
d or e) attains its maximum spin-wave loading at the
nominal crossover point but everywhere retains its
identity as essentially an acoustic wave, while the
predominantly spin-wave mode (lower curve d or e)
has its loss reduced to a minimum at the nominal
crossover while everywhere retaining its essentially
spin-wave identity. The situation is changed when
condition (6) is not satisfied. As shown by curves b and
c in Fig. 3(b) the dampings exchange roles as we move
through the crossover region (this is also seen in the
inset in Fig. 1): the phononlike damping changes con-
tinuously into a spin-wave-like damping and vice versa.
This behavior is of course a reQection of the fact that
the magnetoelastic gap forces the phonon to change
continuously into a spin wave and vice versa as the
magnetic field is tuned through crossover.

It is important to note that in the experimental case
the effective dampings are comparable. If we take
T= I.00)&10 " sec and use the definition of z' given
under Eq (5), we. obtain 7'= 3.3)&10 " sec and
1/yr'=158 Oe. This value of 1/yr' is not far from the
spin-wave damping value 1/yT=85 Oe. It is seen that
the damping diGerence, 73 Oe, is less than 240 Oe, the
value which causes the gap to disappear. As mentioned
above, the computed results for the propagation con-
stants show that the magnetoelastic gap for these

The geometry of the problem is illustrated in Fig.
4."A linear polarized electromagnetic wave is incident
normally on the film from the air region on the left.
Six modes, three for propagation in the +s direction
and three for the —s direction, are shown in the 61m.
These are all circularly polarized in the sense to produce
resonance and have propagation constants equal to the
plus and minus square roots of the three k' solutions of
Eq. (1). The six oppositely rotating modes, which
strictly speaking must also be present since the incident
wave is linearly polarized, are neglected because their
nonresonant character means that they are never
excited to any appreciable level in the 61m, and further-
more there is no magnetoelastic crossover for these
modes. There are two modes in the substrate, a circular
polarized acoustic wave and an electromagnetic wave.
The substrates used in W were glass, and hence any
return acoustic wave from the far side of the substrate
will be highly damped at the frequency of the experi-
ment and is neglected here. For convenience any return
electromagnetic wave is also neglected.

Each of the microwave quantities, i.e., the magnetic
Geld h, the electric Geld t,, the magnetization ns, and the
elastic displacement I, can be represented by a linear
combination of the six normal modes in the film. For
example, the magnetic field is given by

/i= Q h,+e—J""+Q /i,
—e+&"" (7)

The first summation here is over the +s-directed waves
and the second over the —s-directed waves. The
amplitudes h;+, e;+, m;~, and I;+ can be related for
each i by "impedance" relations obtained from the
coupled system of Maxwell's equations, the magnetiza-
tion equation of motion, and the acoustic wave equa-
tion. There are thus six unknowns in the Qlm. Outside
the film on the air side there is one unknown, the
reQected wave, and on the substrate side there are two
unknowns, the transmitted electromagnetic wave and
the acoustic wave amplitude. The nine boundary condi-
tions required for these nine unknown quantities arise
as follows: The requirement of continuity of tangential
electric and magnetic 6eld across the two film surfaces
supplies four conditions; the assumption of spin pinning
on each film surface supplies two more conditions; two
conditions come from requirement of elastic stress con-
tinuity across the interfaces; and the final condition
comes from the assumption of continuity of elastic dis-
placement across the 61m-substrate interface.

2' A very similar problem has been solved by V. A. Ignatchenko
and E. V. Kuz'min, J.Appl. Phys. 39, 494 (1968);and Fiz. Tverd.
Tela (to be published). They obtain expressions for the acoustic
power transmitted into the substrate and the electromagnetic
power generated by a return acoustic wave from the far side of
the substrate (single-crystal rod).
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COI'= ——Im4m.
Sx

mI' ck.

In principle the above described 9X9 system of
equations can be solved for any of the 6eld amplitudes
in terms of the incident magnetic field amplitude.
However, this is not necessary because it has been
assumed that the electromagnetic content of the
magnetoelastic waves is small. This means that in Eq.
(7) the only terms which contribute appreciably are
those in h~+ and h~, the electromagnetic mode ampli-
tudes. The four electromagnetic boundary conditions
can thus be decoupled from the five conditions in-
volving nz and N. In the electromagnetic conditions the
terms in h2+ and h~+ are neglected and the equations are
solved for h~+, hi, and the rejected and transmitted
magnetic field amplitudes (circular polarized). The
expressions for h&+ and h~ are then substituted into the
remaining 5)&5 system. This system can be solved for
any of the quantities h&+, h2, h3+, h3, or No, where No is
the acoustic wave amplitude in the substrate.

In order to simplify the algebraic manipulations it
has been assumed that the skin depth is much greater
than the film thickness. This means that it is per-
missible to set hi+=h~ ——h, where h is the circular
polarized portion of the incident magnetic 6eld ampli-
tude. This is not strictly justified, of course, because the
skin depth ( 5000 A) and the film thickness (6170 A.)
are comparable. Possibly as a result of this small skin

depth, the experiment shows even and odd SWR peaks
of about equal strengths in the neighborhood of the
crossover region. ""The simplified case that is done
here predicts only odd modes. The more appropriate
boundary-value problem, '4 the solution to which would
contain both even and odd modes for the skin depth
assumed here, could have been worked out, but it was
felt that the main results of this paper would not have
been greatly changed. It is unlikely that the SWR
tuning curve which is obtained in Sec. III for the odd
mode p=23 would change significantly in character if
we were to treat a more appropriate boundary-value
problem and study the p= 22 mode, for example. "

The power absorption per unit area in the film is
calculated from the following formula:

This is, of course, the integral over the film thickness of
the magnetic absorption per unit volume. In Eq. (8)
h is a constant and nz is given as follows:

where

and

tÃ = tÃ2+ 523,

m2 222——2+e&"'-*+'2N2 e+&-"2*

2i33 2233+——e &"3*+-2'233 e+&"3—*.

(9)

(10a)

(10b)

where

P/Po =P2/Po+ P3/Po,

P2/Po=2(f/~)'"(~a -2)'" (12a)

P3/P3=2(f/~)"'(~ .a32)"' ~(12b)

The quantity p~ ~, is proportional to the real part of
the equivalent surface impedance. "One such quantity
exists for each branch of the dispersion relation, i.e., for
each magnetoelastic wave. The expressions for the
square roots of these quantities are

The amplitudes m~+ and me+ are obtained by solving
the above-mentioned 5)&5 system of equations. When
Eqs. (9) and (10) are substituted into Eq. (8) the
power absorption can be expressed as the sum of the
absorption of modes 2 and 3. Thus it is possible to
compute the power absorbed from each magnetoelastic
wave in the film. Since the 2i22 term in Eq. (9) has been
omitted it is clear that the electromagnetic mode
absorption is not being considered. However, this
merely presents a slowly varying background and does
not affect the SWR.

The expression for the power absorption which has
been calculated by using Eq. (8) is now written down.
The incident power is given as P3= (c/82r)k2, where
c is the velocity of light in vacua and h is the properly
rotating circular polarized component of the incident
linear-polarized magnetic 6eld amplitude. The relative
power absorption is

where

k32 (k 2 k22) 1 k
—2k2 1 tanhl jk2d+ 2 ri32 (k22+k 2) k i (k 2 k 2) i

(co/p H, ) 6 k32—k22——ra2(k2k, (k22 —k,2) ' cothpk2d —k3k, (k32—kp) ' cothjk3d)

k22(k 2 k 2)12k
—2k3—1 tanh2yk3d+4yg2(k22+k32)k i(k32 k22)

(co/p H;) 8 k32—k22 ——ra2(k2k, (k22 —k,') ' cothjk2d k3k, (k32 —kP) ' co—thjk3d)

k3'(k2' —k,') —L2k.'k2' —k32 (k22+ k,2) ]cosh jk2d
12= 1+r

2k2k, (k32—k22) sinhjk2d

"Partial spin pinning at the surface may also be involved here.
"Sincein the experiment the 61m is usually in electrical contact with the cavity wall (see Ref. 17), an even more appropriate

boundary-value problem would be the case for which the incident electromagnetic wave enters from the substrate side.
' For a driving 6eld amplitude that exponentially decays with s it is pointed out in W that the even mode resonance behaves

similarly to the odd mode resonance in the crossover region.
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and

k,'(k32 —k,2) —[2k,'k82 —k,'(kp+k82) ]cosh jkad
,=1—r

2k&k, (k3'—k2') sinhjk, d

Here k2 and ka are obtained from Eq. (5), k,' is given
under Eq. (1), and a' is defined under Eq. (3). The
quantity r is a complex acoustic impedance ratio and is
given by

(14)

where Z= pc& is the acoustic impedance, the subscript s
refers to the substrate, and the subscript f refers to the
Glm.

An expression for the acoustic power transmitted
into the substrate has also been derived. However, as is
described in Sec. III, the results of computer calcula-
tions based on this expression show that this power is
usually small compared to the absorption in the film.
Hence the expression is not given here.

III. NUMERICAL RESULTS

A. Substrate-Free Case

In order to compare the results of the present paper
with those of W, the case of r=0 in Eq. (13) is first
treated, i.e., the case of the substrate-free film. It is of
interest to compute the shift of the SWR peak position
with frequency, as this is the important experimentally
determined quantity. This shift is given by

"dH~= H„f(o/y (2A/M)—k,'], — (15)

where H„ is the SWR magnetic Geld position and

Ltd/7 —(2A/M)k„'] is its position in the absence of
magnetoelastic effects (i.e., for k=0). The SWR order
number p is 23, k„=ptr/d, and the fields are internal,
i.e., applied Geld minus AM. The resonance line for
p= 23 is computed for a particular frequency by using
Eqs. (11)—(13) and the magnetic field of the resonance
peak is noted. This has been done over a range of
frequencies using the AFCRL 7044/7094 computer
facility. Figure 5 is a plot of H» —sr/y versus frequency
for r=0.903X10 " sec and b=6.87X10" erg/cm'
These values of b and r were computed from the experi-
mentally observed't values bf= (1/2x. )bee=3.52 GHz
and bH „=88.5 Oe by using the following expressions:

-2780

-2800—

4l
O

-2820-

3 -2840-

-2860—

-2880-
Sf = 3.46 GHz

fall off this curve rapidly on the wings beyond the
maximum and minimum points. This is described by
W. The reason for this behavior is not clear, but is
brieRy speculated upon at the end of the paper.

Plots of relative power absorption versus magnetic
field are given in Fig. 6 for r=0, r=0.903&10 ' sec,
and b =6.87X10t erg/cm'. Almost identical power
absorption plots are obtained for r=0 35 (appropriate
to a glass substrate) if v=1. 00 X10 " sec and b=
6.66X10' erg/cm'. The separate power absorptions for
each magnetoelastic wave and the total absorptions
which are their sums are shown. Above the absorption
curves for each part of Fig. 6 are shown the dispersion
curves for the magnetoelastic waves. A study of these
figures will show how the SWR tuning curve of Fig. 5
arises"

Each magnetoelastic wave must be considered from
the point of view of the rf magnetic Geld. For example,
in Fig. 6(a) the rf field can interact strongly with the
upper branch mode (k3) near the H, td/p= —3—350 Oe
end of the curve, since at this end the Geld sees the
mode essentially as a spin wave. At the other end of the
branch, where the mode is essentially a phonon, the
spin-wave "handle" for the rf Geld is very weak indeed.
It is thus reasonable that the absorption peak for the
mode should fall to the left (low-field side) of the
circled point on the branch: Competition exists as the
magnetic field increases, between the decreasing spin-

lcd = 2/T~

dH = rb'k, /2PctM.

(16)

(17)

I af
29QQ t II t

50.0 53.0 56.0 59.0
FREQUENCY (GHZ)

62,0 65.0

These expressions can be obtained by differentiating
Eq. (5) of W. Note that the curve of Fig. 5 gives
Sf=3.46 GHz and dH =92.3 Oe. This proves that the
theory presented here is in quite good agreement with
that given in W for the case of the substrate-free Glm.
It can also be shown that the wings of the curve of Fig.
5 agree well with the theoretical result of W, i.e., with
the prediction of his Eq. (5). The experimental points

FIG. 5. Computed resonance field for the p=23 SWR as a
function of frequency for the case of zero substrate impedance.
The values of b and r used in the computation were 6.87X10'
erg/cm' and 0.903)&10 " sec, respectively, and were calculated
from Eqs. (15) and (16) of the text by using the experimental
values Bf=3.52 6Hz and BII',=88.5 Oe.

"The present discussion of the SWR tuning curve diGers from
that given in W in that here reference is made specifically to power
absorption curves for each magnetoelastic wave as a function of
magnetic field.
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FIG. 6. Curves of power absorption and wave numbers versus
magnetic fieM for b=6.87+107 erg jcmg v =0.903+10 I sec, and
for the case of zero substrate impedance. The separate absorption
for each magnetoelastic wave is shown by a dashed curve. The +
sign on the dispersion diagram indicates the position of the p =23
peak if b=0; the triangle indicates the actual position; and the
circle indicates the position for ~ cc . The ordinate scale for the
relative power absorption is in terms of the quantity {yg,«}'
defined in the text. (a) The frequency of the experiment (56.18
GHz) is less than the crossover frequency (57.78 GHz) for the
p =23 peak. (b) The frequency is equal to the crossover frequency.
(c) The frequency (59.38 GHz) is greater than the crossover
frequency.
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wave content of the mode and the increasing tendency
of the mode to satisfy the SWR condition. In Fig. 6(b)
the frequency has been increased from that in Fig.
6 (a) and now is equal to the crossover frequency for the
SWR. The total absorption peak (sum of the branches)
falls essentially at the b=o magnetic field position.
This is because the separate magnetoelastic wave
absorption peaks occur at k numbers that are sym-
metrically spaced about k23. The spin-wave content of
the modes at these k numbers apparently has its
optimum value from the point of view of the rf driving

Geld. Figure 6(c), for which the frequency has been
further increased, shows the SWR occurring to the
right of the circled place on the lower branch (km).
This happens for reasons analogous to those for Fig.
6(a) . Thus it is seen that the SWR peak position must
move erst to higher 6elds and then to 6elds lower than
the b=o 6eld position as the frequency is increased
through crossover. On the wings of the SWR tuning
curve the k numbers corresponding to the peak posi-
tions have returned almost completely to the respective
branches of the dispersion relation. It is in the region of
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FIG. 7. Curves of bf and bH, versus substrate to film acoustic
impedance ratio for b =6.66&&10' erg/cm' and ~=1.00X10 "sec.
These values of b and r give the experimentally observed values
8&=3.52 6Hz and bH =88.5 Oe for a glass substrate (r =0.35).

'7 Coupled transmission line models of magnon-phonon modes in
ferrites have been worked out by J. Sethares, Air Force Cam-
bridge Research Laboratory Physical Science Research Paper No.
327, 1967 (unpublished); and IKKK, PGUK (to be published).

the wings, however, as was stated earlier, where the
experimental points fall away rapidly from their pre-
dicted values and approach their b=0 positions more
quickly than expected.

The over-all shape of the SWR tuning curve is very
sensitive to the independent acoustic damping mecha-
nism (expressed in r). In fact it is seen from Eqs. (16)
and (17) that the inverse frequency width and the
magnetic field height of the curve are directly propor-
tional to 7.. This damping mecnanism is all important in
the competing process between the spin-wave content
of a mode and its tendency to satisfy the SWR condi-
tion. For example, in Fig. 6(a), if the acoustic damping
were absent (~~) the rf field could still interact with
the upper branch mode at the extreme high field end:
the spin-wave content of the mode would be very small,
but in compensation for this the mode would be essen-
tially undamped. Thus it is reasonable to expect for
increasing 7 that the triangle marking the absorption
peak in Fig. 6(a) moves back toward the circle. This
process should be independent of the separate spin-
wave damping mechanism (expressed in 2'). In Fig.
6(b) if we let ~~ the rf field could interact with the
modes far out onto the wings of the dispersion curve.
The SWR line for p=23 would then be expected to
disappear. This has in fact been verified by the appro-
priate computer calculations.

There is a simpler viewpoint of course from which to
consider the SWR tuning curve. This is the coupled
resonance circuit analogy in which an acoustic resonator
is considered as a load on the resonant circuit for the
spin wave. '~ At the crossover frequency for the SWR
the acoustic loading becomes purely resistive. This is

seen from the fact that in Fig. 6(b) the peak occurs at
the b=0 position and the broadening of the resonance
line is greatest. At frequencies to either side of crossover
the acoustic loading becomes partly reactive and a 180'
phase shift in the loading occurs as the frequency is
changed through crossover. For ~~ the acoustic
system is no longer independently damped and "shorts
out" the SWR at crossover.

It is difficult to compare the resonance linewidths
shown in Fig. 6 with experiment. This is because the
experimental lines are a combination of Gaussian and
Lorentzian, ' whereas the lines of Fig. 6 are essentially
Lorentzian and are somewhat merged together. If,
however, an arbitrary base line at approximately the
minimum absorption points is taken, it is found that a
linewidth increase of about 60% in going to crossover
(-,'AH=70 Oe off crossover and 110 Oe on crossover)
occurs. The experimental increase is about 20%
(-,'AH=85 Oe off crossover and 100 Oe on crossover). "
If a zero base line is taken in Fig. 6 the half-widths far
from crossover are about 100 Oe. The fact that the
spin-wave "skin depth" is of the order of the film
thickness is probably responsible for this slight increase
over the expected value of —',AH=1/yT=85 Oe.

B. Case of Film Attached to Substrate

As the acoustic impedance of the substrate is in-
creased from zero it is reasonable to expect that an
additional loading is placed on the acoustic system in
the film. This loading produces a weakening of the
observed magnon-phonon interaction in the film. This
may be seen as follows: Assume first that the substrate
impedance is very large compared to the film impedance.
Then the acoustic wave is essentially pinned at the
interface. Physically, the pinning mak. es the film an
odd-integer qumter-muse-type acoustic resonator since
the air-film interface is assumed to be a free surface
acoustically. However, the 61m is an odd-integer half
mane-type spin-wave resonator, and hence it is not
strictly possible to satisfy the magnon-phonon matching
condition. If the substrate impedance is not very large
compared to the film impedance, this detuning of the
magnon-phonon resonance is of course somewhat less
but is still present. In addition to this detuning effect a
nonzero but finite substrate impedance means that
acoustic power is radiated into the substrate. Computer
results have shown, however, that for the case of the W
experiment this power loss is small compared to the
SWR absorption even under acoustic match conditions.
This small power loss, when added to the SWR absorp-
tion, does not significantly change the magnetic field
position of the SWR.

It was mentioned in Sec. IVA above that power
absorption curves almost identical to those in Fig. 6
were obtained for r=0.35 by taking v.=1.00X10 '
sec and 5= 6.66)(10 erg/cm'. These values of r and b
were found by a computer search to locate those unique
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values of r and b which yield the experimental values
Sf=3.52 6Hz and bH =88.5 Oe for r=0.35. The
value of r=0.35 was determined by taking p=2.20
g/cm' and c,=4.1X10P cm/sec for glassgo the substrate
material used in the % experiment. Thus the substrate
impedance is Z, = pci ——9.0X10P g/cm' sec and since the
film impedance Z~

——26.0X10P g/cm' sec, the result is
r=Z, /Z& ——0.35. It is assumed that in Eq. (14) both
co7;, and Mv-f are much greater than unity.

In Fig. 7 curves are presented of 8f and oH versus
the acoustic impedance ratio r for 7=1.00&10 ' sec
and b=6.66X10~ erg/cm'. It is seen that the width of
the interaction, bf, increases while the magnitude
8H decreases with increasing r. Thus, as expected,
formulas (11)—(13) predict a weakening of the magnon-

phonon interaction in the film in the presence of the
acoustic loading by the substrate. In the present case,
the rate of change of bf and bH „with r is a strong
function of the intrinsic acoustic relaxation time of the
film. This is because for v 1)&10 " sec the phonon
mean free path is 3100 A or about one-half the film

thickness. For longer mean free paths it is reasonable to
expect that the acoustic loading effect of the substrate
will be increased and become independent of 7 for free
paths much greater than the film thickness. Computer
results based on formulas (11)—(13) have shown that
for 7 &3)&10 '" sec the interaction in the immediate
neighborhood of the crossover frequency is entirely
tuned out for r~~1; i.e., in the SV(R tuning curve
such as shown in Fig. 5, a central H.at portion nearly
coincident with the b=0 line appears. Figure 7 shows

that in the present case if the substrate is changed from
glass to sapphire (Z, 25X10' g/cm' sec) the width of
the interaction increases by about 10% and the height
decreases by about 6%.

Finally, it is to be noted that for parameters appro-
priate to the W experiment the over-all shape of the
SAR tuning curve is essentially independent of the
value of substrate impedance chosen. Thus, the presence
of the substrate impedance does not cause a lowering of
the wings of the curve in the direction of the experi-
mental points. It appears likely that a one-dimensional
monochromatic plane-wave theory is not adequate to
describe the SWR tuning curve in the region of its
wings. If inhomogeneous broadening of the magnon-

phonon interaction were present, this could help to
explain at least part of the observed rapid convergence
in the wings of the curve. An obvious "inhomogeneity"
is the 6nite thickness of the 61m. The finite thickness
causes a spread of wave numbers over a region of k

space of the order of 2m/d. For d=6170 L the corre-
sponding frequency interval around crossover is 0.15
GHz. This is small compared to the 3.52-GHz width of
the S%R tuning curve. Additional inhomogeneities,
however, may be caused by the presence of crystallites

"%.P. Mason, Physical Acoustics (Academic Press Inc. , New
York, 1965), Vol. III—Part 8, Chap. 2, p. 64.

which are of the order of the acoustic wavelength

( 500 A.). Such crystallites constitute nonperiodic
perturbations of spatial dimension well suited for
producing the one-magnon —one-phonon scattering
necessary for the inhomogeneous broadening.
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APPENDIX

AM
pi/y H; j/yT —'— (A2)

2lf . ( 16m'
koP = —(~/p —H') —j I

1/y2"+
2A

'
& b'(po/y —H;)

(A3)

Substitution of the appropriate numerical values (given
in the Introduction) gives

~
kpP

~

~2X10" cm ' and
k ' ~5X10" cm ' for oi/y H;&1000 O—e. Also,
k»' ——

~
k.'

~

10" cm ' and.
~

2j/b'
~

10' cm '.
For k values in the magnetoelastic region, i.e., for
k~k.~10' cm '

~

k'
~
))

~
kpp ~. Tllus, it is clear that

the first factor on the left-hand side of Eq. (A1) and
the last factor on the right-hand side may be cancelled.
The result is the magnetoelastic dispersion relation,
Eq. (3a). Equation (3b) is expressed by k' —koP=O,
where kpP is given by Eq. (A2). That this is a good
approximation for oi/y H, ~ 10—00 Oe may be seen by
solving Eq. (A1) for (k' —kpP)/kpP. The result is given

approximately by

k2 koP iip(koP+2j/$2)

~01 ~02 ~03

Since a'~0.25X10" cm ' for b6.66 1X0' erg/cm',
this gives (

(k' —kop)/kop )
10-'. At magnetoelastic

crossover oo/y H; 2840 Oe and —hence it is clear that
Eq. (3) is a good approximation to Eq. (1) in the
vicinity of the crossover region.

In the region around H;=op/y it is anticipated that
the spin-wave and electromagnetic k values are con-
siderably less than in the magneto elastic region.
Taking k 10' cm—' it is computed that the left-hand
side of Eq. (A1) has an absolute value of approximately

For the situation in the % experiment it is readily
shown that Eq. (1) reduces approximately to Eq. (2)
or (3) in the appropriate field region. First Eq. (1) is
rearranged as follows:

(k2 k P) (kp k 2) (k2 k 2) —gpk2(k2+2j/b2) (A1)

where kpP and. kopo are the roots of Eq. (2a) and kpp' ——

kg. For po/y H;~1—000 Oe approximate solutions of
Eq. (2a) are
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10' while the right-hand side is less than 10'. In fact
the right-hand side of Eq. (A1) can be neglected com-

pared to the left-hand side until the k values are
approximately 10' cm '. Thus in the vicinity of H;=
co/y Eq. (2a) is a valid approximation. For the acoustic

mode near P;=co/y, Eq. (A1) yields approximately

(P2 P 2) /P 2 —g2/$ 2

Since j a'/k032
~

025X10 ', it is permissible to let
k'= koP in the vicinity of H, =co/y. This gives Eq. (2b).
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We investigate the eGects of the mean free path on the spin susceptibility of almost ferromagnetic metals.
Using these results, we calculate the low-temperature specific-heat contribution of the spin fluctuations.
While the term linear in temperature T is unaffected by the mean free path, we find that the T'ln T contri-
bution is rapidly modified by impurities, in contrast to the phonon case.

I. INTRODVCTION

S PIN Ructuations in almost ferromagnetic fermion
systems have recently received very much atten-

tion. Such systems have an appreciably enhanced static
spin susceptibility, indicating that the exchange inter-
action is important but not quite strong enough to lead
to a ferromagnetic instability. For example, it was
shown by Berk and Schrieffer' that in metals like Pd
spin Quctuations lead to a change in the effective mass
and can suppress superconductivity. Furthermore,
Doniach and Engelsberg' made the important observa-
tion that in liquid He' spin fluctuations are responsible
for the deviations of the temperature dependence of the
speci6c heat from a Sommerfeld law. In Ref. 1 as well

as in Ref. 2 it was furthermore shown that one can
calculate the self-energy of the electrons due to exchange
scattering in a simple fashion by formally introducing a
propagator' for the paramagnon or spin Ructuations.
There are several common features between the self-

energy due to paramagnons and the one due to phonons.
However, as we show here, these similarities hold only

in the limit of infinite mean free path, which is the only
case for which exchange-enhanced spin fluctuations
have been studied up to now. Since scattering centers

*NATO Postdoctoral Fellow. On leave of absence from U.S.
Naval Ordnance Laboratory, Silver Spring, Md.

'N. F. Berk and J. R. Schrieffer, Phys. Rev. Letter 17, 433
(1966}.

2S. Doniach and S. Engelsberg, Phys. Rev. Letters 17, 750
(1966).

'We will use the terminology "propagator, " despite the fact
that paramagnons are not elementary excitations of the system,
and note that this is permissible in the spirit of the RPA.

are present in most physical situations, we want to
study their inhuence on spin fluctuations in this com-
munication. The physical consequences for such
quantities as the electronic self-energy and the elec-
tronic specific heat are discussed.

Our aim is to study first how the paramagnon
propagator changes if a mean free path due to scattering
centers is introduced. This is done in the next section.
It turns out that for momenta q such that ql«1, where l
is the electronic mean free path, the paramagnon propa-
gator changes drastically and becomes one which is of
the diffusion type. The calculations are done by a
standard vertex renormalization procedure. In Sec. III,
we show how this change in the paramagnon propagator
for q/«1 can inhuence various physical quantities by
studying the specidc heat and the effective mass due to
spin fluctuations.

It is found that the effective mass at zero temperature
and hence the term in the specific heat which is linear
in T are practically independent of mean free path.
The contribution to the speci6c heat which is of the
form T' lnT, however, is replaced by T' ln(T+T; ~),
where T; p is of the order of the impurity scattering
rate times a reciprocal susceptibility enhancement fac-
tor. Thus, at low temperatures, this correction term
goes over into a T' law, which has the same temperature
dependence as many other contributions. We contrast
this situation to the phonon case, where the T' ln T con-
tribution to the electronic specific heat is not sensitive
to mean free path. A magnonlike contribution of the
form T'~' is found for temperatures below T; ~, whose
coeQicient is proportional to the three-halves power of


