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Tomasch Oscillations in the Density of States of
Superconducting Films
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The mechanism which gives rise to the oscillatory structure in the quasiparticle density of states of
superconducting films with spatially varying electron-electron interaction is discussed. It is shown that
the Tomasch effect results from processes in which a quasiparticle is condensed into the sea of Cooper pairs,
leaving behind a diGerent but degenerate quasiparticle. The tunneling density of states is obtained for a
composite two-region superconductor. The nature of the density-of-states structure depends strongly
upon the ratio of the energy gaps of the two regions. In the low-energy range, bound eigenstates characterized

by the quantization of the difference of the momenta of the degenerate quasiparticles are found for infinite
mean free path. Explicit results are presented for the composite film systems In-Al and In-Pb for several
values of the electron mean free path.

I. INTRODUCTIOH

r IHK observation of periodic oscillations superim-..posed upon the usual quasiparticle tunneling current
versus voltage characteristic of Al-insulator-Pb, Al-insu-
lator-In, and Al-insulator-Sn, Giaever-type tunnel junc-
tions, has been reported by Tomasch. ' 4 Deposition of
a thin layer of diGerent material on the back side of
the second film leads to considerable enhancement of
the amplitude of the Tomasch oscil1.ations. The experi-
mental situation is shown schematically in Fig. 1.
Typically, metal A is a very thin evaporated Al film
on the order of 10s L in thickness, which is oxidized
to form an insulating barrier. The second fi1m, metal 3,
on the order of 1 to 30 p, is then deposited. Finally,
this second film is overlayed with a thin ( 10' 3.)
film of dissimilar metal. The tunnel differential con-
ductance depends strongly upon the overlay materia1.
Tomasch has reported results using overlay films of
Ag, Al, and Pb.'4

Theoretical studies' 7 have indicated that the oscil-
lations in the tunnel current and conductance are
manifestations of periodic structure in the density of
states of the composite film which result from the
spatial variation of the energy gap at the overlay inter-
face.

McMillan and Anderson" and wolfram and I.eh-
man7 have formulated very crude models which are
capable of accounting for the voltage spacing of the
oscillatory structure. These models have shown that

'W. J. Tomasch, Phys. Rev. Letters 15, 672 (1965); 16, 16
(1966); Phys. Letters 23, 204 (1966).' W. J. Tomasch and T. Wolfram, Phys. Rev, Letters 16, 352
(1966).' W. J. Tomasch, Bull. Am. Phys. Soc. 11, 190 (1966).

«W. J. Tomasch, NATO Advanced Institute on Tunneling
Phenomena in Solids, Danish Atomic Energy Research Establish-
ment Riso, Denmark, 1967 (to be published).' W. L. McMillan and P. W. Anderson, Phys. Rev. Letters 16,
85 (1966).' The exact solution of the McMillan-Anderson model discussed
by T. Wolfram and M. B. Einhorn, Phys. Rev. Letters 1/, 966
(1966).

'T. Wolfram and G. W. Lehman, Phys. Letters 24A, 101
(1967).
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mixing of the degenerate quasiparticle states occurs in
systems with a nonuniform energy gap and that the
density of states for these hybridized quasiparticles
contains structure with the Tomasch oscillatory period.
The purpose of this paper is to clarify the mechanism

underlying the Tomasch effect and to investigate a
model suKciently realistic to predict the amplitude
as well as the period of the Tomasch oscillations.

In Sec. II we discuss within the BCS framework the
mechanism which gives rise to the mixing of the de-

generate quasiparticle states. It is shown that the
Tomasch eGect is a result of processes in which a
quasiparticle interacts with, and is condensed into, the
sea of Cooper pairs leaving behind a different but
degenerate quasiparticle. In Sec. III the Green's func-
tion for a composite system of two dissimilar metals is
discussed. It is assumed that the wave functions are
continuous across the interface of the two regions. Two
difterent sets of boundary conditions are considered
for the surfaces at xg and x2.

The case in which the mean free path in the overlay is
short is considered in Sec. Dl. The average tunneling
density of states is calculated for metal 3 as a function
of the energy gap for metal 8 and for the overlay.
A power-series expansion of the tunneling density of
states is discussed and interpreted in terms of multiple
scattering. Explicit results are obtained for energy
gaps corresponding to In overlayed with Al for several
values of the mean free path /j in metal B.The case for
which the energy gap of the overlay is greater than that
of metal 8 is discussed. It is shown in the limit of
long mean free path in metal 3 that bound eigenstates
occur at energies less than the overlay energy gap. These
bound states are characterized. by the quantization of
the difterence of the momenta corresponding to the two
degenerate quasiparticle states. Each discrete energy
level corresponding to a bound state contributes a
8-function peak to the density of states when the mean
free path l~ is infinite. For finite li these 5-functions are
smeared into resonance peaks of 6nite width and
amplitude. There are no bound states at energies above
the overlay energy gap 62 but there is oscillatory struc-

48i



T. WOLFRAM 170

~ insulator

A

[W
X Xb

Region 1

Region 2-~

O
b
4J

O

X) Xp

FIG. 1. A schematic of a Giaever-type junction. Film A,
typically aluminum, on the order of 1000 A in thickness, is oxidized
to form an insulating barrier extending from x, to xg. Supercon-
ducting film B extending from xq to x2 consists of two regions of
dissimilar materials. Region 1 is 1—30 p, in thickness while region 2,
the overlay, is on the order of 1000 X. A bias V is applied across
the junction.

ture in the density of states. For a given l& the amplitude
of the structure in the density of states decreases
sharply for co&62. Explicit results are obtained for
energy gaps corresponding to In overlayed with Pb.
In both cases (In-Al and In-Pb) harmonics of the
fundamental Tomasch series are evident.

A brief summary of the results and conclusions is
presented in Sec. V. A very simple model for the tun-
neling process is described in the Appendix.

II. MECHANISM FOR THE TOMASCH EFFECT

In this section we show that the Tomasch effect is a
result of processes in which a quasiparticle interacts
with, and is condensed into, the sea of Cooper pairs,
leaving behind a diGerent but degenerate quasiparticle.

In this discussion it is important to account for all
of the Cooper pairs and therefore we shall discuss the
BCS theory' strictly within the constraint that the
states of the system correspond to a Axed number of
electrons (eigenstates of the number operator). The
ground state

I
0, 2/V) at zero temperature with 21V

electrons has /V Cooper pairs (k $, —k J, ). The
particular electron quasiparticle state

I
E f ) is a

(2/V+1)-electron state consisting of cV Cooper pairs
and a single unpaired electron in the Bloch state E $ .
Starting from the ground state there are two ways to
obtain such a (21V+1)-electron configuration. If the
pair (E t', EJ, ) is empty in the—ground state then
an electron may be added directly to the Bloch state
E). The amplitude of the pair being empty is the
BCS coherence factor N~. There is also an amplitude
v/r such that the pair (E$, EJ, ) is filled. In—this
case we must erst add a Cooper pair to the ground
state and then remove an electron from the state EJ, . —
The (2/V+1)-electron quasiparticle state is a linear
combination of these two (2K+1)-electron configura-
tions weighted according to their probability ampli-

tudes

(the minus sign results from the ordering of the opera-
tors). The operator E+ transforms the S-pair ground
state

I 0, 21V) into an (1V+1)-pair ground state
I 0, 2(%+1)) 9 A set of hole-quasiparticle states can be
similarly defined. Ke note that for a fixed number of
electrons in the ground state both terms in Eq. (1)
add one electron to the system. In many applications
it is not important to distinguish between

I 0, 2/V) and

I 0, 2(A/+1) ) so that the operator E+ may be omitted
from Eq. (1). It then appears that

I
E f ) is a linear

combination of (2N+1)- and (21K—1) -electron states,
and hence it is often stated that the quasiparticle is a
linear combination of electrons and holes. In our dis-
cussion it is important to keep track of the number of
Cooper pairs in order to understand the mechanism for
the Tomasch effect. In this section we shall need only
the electron quasiparticle states. The energy E~ for
the electron quasiparticle states is given by

(~ 2+ Q2) 1/2 (2)

I

I l

r l

IT k+ k~
FIG. 2. The quasiparticle energy versus magnitude of the prop-

agation vector. The two propagation constants k+ and k,
corresponding to the same energy E, give rise to four degenerate
quasiparticle states W k+.

where e& is the electron energy measured from the
chemical potential /i, err= (PE'/2m) —/i, and 6 is the
energy gap. The four degenerate states +k+, ~k cor-
responding to a fixed energy E (see Fig. 2) have

I
k+

I

=k+=
I 2m/k'(/i+Q) j'" k/;aQ/Ai/,

Q —(g2 g2) 1/2

/i =5'k/, "/2m,
and

V/P =Sk/'/BI. (3)

For energies a few millielectron volts above 6, k+ is
of the order of k/p(~10' cm ') while k+—k ~104 cm '
McMillan and Anderson' first pointed out that, while
an ordinary (Hartree-Fock-type) potential cannot
cause scattering between k+ and k, a nonuniform en-

ergy gap function h(x) can lead to quasiparticle scat-

J.Bardeen, L. N. Cooper, and J. R. SchrieGer, Phys. Rev. 100, ' J. R. Schrieffer, Theory of SNPercorductivity (W. A. Benjamin,
162 (1957); 108) 1175 (1957). Inc. , New York, 1964), pp. 24-60.
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tering between these states. They showed that scat-
tering,

~
k+)~~~ k ), from a perturbation in 6, would.

give rise to a quasiparticle interference eGect in the
local density of states which is periodic in the argument
(k+—k )d, a distance d in back of the perturbation. A
simple one-dimensional picture illustrates this feature.
Consider the quasiparticle

~
k+) propagating as the

plane wave exp(ik+x). This wave arrives at the per-
turbation at x=d with phase k+d. The reflected wave
propagates like exp(ik x) exp(iq), where the phase
factor p must equal (k+—k )d in order that the phase
of the incident and refIected waves match at x=d.
The total wave P(x) is then

P(x) =exp(ik+x)+r expLi(k+ k)—d+ik x5, (4)

where r is the reQection coefFicient. The wave density is

K+t

(Q) Amplitude v„u „

+

-K)

(b) Amplitude u„- v„

-K)

~
P(x) ~'=1+r'+2r cos(k+ —k ) (d—x). (5) (t;) Amplitude u„+ vt, (d) Amplitude v„+ ui,

The oscillatory component will also be manifested in
the local density of states (and hence in the tunneling
current).

Ordinarily a refIected wave has a k vector and velocity
equal and opposite that of the incident wave; scat-
tering from k+~—k+, for example. We note from Fig. 2
that the group velocity, v, = (1/fi) (dErr/dE), at k
is equal and opposite that at k+. A wave packet com-
posed of quasiparticle states with wave vectors in a
small range about k+ moves with a velocity equal to
the group velocity at k+. If we were to associate with
this packet a momentum mv, then this wave packet
would experience simple reflection into the wave packet
(composed of quasiparticles centered about k ) with
velocity —v, and momentum —mv, . However, from
the point of view of the individual electrons involved,
this process is not simple reRection. One of the peculiar
things about the refIected quasiparticle is that it is
propagating in the same direction as the incident quasi-
particle and the magnitude of its propagation vector
is not the same as that of the incident wave. We may
conclude from this that the process involves more than
a single electron.

In order to understand the origin of this refIected
wave consider the Hamiltonian

H = gssCs. tCs.
k,o

+ Q V(1, 2; 3, 4)Cs,.+Ca, .tCs, ,Cs... (6)
1,2,3,4

where Cl„~ creates an electron in the Bloch state k
with spin 0. and V is the part of the electron-electron
potential responsible for superconductivity. The BCS
reduced Hamiltonian is obtained by keeping only
interaction terms which scatter Cooper pairs (with
zero net momentum) into other Cooper pairs:

H,.a=++Ca, tCs.+ Q Vss C s,tC(;,tCs.C s .. (7)

F1G. 3. A schematic representation of the Bloch states which are
involved in the scattering from [

k+ l' ) into
~

k t' ). The circles
represent the Fermi surface. The two configurations entering into
the wave function for the quasiparticle state

~

k+ t' ) are shown in
(a) and (b). In addition the occupation of an arbitrary pair state
(k 1', —k J, ) is specified. The probability amplitude for each
configuration is given. A spacially varying electron-electron inter-
action transforms (a) into (c) and (b) into (d) as indicated by
the arrows. The configurations (b) and (d) are those entering into
the quasiparticie state ( k t' ).

This form of the Hamiltonian implies not only the
pairing principle but also the assumption of transla-
tional invariance of the electron-electron potential. A
system in which the energy gap varies in space neces-
sarily lacks this invariance. As a result terms involving
nonzero momentum-pair operators will be important.
Most important to our discussion are terms of the form

QVss+s ICsttC sitC s-iCs+t-
+Cs ttC s+iC siCs t-I+H.c., (8)

which are responsible for transitions of the system from
the electron quasiparticle state

~

k+ t' ) to
~

k f ). Con-
sider a superconductor in the state 0+1' ). The states
pertinent to the discussion are illustrated in Fig. 3.
The con6gurations entering the wave function for the
electron quasiparticle state

~

k+ 1' ) are shown in 3(a)
and 3(b). The first term of Eq. (8) transforms Fig
3(a) into 3(c) by condensing k+1' and —k j, into
the Cooper-pair state (k f, —k J, ), leaving k t' un-
paired. To the approximation that 6 does not depend
upon k, the loss of the binding energy associated with
the destruction of (k t', —k J, ) is compensated by
the gain due to the new pair (k f, —k J, ). The second
term of Eq. (8) transforms configuration 3(b) into
3(d) by scattering the Cooper pair (k t, —k) ) into
the Bloch states —k+ $ and k t'. This exchanges the
pair (k't, —kf) for the pair (k+f, —k+J, ) and
leaves k f unpaired. The configurations 3(c) and
3(d) are those making up the quasiparticle state
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I
k t' ). Since

I
0+1' ) and

I
k t' ) are degenerate and

the number of pairs has not changed, the processes
conserve energy. The over-all probability of this quasi-
particle transition is

QViM k Nssk fss+vs +vs+Is }. (9)

The fact that g~, Vss Nsos. =As 6 in BCS theory'
suggests that

(10)

is roughly a measure of the average variation in the
energy gap of the system. The coherence factor sts+s&-+

8p+Qlg = 1 since

[(a—(p,s/2m) +p}G„(ki;x, x') AF„—+(kz, x, x')

=S(x—*'),

1 oi+P,'/2m —P}F„+(ki;x, x') —AG„(ki; x, x') =0, (12)

and

p
2 $2gs/gxs

Here G„(ki; x, x') and F +(ki; x, x') are defined as the
Fourier transform with respect to k~ and co of the cor-
relation functions (see the Appendix)

G(r, r'; t) = —i(0 I p(r, t)it+(r', 0) I 0), t) 0

=i(O I
it+(r', 0)4(r, t) I 0), )&0

and

to the region —d&x(0 as region 1 and to the region
0&x&d' as region 2. The energy gap is 6& in region 1
and As in region 2. 6, and/or d,s may be zero so that we
include the cases in which one or both of the regions are
normal. ' The case in which region 2 is absent is equiva-
lent to h&=62. The Green's functions for the system
satisfy Gorkov's equations"

F+(r, r'; t) = —i(0
I
tp+(r, t)p+(r', 0)R

I 0), t&0

=i(0
I
|p+(r', 0)lp+(r, t)R I 0), t&0

A similar analysis for scattering from
I

k t' ) into

I
k+$ ) obtains for the Hermitian conjugate, H.c.,

of Eq. (8). The above result should be contrasted with
the process in which the electron in the Bloch state k+ t'

above the Fermi surface is scattered into the Bloch
state k f below the Fermi surface. This sort of process
has the coherence factor n~+u~- —a~+of, -——0. The scat-
tering

I

k+1' )~I k f ) does rot involve scattering the
electron in the Bloch sts, te k+f into the Bloch state
k t . The process results from the electron k+ t inter-
acting with and being condensed into the sea of Cooper
pairs, leaving behind the unpaired electron k

In the following sections we use the Gorkov theory to
. calculate the effects of the processes discussed here. In
the application of the Gorkov theory, the role of the
Cooper pairs is not explicit and consequently the
mechanism for the Tomasch eRect is obscured. It is
for this reason that we have separated the discussion
of the mechanism from the calculation.

(13)

where the operator R transforms the S-pair ground
state to an (E—1)-pair ground state. In Eq. (12) oi

is an energy measured from the chemical potential jM and

P= Ltr —(FP/2tis) ki']'Is,

I
Ir J.

I
= (k s+k,s) '&s.

In order to calculate the tunneling density of states we

must solve Eq. (12) for the composite system and
evaluate G(ki; x, x') in region 1. It is necessary to
specify the boundary conditions at the planes x= —4,
x=0, and x=d'. For simplicity we shall assume that
the chemical potential is uniform over the composite
system and that the electron eRective mass is the same
for both regions. It then follows that the functions Ii

and. G and their normal derivatives (eiG/elx and BF/Bx)
are continuous across the x=0 plane. We consider two

d and x=d': (1)
G/Bx vanish. The
corresponding to
respectivelyj are

III. GREEN'S FUNCTION

In the typical Tomasch experiment the second film, possible boundary conditions at x=-
metal B, is overlayed with a dissimilar material. In F and G vanish, or (2) BF/Bx and ei

this section we calculate the average tunneling density solutions in region 1 Lwith the W

of states for a two-region film. It is convenient (see boundary conditions (1) and (2),
Fig. 1) to choose xs= —d, xi ——0, and xs=d'. We refer of the form

Gi(ki; x, x') =G,'(ki; x, x') WGi'(ki; x, yi)+3 (x') (re+Bi) I exp( —ik,+x) %exp (iki+(x+2d) )j
+B(x')AiLexp(iki x) %exp( ik, (x+2d—) )j,

Fi+(ki; x, x') =Fr~(ki; x, x') WFi +(ki; x, yi)+A (x') hi[exp( iki+x) We—xp (iki+(x+2d) )j
+B(x') (co+Or) Lexp(iki x) %exp(—ik (x+2d) )], (15)

' The self-consistent requirement on the spatial behavior of the energy gap function is neglected.
"Ii, P, Gorkov, Zh. Eksperim. i Teor. Fiz. 34, 735 (1958) IEnglish transl, : Soviet Phys. —JETP '7, 505 (1958)$.
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where

and in region 2

x 2d7

G2(ki; x, x') =G20(ki; x, x') +G2'(k~; x, y2)+C(x') (&v+Q.) Lexp(ik2+x) %exp( —ik2+(x —2d') )j
+D(x') 62Lexp( —ik2 x) +exp(ik2 —(x—2d') )],

F2 (k~ x x) —F2 (k' x x)+F2 (k' x y2)+C(x)~2Lexp(ik2 x) +exp( ik2 (x 2d ) )]
+D(x) (Gl+Q2) {-exp( i—k2 x)—+exp( i—k2 (x-2—d') )], (16)

where

y2 ———x'+2d'.

The functions 6 and PH- are solutions for the infinite uniform superconductor':

NS iM+QJ M —0'
&~(k»'»z)= —

I
'exp(ik'+~x —z~)+ 'exp( —ik; ~x—z~) ~,25'0; i k;+

im (exp(ik;+) x—z()
2PQ & k+

exp( —ik;—
~

x—z ~)~
(17)

where

and

Q.—(~2 ~,2)1/2

=iW;=i (~P co')", —
G00 AJ

(o&A,

k;+= {(2m/5') (p+Q;) j'", j=1,2. k;~k++i/i;, (20)

will be the total density of states in the limiting case
that a,=~,.

The Gnite lifetime of the quasiparticles due to bulk
impurity scattering may be accounted for approxi-
mately by adding an imaginary part to the propagation
constants

In Eqs. (15)-(17) the subscript rv has been omitted
from F+ and G. The coefficients A(x'), B(x'), C(x'),
and D(x') are determined by the requirement of con-
tinuity at x=0. It is easily verified that the Green's
functions de6ned above automatically satisfy the
boundary conditions at x= —d and x=d'. The (—)
sign corresponds to the solutions for which F and G
vanish and the (+) sign corresponds to the solutions
having BF/Bx and BG/Bx vanish.

In the case of the strong-coupling superconductor,
the expressions for F and G should be modi6ed by
replacing ~ with Zur and ~ with q, where Z=Z(co)
is the energy renormalization factor and p=p(ar) is
the complex energy gap function according to the
Nambu theory. " These factors are significant in the
case of Pb, as has been shown by McMillian and
Anderson. '

The function ps'+&(ki, x) (for —d&x&0), the local
density of states, gives the density of available states at
x with energy co and transverse momentum ki and is
given by

p~&+'(k'; x) = —(1/m) ™1(ki;x, x') ~.-.. (18)

where Im indicates the imaginary part. The unper-
turbed local density of states,

pp&+&(ki; x) = —(1/vr)

)&™{GP(ki;x,x')WGP(ki;x, y&)J ~,-', (19)

where /; is the average electron mean free path in
region j.The case of scattering by magnetic impurities
has been discussed by Maki and GrifFin" and will not
be treated here. The strong-coupling superconductors
will have an additional energy-dependent imaginary
component for k;+ due to the complex nature of q (&o).

IV. SHORT MEAN PATH IN REGION 2

In this paper, we discuss only the case in which /2 is
suKciently small that

exp( —2d'/l2) «1. (21)
In the solutions of Eq. (16) the terms proportional to
exp( —2d'/Q) in region 2 at x=0 arise from waves
transmitted from region 1 which have been reflected
from the x=d' surface and which return to x=0. If
the mean free path in region 2 is very short, these
waves are "damped out" before they can return
to region 1. As far as the solutions in region 1 are con-
cerned, l2—+0 is equivalent to d'—+ ~.

The requirement of continuity at x=0 leads to the
solutions

~(x')=~{~p~iexp( —ik1 ~x ~)

—n'Z~ exp( —2ik~ d) exp(ik~+
~

x'
~)

~P'Rg exp(ikg+
I
x'+2d I)

+~~~P exp( —2ikg d) exp( ik~
~

x'+—2d j) I,

"Y.Nambu, Phys. Rev. 11', 648 (1960). "K.Maki and A. GrifIin, Phys. Rev. 150, 356 (1966),
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Ry= N+Q&'. (23)

In Eqs. (22) and (23) we have made the approximation
that k;+ Icl in amplitude factors but not in phase
factors. This is an excellent approximation for ki((k~, a
condition well satis6ed for electrons which are able to
tunnel from metal A to metal B. Also in Eqs. (22)
and (23), for compactness, we have not introduced
the mean-free-path parameters. The replacement indi-
cated by Eq. (20) should be made when using Eqs.
(22) and (23).

If the density of states is averaged over the variation
in the Glm thickness as well as the variation in the
insulator surface, one obtains

and

&(")=~I-PR -p(k I*'I)
—u'i4 exp(2ikt+d) exp( —skr

~

x'
~)

WP'ht exp( i—kt }
z'+2d ~)

+upR1 exp(2ik&+d) exp(ik&+
~

x'+2d ~) }, (22)

where

2 = [im/(PkpQtRtP')]l1 (u/—P)' exp(2i(k+ —k )d)] '

n =Ryder
—Ryder)

P=RtRs —hri4,

1.0
I

1.5
I

2.0
I

2.5
I

3.0

5--

terms of multiple scattering. " The coefBcient A can
be expanded in a power series with the result that

(p '+'(k ' —d))
co

=Re (p, &+~ ) 1—Q P'" ' 2P'")— , (26)
n=l

where

it = (u/p) expIi(k+ —k )d—2d/lr].

We may interpret Eqs. (26) in terms of a multiple

scattering picture. A wave traveling from x= —d and

scattering from the discontinuity in the energy gap
at a=0 has a reflection coefficient (u/p) and the re-

flected wave returns to x= —d with a phase (k+—k ) d.

Since a distance of 2d is traveled in a medium with

mean free path /& the amplitude is reduced by
exp( —2d/lt). We must recognize, however, that if
the incident wave represented a single-particle Green's

function (G wave) then the reflected wave represents

( s"'(k; —d) )= (ps"')

—(2/m. ) Im[ARt{uPht exp( —2d/lt) exp(i(k+ —k )d)

—u'&u exp( —4d/lr) exp(2i(k+ k) d)—}], (24)

where

(pot+') Re(nm/sPkpQ, ) .

In obtaining Eq. (24) we have assumed. that r, the
distance over which we average p&+&, is large compared
to k~ ' but small compared to (k+—k ) ', so that

r
r ' dx expL&ik, +x] 0,

0

Ol.

+
1
t

\

0
1.0

I

1.5

2/b, , =0.2

I

2.0
I

2.5
I

3.0

t~

+

r
r 'dx exp)&i(kt+

—
kr ) x] —1 (2.5)

0

This condition is well satis6ed for cv corresponding to
energies in the millivolt range if TO cm«r«10 4 cm.
It is usually supposed that variations in 61m thickness
are on the order of 10 ' cm. It is important to note that
(pnt+'(ka, —d) ) does not depend upon which boundary
condition was used at the free surfaces. '

When
~

(u/P)' exp( —4d/lr)
~
(1 we can write

(ps+(ka, —d) ) in a form which can be interpreted in

'4 This result holds independent of the magnitude of l~.

FIG. 4. The averaged density of quasiparitcle states near x = —d
with transverse momentum Akifkp = (kg' —k&')"'} for a compo-
site film having h2/61=0. 2. The lower curve corresponds to an
infinite mean free path in region 1 (l1 = ~) while the upper curve
is for /1=2d, where d is the thickness of region 1. The quantity
2mQId/flak p is taken to be 1601/61. For ki&(k~ the parameters here
correspond approximately to a 10-p-thick In film with an Al
overlay. The dashed lines indicate the unperturbed density of
states.

"It is important to recognize that there does not exist a one-to-
one correspondence between the nth term of Eq. (26) and the nth
term of a power-series expansion in the perturbation (61—D2).
In order to obtain the correct energy dependence for the coefficient
of exp [im (k+ k)d] it is ne—cessary to sum alj terms in the pertur-
bation expansion which oscillate as exp t ze (k+—k )dj regardless of
the power of (61—5~) which multiplies the term.
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a pair correlation function (F+ wave). Conversely, if
the incident wave is an F+ wave then the rejected wave
is a G wave. RcQection from a free surface at x= —d,
on the other hand, reRects ~G and F+—&F+. %C can
understand physically why scattering from an energy
gap involves the G—+F+ conversion if we consider the
mechanism involved in the scattering process. In Sec.
II it was shown that in the scattering process the in-
cident unpaired electron is condensed into a Cooper
pair. The unpaired electron is described by G but after
it is condensed it must be described by F".The other
mechanism involved in scattering from k~~k was the
destruction of one incident Cooper pair in such a way
that one of the electrons of this pair becomes a quasi-
particle. This incident pair is described by an P+ wave
but after scattering the remaining unpaired electron is
dcscllbcd by R G w'Rvc, Now consldcI" multiple scat"
tering: A G wave, for example, can scatter into F+ at
x= 0, travel to x= —d, reRect as an F+ wave, travel back
to x= 0, and be converted again into a G wave.

The density of states p&+& depends only upon G, there-
fore (1) a 6 wave must be reflected from the gap per-
turbation an even number of times in order to con-
tribute to p&+&, and (2) an F+ wave must be rdlected
an odd number of times by a gap perturbation in order
to contribute to p&+'. '~

In Eq. (26) the se11es of waves p" represents the
contribution to p&+) from the incident Go wave, while the
terms P" ' represent the contributions from the in-
cident F + wave.

A. Ay&A2

Thc beliRvlol of p~+) ls @Ulcc dlGcrcQtq dcpcndlQg
upon whether A~&62 or A~&h~. A case for which

~1)As 1s illustrated 111 Flg. 4, wllele (pet+1(kx, —d) ) ls
plotted for two values of the mean free path lg. The
parameters are (k+—k ) d (2mQ1/5'kr) d= 16Q1/brand
~&/~1=0.2, corresponding approximately to an In-Al
6Im with d 10&10 ' cm.

The weak harmonic series associated with the m=2
term is not resolved but causes considerable distortion
of the oscillations. Oscillations in the conductance of
Al-insulator-In-Al Giacver tunnel junctions of large
amplitude have been reported by Tomasch. ' ' The am-
plitude of the structure corresponding to lj.= 2d in Fig. 4

'6 The conversion of 6 and P by this mechanism is basic to the
proximity eGect whereby an energy gap is induced in a normal
metal in contact with a superconductor.

This ls most easIly seen In the 2"dlmenslonal NaInbu repre-
sentation, where the Green's-function matrix g has the single-
particle Green's functions on the diagonals and the pair-correlation
functions on the oG diagonals. In this representation the gap
perturbation is proportional to the o6-diagonal matrix

is comparable to the amplitude of the conductance oscil-
lations observed by Tomasch.

B. 6]+62
In the case that region1is a normal metal (h1——0)

there is no ~ and hence only the even-numbered
harmonics of the Tomasch oscillations occur in p&+).

Rowell and McMillan'8 erst reported the observation
of CGects associated with the m=2 term for an Ag-Pb
film. This effect has also been observed by Tomasch for
611Tls %'1th Ay+0 whclc lt RppcRI's Rs R weak second
SCI'lcs of osclljatlons. '

The case for which A1 &32 is anomalous in the range
since quasiparticles in region 1 cannot

propagate in Icglon 2. This DlcRQs thRt thc rcQcction
coefficient (a/P) must have modulus unity. That this
is in fact the case is easily verified making use of the
fact that E~,*=A' for ~(As.

In the case that the mean free path in region 1 is
very long (l1—+") we can expect the formation of
polgd glgeÃ$$8/t'$ foI' M462. Thc cQcI'gy of these bouQd
eigenstates is determined by the poles of A. If we
write (u/P) =e" then we 6nd

tan8= —8'sQ1/(~161 —a)'), (27)

and the condition for the vanishing of the denominator
ofA is

tan(k+ —k )d= —tan8. (28)

Equation (28) shows that the bound states are char-
acterized by the quantization of the diGercnce of the
momenta associated with the degenerate quasiparticlc
states. This klQd of qURlltlzRtloQ ls charactcllstl{ of
superconducting systems with boundary conditions
imposed on F and 8F/Bx 7If we th.ink of the quasi-
particle eigenstate as an admixture of the 4+ and P-
wRvcs lt cRQ bc dcscIlbcd Rs R bcRt modulated wave.
The rapidly oscillating wave with wavc1ength of the
order of kr ' is modulated by an envelope wave with
wavelength of the order of (k+—k ) '. These eigenstates
are characterized by quantization of the envelope
momentum. Wolfram and Lehrnan' have shown that a
theory of the Tomasch oscillation can be constructed
on the basis of this type of quantization. For infinite )&

(~a")"Z'(~ —~) (~&~2) (29)

where the co; satisfy Eq. (28). We note also that in this
case there exists no Power series exPamsioN of the -factor A
fol' cy+52 Rnd thus tIic usual cxpRnslon of thc Green s
function into a Born series is not valid.

For unite lq the bound states become scattering
resonances and the 8 function are smeared out. This
smearing process can be followed in Fig. 5, where we

r& on G carries 6 into F+ and ~+ into 6-
I8 J. M. Rowell and %. L. McMillan, Phys. Rev. Letters j5,

45' I'19a6).
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FIG. 5. The averaged density of quasiparticle states near x = —d
with transverse momentum hkiPcr=(kr' —4,'l'"g for a com-
posite film having Rs/R, =2.11. The lower curve corresponds to an
ininite mean free path in region 1 (l1 = ~) while the upper curve
is for l1=M, where d is the thickness of region 1. The quantity
2mQ1d/A'it, g is taken to be 1601/41. For k~&&k p the parameters here
correspond approximately to a 10-p-thick In Glm with a Pb over-
lay. The arrows indicate the energies of bound eigenstates. Note
that the upper curve has a shifted vertical scale. The dashed line in
the upper curve indicates the unperturbed density of states.

have plotted. (pst+I) for the parameters 2mQI/O'k&=

1601/AI and As/At=2. 6, corresponding approximately
to the case of an In-Pb film with d= I0&&10—' cm. The
locRtloIls of tile bound clgellstRtcs (corresponding to
lr= ~) are indicated by the short vertical arrows at
the base of Fig. 5. A 8 function in the density of states
is to be associated with each of these bound states. The
value oI=As/AI ——2.6 is the threshold energy s,bove
which transmission into region 2 is possible. In the
case of 6nite 3», the 8-function peaks are smeared out
int. o sharp resonance peaks. The harmonic is clearly
resolved here even in the presence of damping. Two
features are to be noted. Flr'st, we see that the anlplltude
of the harmonic grows with increasing energy relative
to the fundamental; and second, we note that the am-
plitude of both series are sharply reduced above thresh-
old. Tomasch has noted this sort of cutoff effect, above
threshoM in Al-insulator-In-Pb Alms. 4 When the mean
free path is long the scattering expansion LEq. (26)j
converges slowly and it is more reasonable to describe
the system by introducing a smaH amount of damping
into the bound-state description. Irl fact, one may
regard all Tomasch oscillations as scattering reso-
nances associated with the formation of quantized
envelope states. If l~ is small then the expansion of 3
converges rapidly and one riced only keep the first few
terms of Eq. (26).

V. SUMMARY AND CONCLUSIONS

In the preceding sections we have discussed the
mechanisms which give rise to the Tomasch oscillations.

It was shown that a spatially varying electron-electron
interaction gives rise to quasiparticle-pair interactions
which cause transitions between the degenerate quasi-
particle states. The interference between the com-
ponents causes large scale structure to appear in the
density of states. Gorkov's equations were employed
to make explicit calculations for the two-region com-
posite superconductor. Only the case in which the
overlay had a very short mean free path was treated in
detail. This situation can probably be obtained for an
Al or Ag overlay. On the other hand, there appears to
be evidence that In and Pb films anneal at room tem-
perature" so that the electron mean free path is long
in region 1. In the case of the In overlayed with Pb the
situation is complicated. The mean free path of the
quasiparticle in the Pb may be short because Pb is a
strong-coupling superconductor and the intrinsic quasi-
particle lifetime is short. Experimental difhculties occur
with the In-Pb system which appear to bc associated
with diffusion. If diffusion occurs the mean free path
in region 1 will be severely reduced and correspondingly
the amplitude of the oscillatory structure wiH be re-
duced.

The results of a situation in which /2 is large can be
anticipated. (1) Additional oscillatory factors involving
expel(~s+ ~s )d j will RppcRI lf d .ls smail coIIlpRlcd
to d such terms vill be nearly constant over the low-
energy range for which the Tomasch structure is large.
(2) Bound states will appear for all ratios of As/bt
and at all energies when both li and l2 are infinite. The
low-energy states mill be characterized by approximate
quantization of k&+—kj and the high-energy states by
the usual quantization of either k+ or k . For finite l
and l2 the high-energy discrete spectrum will be washed
out, but the low-energy spectrum will show resonance
structure.

In order to make an accurate comparison between the
results of this theory and experiment it is necessary to
calculate the differential conductance. This involves a
numerical calculation of the derivative of the convolu-
tion of the density functions of metals A and B (this
problem ls brlcgy discussed lll tile Appclldlx). Nlllllcl'-
ical calculation of the conductance is presently being
carried out and the results will be reported in a sub-
sequent publication.
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APPENDIX' TUNNELING DENSITY OF STATES

In this section we discuss a very simple model for
the tunneling of electrons between two thin f'ilms. The
tunnel junction shown in Fig. 1 consists of two metallic

"W. J.Tomasch t,'private communication).
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Hp= QT(ki)g(ki, x.)Pt(ki, xs)+c.c., (A1)

films separated by a very thin insulating barrier. The
films are infinite in the y and s directions and 6nite in
the x direction. At zero temperature a net current of
electrons Bows from A to B because of the applied bias
V. Electrons in A making collisions with the insulating
barrier at x, have a small probability T of appearing at
xb in metal B. This tunneling process can be approxi-
mated by assuming that the systems A and 3 are con-
nected by a coupling term" in the Hamiltonian of the
folm

where Pt(kz, x) creates an electron at x with transverse
momentum Ski(ki= (k„, k,) ).

In Eq. (A1) it is assumed that ki is a constant of the
motion of the electrons and is conserved in the tun-
neling process. At zero temperature electrons tunnels
only from A—+B. The systems A and B are in their
ground states

I 0&) and
I 0s) initially. After an electron

tunnels system A is in an excited state
I

rr) correspond-
ing to the loss of one electron while system 8 is in the
excited state

I m) corresponding to the addition of an
electron. According to the "Golden Rule, " the rate at
which the electron transition occurs is

~'~a=(2~/k) 21 &~ I &~ I Hp10~) I
o.) I'~(E-+E.—I')

mn

=(2~/fi) Z 2'(k~)&(k~')*Z(0~14'(k~ *.) I ts&(N 14(k", x ) 10~)

X(0n I P(k~, xs) I m&&tts
I
jk+(ki', xs) 10s)8(E„+E„—V). (A2)

We note that &0~1itt(ki, x.) I n) will vanish unless the state
I ts) has transverse momentum ki and

&ts I P(ki, x,) 10~) will vanish unless (ts
I

has transverse momentum ki' (since we have assumed the transverse
momentum is a constant of the motion). Therefore, the product vanishes unless ki= ki . Then, writing

we have

8(Z +Z —V)=f d II( —Z )ll(ro —V+8 ), (A3)

II»~n-— — d IP I
T(k.) I'Q I &0~ I

~t+(kz *) I ~& I't'(~ —I'+E-) Z I &0a 14(k~, x.) I ~& I'tl(~ —E ) I—CO kg n m

(A4)

The two sums (over n and tN) may be identified in terms of the Green's functions for A and B.The Green's func-
tion is defined as

G(r, r', t) = —i&014(r, t)yt(r', 0) 10), t&0

where (01 is the ground state. Since

p(r, t) = exp(iHt/5)p(r, 0) exp( —iHt/5),

Eq. (AS) may be written as

G(», " t) = —iX&010(+) I
~&&~14'(r'0)

I o& exp( —iE-t/&),
m

=i+(01gt(r'0)
I N)&N 1$(r, 0) 10) exp(iE„t/5)

t&0

t&0.

(A6)

The transformed Green's function is

G„(ki, x, x')
I
=. =

QO OO QO

dce exp(iud/5) d(y —y') d(s —s') expPikz((y y'), (s——s') )]G(r, r't)
—CO —CO —CO ~

(o E„+ib „—(a+E„+ib (AS)

~0 This tunneling Hamiltonian is essentially equivalent to the usual momentum space operator (see, for example, Ref. 9) .
Zs. r, Ts.r, CI, Cr.,++c.c. if T depends only upon ki. The local property of the tunneling process has been emphasized by Mc-
Millan st at. see Refs. 5 and 18).



490 T. WOLFRAM

and
ImG-(k»x') I*="=—~XI (0lu(k x) l~)l'~( —~-),

= —Z I (0IC'(k, *) I ) I'~( +~-)

Q)00

co+0. (A9)

Using Eq. (A9) we 6nd that

Wga ——2n. dkrQ
I
2'(ki) I'pg& &(ki) &0

—V, x.)pa'+'(ki) (o, x&,), (A10)

where

p' & (ki, (o, x) = —(1/m) ImG„(ki; x, x') I,=, ,

p&+& (ki, (v, x) = —(1/n. ) ImG„(ki; x, x') I,~
co&0

or&0.

(A11)

p& ~ can be interpreted as the density of electrons at x
with energy co and transverse momentum ki, and p&+~

is the density of states available for adding an electron
at x with energy or and transverse momentum ki.

The tunneling current will be proportional to H/'~~.

The metal-insulator interface will be irregular and
diffuse and the film thickness will vary so that in an
experiment one measures an average 8'gB. In the
simplest model one supposes that tunneling from differ-
ent sections of the 61m and from different points x,
to are incoherent so that as an approximation we may
average the quantities pz( & and pB&+& independently.

In Sec. IV we employ a simple linear averaging pro-
cedure for the density of states near —d:

(p &+~(ki a&
—d) )=r

r/2

ps&+&(ki, &d,
—x) dx,

rl2

(A12)

where r should be on the order of the variation in the
61m thickness. Furthermore, Harrison" has shown that

"W. A. Harrison, Phys. Rev. 123, 85 (1961).

I T(ki) I' decreases exponentially with increasing ki
so that the major contribution to the sum on k~ comes
for ki 0. Because of the fact that A;+ changes very
slowly with ki for ki((kp, the density of states
(ps&+~(ki; —d) ) will depend weakly upon k~. Conse-
quently, as a first approximation, the current will be
proportional to

d(v(p~& &(ki, o)—V, x.) )(ps&+&(kg, (g, x&) ) l~, 0,

=0 (v —V) 0 (A14)

where hz is the energy gap of metal A. In the case that
h~ ——0 the differential conductance divided by the
normal-state differential conductance will be propor-
tional to pg(+&. For nonzero hp, the ratio of the differ-
tial conductances will still be qualitatively proportional
to p&&+&. However, preliminary numerical results indi-
cate that there are significant differences.

(A13)

and the differential conductance will be dI/dV. The
density of electrons p&( & for metal A may be taken to
be the simple (7=0) BCS function

ml co—vl
pA& &(ki, (o—V, x.) =Re

~9k L( —V)'—6 ']'&2

a)—V&0


