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The limits of metastable existence of the superconducting Meissner state in a magnetic field are found
by examining the second variation o 0 of the Ginzburg-I. andau free energy. No assumptions about boundary
conditions are made, and all possible fluctuations are examined. First, confining the fluctuations to one
dimension, we show that 8 0 is positive definite exactly up to that field H,& (first calculated by Ginzburg}
at which the Meissner state ceases to exist as a Ginzburg-Landau solution. At H,2, the normal state pene-
trates spontaneously. Then we take into account arbitrary fluctuations and show that for superconductors
with it &0.5 another instability occurs at a lower field H,I, leading to a new metastable modification of the
Meissner state. This new state possesses small vortices with fluxoid quantum zero along the boundary, and
is metastable up to a field H,3, which is probably of the order of H,2(H,3=H,2=H, for a))1) . At H,3, the
normal state penetrates. Then, in a type-II superconductor with H,3 smaller than the upper critical field
H,2, spontaneous nucleation of Abrikosov vortices will take place in the normal region without violating
fluxoid quantization. This should be the correct mechanism for vortex nucleation in ideal superheating
experiments.

I. IHTRODUCTIOH

""SUALLY, the Meissner state of a bulk supercon-
ductor exists only for applied fields below the

thermodynamic critical field II, or the lower critical
field II,l, depending on whether we are dealing with a
type-I (H, (H, t) or a type-II (H,)H.t) superconduc-
tor. For fields larger than II, the normal state has a
lower free energy than the Meissner state, while for
fields larger than H, » the vortex state is energetically
favorable. But since both transitions are connected
with a finite change of the order parameter, ' and since
all the intermediate states that may occur during this
change have a higher free energy than the initial or
final state, the transition cannot take place spontan-
eously, i.e., without some perturbation of the system. '
Thus, the Meissner state may exist as a metastable
state up to higher fields, an effect which is usually
called (magnetic) superheating. The metastability
exists as long as the Meissner state represents a local
minimum of the free energy, i.e., as long as the second
variation of the free energy is positive definite.

Superheating was observed for the first time by
Garfunkel and Serin, ' and the first quantitative treat-
ment was presented by Ginzburg on the basis of the
Ginzburg-Landau (GL) theory s Although Ginzburg
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IThis is clear for transitions to the normal state, but it is
equally true for the transition to the vortex state (which is of
second order with regard to bulk properties), since macroscopic
(and even quantized) vortices are created.

2 Here we do not take account of thermodynamic fluctuations.
3 M. P. Garfunkel and B. Serin, Phys. Rev. 85, 834 (1952}.
4 V. L. Ginzburg, Zh. Eksperim. i Teor. Fiz. 34, 113 (1958)

)English transl. : Soviet Phys. —JETP 7, 78 (1958)g.
5 V. L. Ginzburg and L. D. Landau, Zh. Eksperim. i Teor. Fiz.

20, 1064 (1950).

did not consider the transition to the vortex state, his
results for bulk specimens are now realized to be correct
for all superconductors. He showed that the Meissr. er
state of a superconductor (including the boundary)
exists as a solution of the one-dimensional GL equations
only for applied fields smaller than a certain maximum
field II,~, and he interpreted this 6eld as the super-
heating field. For superconductors with a very large
GL parameter II., he found H,~=a„while H, ~ tends to
infinity for ~—+0. For type-II superconductors, de
Gennes and independently Bean and Livingston' intro-
duced a different theoretical concept by discussing the
electrodynamic surface barrier which opposes the entry
of vortices and is produced by the surface supercur-
rents and the image force in the London approximation.
Besides providing only a rough estimate for the super-
heating field in the high-~ limit, this concept does not,
in our opinion, give an adequate picture of the mecha-
nism of spontaneous vortex nucleation. Recently,
de Gennes, Matricon, and Saint-Jamesr again (but
independently) applied Ginzburg's method to both
kinds of superconductors and obtained the same re-
sults. Fink and Presson' found somewhat diferent
numerical values for the superheating field of type-II
superconductors. Experimentally, Ginzburg's calcula-
tions are confirmed fairly well for ~&1,' and for

~ P. G. de Gennes, Cours: Metaux et A/Gages Supraconducteurs
{Facnlth des Sciences, Orsay, France, 1963) LEnglish transl. :
Superconductivity of Metals and Alloys (W. A. Benjamin, Inc.,
New York, 1966)j; C. P. Bean and J. D. Livingston, Phys. Rev.
Letters 12, 14 (1964).

7 P. G. de Gennes, Solid State Commun. 3, 127 {1965);J.Matri-
con and D. Saint-James, Phys. Letters 24A7 241 (1967).

8H. J. Fink and A. G. Presson, Phys. Letters 25A, 378
(1967).' A. S. Joseph and W. J. Tomasch, Phys. Rev. Letters 12, 219
(1964); R. W. de Blois and W. de Sorbo, ibid. 12, 499 (1964);
G. Boato, G. Gallinaro, and C. Rizzuto, Solid State Commun. 3,
173 (1965);J. C. Renard and Y. A. Rocher, Phys. Letters 24A,
509 (1967);H. J. Fink, A. S. Joseph, and W. J. Tomasch, Phys.
Rev. 157, 315 (1967).
475



L. KRAMER I70

0.1." Agreement seems to be especially good for
large ~.

In this paper, we want to investigate the metasta-
bility of the Meissner state in a mathematically rigor-
ous way based on the GI. theory (a brief discussion of
the high-I{: limit. was presented before) ."We essentially
discuss the second variation of the free energy in the
Meissner state assuming that the boundary conditions
for the order parameter are "natural, " i.e., are deter-
mined by minimization. In Sec. II we state the varia-
tional problem and present an expression for the second
variation 6'0 of the free energy, which allows us to ac-
count for variations of the order parameter along the
boundary of the superconductor. In Sec. III we confine
ourselves to one-dimensional GL solutions, as the
previous authors have done. Using Iacobi's theory of
the second variation, it is shown that 6'0 is positive
definite exactly up to the maximum field II,&, for which
the GL equations admit the Meissner solution. There
an instability occurs, which leads directly to the normal
state. Thus a mathematical basis is provided for the
results of the authors of Refs. 4, 7, and 8.

In Sec. IV we take account of fluctuations of the
order parameter and the supercurrent along the bound-
ary of the superconductor and show that for materials
with It&0.5 these fluctuations lead to an instability of
the Meissner state at a 6eld H» lower than II,2. Analyz-

ing the critical fluctuations we gain some insight into
the new equilibrium state they lead to. It turns out to
be a new metastable modi6cation of the Meissner state
which has a layer of small "vortices" along the surface
of the superconductor. These vortices are very different
from Abrikosov vortices mainly because they have zero
fluxoid quantum. For large ~ this instability occurs at
B,(=0.745 B.,"and thus corresponds to the instability
found by Galaiko. " He concludes, however, that it
leads to spontaneous vortex nucleation by means of
thermodynamic Ructuations" (in contrast to experi-
ments) .We do not support his point of view, but believe
that this new metastable state persists up to a field

II,3 of the order of II,~. For large K it can be shown that
H,3=II,2 ——B,. At P,s the normal state will penetrate.

Finally in Sec. V we present a picture for the spon-
taneous formation of Abrikosov vortices by assuming
that they can nucleate spontaneously only in the nor-
mal region. This seems the only way in which vortices

'0 J. Feder, S. R. Kiser, and F. Rothwarf, Phys. Rev. Letters 17,
87 (1966);J. P. Burger, J. Feder, S. R. Kiser, F. Rothwarf, and
C. Valette, in ProceeCings of the Tenth International Conference on
Loze- Temperature Physics, Moscow, 1966 (Proizvodstrenno-
Izdatel'skii Kombinat, VINITI, Moscow, 1967);F. W. Smith and
M. Cardona, Solid State Commun. 5, 345 (1967); Phys. Letters
24A, 247 (1967);R. Doll and P. Graf, Phys. Rev. Letters 19, 897
(1967)."L.Kramer, Phys. Letters 24A) 571 (1967).

"V. P. Galaiko, Zh. Eksperim. i Teor. Fiz. 50, 717 (1966)
I English transl. : Soviet Phys. —JETP 23, 475 (1966)7.' V. P. Galaiko, Zh. Eksperim. i Teor. Fiz. 50, 1322 (1966)
)English transl. : Soviet Phys. —JETP 23, 878 (1966)j.

can be formed without ever violating fluxoid quantiza-
tion.

II. STATEMENT OF THE VARIATIONAL
PROBLEM

The (magnetic) Gibb's free energy of a superconduc-
tor as derived by Ginzburg and Landau' is

0= d'rp (1—F') '+ (~—'VF) '+F'Q'+ (Ho+curlQ) '].

Here Ii means the absolute value of the complex order
parameter P=F exp(ip); the "superRuid velocity" is
Q=V&p/{{:—A (note: curlQ = —curlA= —H); and Ho
is the applied magnetic 6eld. We are using the usual
dimensionless units where lengths are measured in
units of the London penetration depth AJ., fields in
units %2H, and energies in units HP/4qr. The complete
6rst variation of 0 is given by

80 =2 d'r I fLF(F'+Q' —1) —(v/~) 'F]

=+q LF'Q+curl curlQ]}

+qfdS [f 'Vp+qy(H, +curlQ)]. {q{

(v/~) F=F(F +Q —1) ~

curl curlQ = —F'Q;

and the natural boundary conditions

(3)

(4)

c{F/Bn=0; Ho —curlQ. ——

(8/Bn means the normal derivative at the boundary. )
In deriving this last result, F and Q were varied even
at the boundary. In our opinion this is the right pro-
cedure, since in the region where the GL theory is ap-
plicable (that is, for T +T,) the coherence len—gth and
the London penetration depth become very large.
Then the region, which is influenced by the boundary,
is negligible compared to them. This just means that
the bulk free energy itself determines the boundary con-
ditions by minimization. But now the boundary condi-
tions themselves can become unstable.

In order to test GL solutions for stability we must
examine the second variation of 0, given by

+4FfQ q+F'tP+(curly)'}. (6)

We have integrated by parts and made use of the fact
that curl Ho ——0. The variations of F and Q are called

f and tl. The condition 80=0 for all f and g leads to the
GL equations
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If, on inserting the Meissner solution for F and Q, this
quadratic functional is positive definite, the solution
is stable against small fluctuations. Thus, in order to
find. the stability limit of the Meissner state, we have
to minimize PQ with respect to f and q, and find out
when the minimum becomes negative (a quadratic
functional has either the minimum zero or —~). At
this point there exist (nontrivial) variations f and q
which yield PQ[ f, q] =0, so that 52Q is positive semi-
dehnite. These "critical variations" clearly are solu-
tions of the Euler-I. agrange equations for PQ, which
are called the Jacobi equations for Q."

For simplicity, consider a superconductor occupying
the half-space x&0. The magnetic fieM is applied in
the 2 direction. In the usual Meissner state Q has only a

y component (simply denoted by Q) and all quantities
depend on x only. Specializing Eq. (6) to this geometry,
it is easily seen that all variations in the s direction
make a positive contribution. Thus we may assume
translational invariance in the s direction and confine

q to the x-y plane [q—= (q„q„)].
It is natural to expand f and q in a Fourier series

with respect to y. Again, upon inserting a general
Fourier expansion into 6'0, one sees that in order to
find the minimum we may restrict ourselves to the
specialized expansions

f= Qf(k, x) cosky;
k)0

q.=g q. (k, x) sinky;
k&p

q, =Q q2(k, x) cosky. (7)
k)O

Inserting Eq. (7) into Eq. (6) we obtain

g2Q P dx{[3F2+Q2+(k/») 2 1]l+2» 2fI2-
k&O p

+4FQfq +F2[q 2+q 2]+[q ' —kq ]2} (g)

(The prime means the derivative with respect to x.
Factors in front of the integral were omitted since they
are of no importance. ) As there is no coupling between
different modes, only a single mode contributes to the
instability and the sum may be omitted. The critical
wave number k is determined by minimizing PQ with
respect to it. Minimization with respect to g, leads to
the simple relation

q, = (F'+k') 'kq„',

which finally gives us

)2Q dx{[3F2+Q2+ (k/») 2 1]f2+» 2fI2—
0

+4FQfq +F2q 2+ (F2+k2) —1F2q &2I (10)

See, e.g. , I.M. Gelfand and S.V. Fornin, Calculus of Uariatiorls
{Prentice-Hall, Inc. , Englewood Cliffs, N.J., 1963).

Unfortunately, the general minimization of this ex-

pression is quite a complicated numerical procedure
(although perhaps not hopeless), sin.ce F and Q can
only be obtained by numerical integration of the GI
equations.

IG. CASE I =0
First of all, consider the case k =0, where f and q de-

pend on x only. The problem is one dimensional and

q has only a y component. On integrating Eq. (10) by
parts we obtain

PQ = dx{f[(3F'+Q' 1)f —»'f"—+2FQq„]

+q.[F'n q2"+—2FQf]I »'ff—' I* o q2q=w'
—I*=o (11)

(f, q and f, q are identical for k=0.) As explained be-

fore, the critical fluctuations minimize PQ and thus are
solutions of its Euler-Lagrange equations

»
—'f"—[3F'+Q'—1]t'=2FQq .

q
"—F'q =2FQf. (12)

One may look upon these equations also as the varia-
tional equations" (in physical literature often called
"perturbation equations") of the GI equations, which
in one dimension obtain the simple form

» 'F"=F(F'+Q' —1); Q" =F'Q. (13)

Suppose the solutions of Eqs. (13) with the bound-
ary conditions of the Meissner state (F +1, Q~O fo—r
x—+m and F'(0) =0, Q'(0) = —H2) were given numer-
ically for different possible applied fields Hp. Instead of
characterizing the solutions by IIp they may be speci-
6ed by the boundary value of the order parameter
F(0)=—F&. So we have a one-parameter family of
Meissner solutions F(x; F2), Q(x; F,), and we now

easily see that

f(x) =BF(x F2)/BFp.

q„(x) =BQ(x; Fp)/BFp (14)

are solutions to Eqs. (12) with the boundary conditions

f, q„~O for x~~ and f'(0) =0. Inserting this result
into Eq. (11) we obtain

BQ BQ' BQ BHp

~~o ~~o ~=o ~~o ~=p~~o

For low fields PQ&0 holds since then both derivatives
are negative. However, the numerical calculations show'
that the curve H2(F2) is not monotonic but exhibits a
maximum at a certain. value F2=F (lying between
1/K2 and 0) . This field is the maximum field H, 2 up to
which the Meissner solution exists calculated by the
authors of Refs. 4, 7, and 8. We have plotted it in Fig. 1.
Hut according to Eq. (15) PQ changes sign exactly at
this field, and thus F and Q will slip into some other
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It is not dificult to get. some idea of g„by remember-
ing that the last term of this equation changes sign
somewhere near the boundary of the superconductor if
the applied field is larger than H, ~. Let us assume that
Q'=-,'at x= @0. Then q„ looks about as shown in Fig. 2.
We have also plotted q, as determined from Eq. (9)
and the amplitudes of the current variations j as deter-
mined from Maxwell's equation curl curl g= —j. This
leads to

I.O—

0.5

j.= (1—Q') q. sinky; j„=( 1 —3Q') q„cosky,

(26)

where k is determined by Eq. (22) . Thus j„changes sign
at $0 while j, does not. In Fig. 3 we have plotted the
two-dimensional pattern of the current variations. They
form small vortices along the surface of the super-
conductor with alternating direction of rotation.

What happens to these critical variations as the
critical point is passed) It turns out that the higher-
order terms in the free energy make a negative con-
tribution so that the amplitudes of the variations are
not bounded at the beginning. They will grow in time
as soon as H, & is reached. Strictly speaking, we cannot
describe the further development of the system with the
GL theory since it gives us only the time independent
equilibrium states. But it is not hard to guess what will

happen: The amplitudes grow until at. some point the
order parameter reaches zero. Then a new metastable
equilibrium state will be established, which can be
visualized as a superposition of the usual translationally
invariant screening currents of the Meissner state and
these surface vortices. Certainly they will now be some-
what distorted by higher-order terms. We have tacitly
taken account of this in Fig. 2 by adjusting the bound-
ary conditions in the right way. This would not be
possible in the linear approximation. Figure 2 should
exhibit the approximate proportions of the amplitudes

0.8

V

FIG. 3. Approximate form of the critical-current variations j.

of q and j as compared to the translationally invariant
parts Q and I at an applied field II,=0.9 II, for large
~. At lower fields the amplitudes are larger while they
tend to zero for IIo~II,2 (this is strictly true only for
g—moo).

It should be emphasized that these variations have
nothing to do with Abrikosov vortices and do not, in our
opinion, represent nuclei for them. The surface vortices
have no singularity of the superRuid velocity at their
center and do not carry a Quxoid quantum. Nucleation
of Abrikosov vortices must be based on an entirely
diferent mechanism. As the field is increased above H, ~,

the surface vortices and their mutual distance become
larger. At some field H, 3 which probably does not diRer
much from H,~, the state ceases to be metastable and a
transition to the normal state takes place similar to
that discussed in the preceding section. In the case
rc—+~ we have H,B=H,2 =H.. This is easy to understand
since then the translationally invariant part of the order
parameter becomes zero at the surface and the ampli-
tudes of the oscillations vanish.

The surface vortices represent a state with lower

energy already at fields somewhat smaller than H, ~,

but their formation can be delayed up to H, ~. Neverthe-
less, in ac".ual experiments the transition might take
place at a lower field.

Ch
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FtG. 2. Amplitudes of the critical-velocity variations q =
(q, g„) and the critical-current variations j= (g„f„) for z&)1 and
HO=0.9 H, in qualitative form. The translationally invariant
parts Q(=Q„) and J(=J„) have been added for comparison.

V. SPONTANEOUS VORTEX NUCLEATION IN
TYPE-II SUPERCONDUCTORS

We showed that the Meissner state of a superconduc-
tor with ~&0.5 suffers a strange modification before its
limit of metastability is reached. Furthermore, we made
plausible that at this limit a transition to the normal
state takes place. How do vortices penetrate a type-II
superconductor) The simple answer: In the absence
of any perturbation vortices will never penetrate spon-
taneously a superconducting region, because this proc-
ess could only be achieved by a change of the Auxoid

quantum number in the superconductor and therefore a
high-energy barrier would have to be passed. " Super-

"N. Byers and C. N. Yang, Phys. Rev. Letters 7, 46 (196k);
F. Bloch, Phys. Rev. 137, A787 (1965).



conducting states with different numbers of vortices
behave like different discrete and stationary quantum
states, so that a transition between them can only be
achieved by some perturbation.

In carefully designed superheating experiments the
Meissner state will always become unstable with re-
spect to the normal state. The penetration of the normal
state is allowed since no Bux penetrates the supercon-
ducting region. The screening current system is pushed
inside the superconductor without losing its connected-
ness. Then, if the applied Geld is still below the upper
critical field B,~, spontaneous vortex nucleation will

immediately take place in the normal region. Thus the
Qux is not carried into the superconductor but vortices
grow out of the normal state, trapping their Aux quan-
tum from the beginning on.

This picture of vortex nucleation implies that the
superheating field is larger than or equal to the thermo-
dynamic critical Geld H, for all temperatures and super-
conductors independent of the applicability of the GL
theory. " Our assumptions also lead to the conclusion
that not only the Meissner state but every vortex state
is metastable against a change of the number of Aux

lines, Thus, if one starts from the equilibrium mixed
state with an arbitrary number of Abrikosov vortices,
similar superheating effects should be observed.

VI. CONCLUDING REMARKS

In Sec. II we found the stability limits of a family of
numerically known solutions of the GL equations with-
out any additional calculations by restricting the per-
missible variations to one dimension. It is a general
feature of Jacobi's theory'4 that this can always be done.
Each solution of the Jacobi equations $Eqs. (12)j is
embedded into a family of solutions of the Kuler-
Lagrange equations t the one-dimensional GL equa-
tions (13)j in such a way that the former can be ob-

tained by differentiating the latter with respect to some
parameter characterizing the individual solution. This
theory is in fact applicable to any numerical solution of
a variational problem and characterizes its stability.
However, the method cannot in general be used when

only a restricted class of solutions of the variational
problem is available and a wider class of variations is
admitted in the stability problem. This is why it could
not be used in Sec. IV, where two-dimensional varia-
tions were considered.

The discussion in Sec. IV partly suffered from the
fact that we had to investigate the nonequilibrium be-
havior of a system with a theory which is essentially
time-independent. It might be worthwhile to attack the
problem with a time-dependent generalization of the
GL theory. The result shows that one must be very
careful when assuming some rather "obvious" sym-
metry property of superconducting states. Perhaps there
exist other cases where something similar happens
(e.g., current-carrying superconductor, surface sheath) .
Unfortunately, we do not know of any experiment to de-
tect this new metastable Meissner state, since the Geld
outside the superconductor is not distorted by the
surface vortices. Only the penetration depth varies
periodically by a small amount.

It was pointed out in Sec. V that a superconducting
region in equilibrium should always be metastable
against a change of Aux in its interior. Therefore, we can
explain supercooling of the mixed state in much the
same way as superheating. Our model provides a
surface mechanism for hysteresis in ideal type-II super-
conductors without reference to the superconducting
surface sheath.
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