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Elasticity Effects in Type-II Superconductors
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A phenomenological theory of strain and stress eGects in Ginzburg-Landau superconductors is given.
The theory provides formulas for the elastic constants and the specific volume in the mixed state, and it is
shown how to obtain a complete set of appropriate phenomenological parameters. We also obtain correct
expressions for the interaction energy between Quxoids and localized strain Gelds which are only partly in
agreement with the expressions used by previous authors.
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Y application of thermodynamic principles, the
changes in elastic constants and speci6c volume of

type-I superconductors at the transition to the normal
state have been related to the stress or strain depend-
ence of the critical magnetic 6eld. ' Similar relations
for the transition at the upper critical field H, 2 and for
the zero-Geld superconducting state below H, & of type-II
superconductors were derived by Hake. ' In order to
obtain a more detailed description of the mixed state
between H,I and H,2, we derive in this paper a set of
modi6ed Ginzburg-Landau equations with strain-de-
pendent parameters. Solving these equations by means
of a perturbation calculation we obtain expressions for
the elastic constants and the speci6c volume in the
mixed state. These results provide formulas for deter-
mination of the strain dependence of the Ginzburg-
Landau parameter and the thermodynamic critical
field from measurements of elastic constants.

A perturbation calculation of the free energy gives
us correct expressions for the interaction energy be-
tween Quxoids and slowly varying strain fields. These
expressions provide the correct starting point for cal-
culation of the pinning of Quxoids by the localized
strain 6elds of dislocations and coherent precipitates.
The basis for the existing 6rst- and second-order cal-
culations by Kramer and Bauer, ' by Webb, 4 and by
Toth and Pratt is con6rmed but additional terms are
found. For the second-order calculation the additional
term is negligible in the one material for which experi-
mental information on its coeS.cient exists.

DERIVATION OF THE MODIFIED GINZBURG-
LANDAU EQUATIONS

We choose for convenience H.2 the upper critical
6eld and K' the square of the Ginzburg-Landau parame-
ter as independent material parameters. Their strain
dependence is characterized by the following phenom-
enological coefficients, which correspond to the 6rst
and second derivatives of H, 2 and K' with respect to
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These parameters are second- and fourth-rank tensors,
respectively, and their symmetry properties are deter-
mined by the crystal symmetry of the superconductor.
In the case of cubic symmetry, which is of most practical
interest, we have a;, =ah;;, b;;=bb;; and the a;;~~'s
and b;;y~'s are reduced to two sets of three independent
components each. 6;; is the Kroneker delta. For a more
detailed discussion of the symmetry properties, see
Refs. 1 and 6.

Taking into account all terms up to the second order
in e;, we obtain for the free energy of the superconductor'
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' See for example C. S. Smith, Solid State Phys. 6, 215 (1958).
~ This equation becomes obvious if one goes back to an expansion

of the free energy G,o(n, e) in zero magnetic Geld in powers of n
and e at n=0, &=0, where n is the super electron density. The
terms of Grst and second order in n and ~ are

BG 1 B'G BG 1 B'G—n+ ——n +—t''+ 6'g'cjfg)
Bn 2 BfP BE &. 2 Bc;&Bey~

B2G 1 B'G, 1 B'G

1 B4G

+4B B B
&"'"'"'

Since we expand at n=0, we have BG/Be;;=0 if the system in the
normal state is in equilibrium with respect to e;;. For the same
reason B G/Be;;Bz, & is identical with the elasticity tensor in the
normal state. The connection to Eq. (2) is made by adding the
field-dependent typical Ginzburg-Landau terms and by intro-
duclllg
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Equations (1) are self-evident from the definitions of K and H,&.
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ELASTICITY RI" FECTS IN T YPE-II SUPERCONDUCTORS

The first integral in Eq. (2) is the Ginzburg-Landau
expression for the free energy in Abrikosov's units,
with strain eGects explicitly included. e;; is defined to be
zero in the unconstrained crystal in the normal state.
The material parameters (( and H, '=H.ss/2ss are the
values at zero strain. Although the correct measure-
ment of these parameters should be done at constant
volume and not as it is usually done in experiments at
constant pressure, in fact the diGerence is very small so
that it can always be neglected and the usual values
may be taken. The second integral in Eq. (2) contains
the elastic energy and the work that is done by volume
forces E; and the third integral, extending over the
surface of the superconductor, gives the work done by
the applied surface stresses 0;;. C;;qp is the tensor of
the elastic constants in the normal state, u; is the dis-
placement vector, and e; is the surface normal vector.
In Eq. (2) and throughout this paper we use the
Einstein convention of summation over repeated
indices. By variation of G with respect to f* and 2, we
obtain the modified Ginzburg-Landau equations

—curl curlA =A
~ iP ~'+ (i/2(() (f*&P iP'7P)—, (3a)
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Variation with respect to I; yields the modi6ed elas-
ticity equations

go ~ 1y

=K;+b(r s) e, Eo"i (H,s—/4ir) (av I P P —sbv I P l4) 3~

(Sa)

where 8(r—s) is a Dirac 5 function located at the
surface.

For the sake of simplicity we have confined ourselves
in Eq. (Sa) to symmetries for which a fourth-rank
tensor T obeys the relations T;;»=T;;&&=TI,&;;. This
includes cubic and hexagonal symmetry. The extension
to any other symmetry is straightforward. For

~ f ~'=0
Eqs. (5a) are the familiar elasticity equations of the
normal state.

RELATIONS FOR THE SPECIFIC
VOLUME CHANGE

For the macroscopic part of the strain fields, that is
slowly varying compared with

~ P ~s in the mixed state,
it is convenient to introduce the local averages (us),
&)P )s&, and () lb j') over a unit cell of the periodic

'N. A. Abrikosov, Zh. Eksperim. i Teor. I'"iz. 32, 1442 (1957)
fEnglish transl. : Soviet Phys. —JETP 5, 1174 (1957lg.

functions
) P ~' and

~ P )'. Equation (5a) can then be
rewritten as

=K'+b(» s—)e~L~'~ (H—'/4~)(~'~&I 4 I'& —s4(l 4 I'&) j.
(Sb)

In this equation the oscillating parts of us,
~

lb ~', and

j lb ~' have been omitted because the corresponding
terms can be interpreted as rapidly oscillating forces of
zero average, which do not influence the average of I;
or e;; on a large scale. Integrating Eq. (Sb) with respect
to x; we obtain for uniform (~ P ~'& a difference in strain
between the superconducting and the normal state:

ev' —e' "=—5'*isi"(H'j«) ((rsvp(l lt I') —r'bs(&l p ~')),

(6a)

where S;;J,~ is the tensor of elastic compliances. Higher-
order terms in the very small parameter 5,;s((H,s/4rr)
have been omitted in this result.

In the case of cubic symmetry this strain difference is
equivalent to a specific volume diGerence

AV/V =3K(H.'/4s) ((s&[ lP [')—sb() iP )')), (6b)

where K= s (S»tt+2S»») is the compressibility.
Substituting for a and b the definitions Eq. (1), we

obtain at zero magnetic field the same result as for
type-I superconductors':

(hV/V)~~=sK(H. /4rr) (BH,/BV). (6c)

CHANGE OF ELASTIC CONSTANTS

The natural way to solve Eqs. (3), (4), and (Sb) is
a perturbation calculation with the solutions of the
unmodi6ed Ginzburg-Landau equations and the elas-
ticity equations of the normal state as zero-order solu-
tions. The perturbation parameters are e;; for the calcu-
lation of

~ P ~' and A, and Svs((H.s/4') for the calcula-
tion of s;;. 5;;si(H,s/4ir) is always very small (of the
order of 10 r) and by the requirement that s,, be also
small compared to 1, we are only restricted to the
validity range of linear elasticity theory, and the lowest
nonvanishing order of the perturbation is always a
very good approximation.

In order to obtain the linear response of the system to
applied volume forces and surface stresses, we have
only to calculate the first-order perturbations of
(~ P ~') for some selected values of the applied magnetic
field.

(a) H, (H,r.
&j 0 )s&=j 0 P=1+(rs«sr —bs«si,
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TABLE I. CoefFicients of the strain dependence of Hc2 and a' in Pb-Tl alloys at 4.2'K from experimental data of Alers. '

(n Cz/Ck) a k (C'—C")/C" (SC/SH, )ir„H.k/C +1111 ~1122 ~1111 ~1122

Pb—1.7 at.% Tl

Pb-6 at.% Tl

Pb—17.4 at.% Tl

6X1o '

4.3X10 ' 5.7X10 '

S.SX10 '
6.6X10-6

7.6X10-'

11.9

11.6
13.6

1.7
3.3

~ See Refs. 11-13."Cl, = ~ (C11u+C1122+2C&212).
C = 2 (Cllll C1122) s

and therefore

8 Nk= (a;,—b,,) (aki —bki)
BXjBSZ

and a change of the elastic constants with field,

(
ac;;„1 H2 4a

H II=IIc2 Hc2 4'r 2K

Thus the system responds according to Eq. (Sb) with
an effective elastic tensor

(Cijkl )II=0 +ijki (Hc /4s)

Xp~„kt 2b;p, i+—(a—;; bg) (aki——bk~) 7. (7a)

This can be rewritten by means of the definitions (1) as

(Cjj7g [ C jk$ )H=p ('1/8m ) LcI'(Hp) /Bk, i8kki7, (7b)

which is again the same relation as for type-I super-
conductors.

(b) H, near H. Fkor simplicity we assume that the
second-order coeflicient of an expansion of (t f ~') in
powers of (1—H, /H, &) is negligibly small compared.
with the first-order coeKcient 2k'/(2~' —1)P. This was
implicitly shown to be true by Lasher' in a calculation
of the free energy and the magnetic moment near H,2.

We have, then

2' H,
b. " 1- +;,;,

2K H.2

X2k'/(2k' —1)P

with P = 1.16 for the triangular Aux line lattice. "
Inserting this in (Sb) and keeping only the linear terms
in (1—H, /H, k), we get the effective elastic tensor

H' H.
Cijk Z Cijk Z ~ijk Z ~ ++ij~k Z

4x C2

4~' 2L'

2~2 f 2~2

Equation (8) indicates a jump of the elastic constants
at H, g,

(hc;,ki)rr Ir„——(H, '/4m)a;saki(2k'/(2»' —1)x1.167, (9)

' G. Lasher, Phys. Rev. 140, A523 (1965).' W'. H. Kleiner, L. M. Roth, and S. H. Autler, Phys. Rev. 133,
A1227 (1964).

X2K'/(2k' —1)X 1.16. (10)

Equation (9) is correct independent of our assumption
that (~ f i') is linear in (1—H, /H, k).

If z and the thermodynamic critical Geld H, are
known for a material, all the coefBcients introduced
in Eq. (1) can be obtained by elasticity measurements
and a specific volume measurement. For cubic sym-
metry, a»'=a» ——a»' are directly given by the jump
of the bulk modulus at H, k as shown in Eq. (9). Ac-
cording to Eq. (6b) a measurement of the volume
difference between the normal state and the zero-Geld

superconducting state provides then b» ——b» ——b33. After
the a; s and b; s are known, any pair of coefIicients a;;kz
and b;,ki is obtained through Eqs. (7a) and (10) by a
measurement of the Geld dependence near H, 2 and the
total change between the normal and the zero-field
superconducting state of the elastic constant C;;kz
with the same indices i, j, k, l. This method is of interest
from the experimental point of view because direct
measurement of the strain dependence of H, 2 and K

is very dificult.
The only existing experiments from which some of our

parameters can be obtained are the measurements of
the sound velocity in Pb-Tl alloys by Alers. »" From
his data we obtain the numbers given in Table I.

INTERACTIONS BETWEEN FLUXOIDS AND
ELASTIC DEFECTS

We start with an exact solution $0, Ao| kp'i of the
modified Gin zburg-Landau equations (3) and (4)
and the modified elasticity equations (Sa). The in-

troduction of an internal strain source like a dislocation
or other defects imposes new boundary conditions on
the elasticity equations. Writing the total strain field

k;; under these boundary conditions as e,;=kk;;+i)@,

"G. A. Alers, in Proceedings of the Conference on the Physics
of Type-II Superconductivity, Cleveland, Ohio, 1964, Vol. 1, p. 82
(unpublished) .

~' G. A. Alers (private communication).
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we obtain for p;j the equation

(~/», ) [ski(C, ,ki (H—.'/4~) (o,;ki I p I' —-', &;;kz I + I') )]—(H.'/4~) (~/», ) [ooki(ikgki(l 0 I' —I po I')

—o&"ki(IO' I I fo I ))] (H /4&)(oj/oj&')[ik'i(14' I 10'o I ) o& "(I O'
I 14'o I )]=o (Sc)

By inserting o=op+z in Eqs. (3) and (4), new equations for A and tt are obtained. In these equations we consider
the terms containing q;; as a perturbation. The solution is obtained as a perturbation series

4 =@+go,
n=»

A =Ao+Qn,
n=»

where y„and o.„are proportional to the nth power of g;j. The equations for q» and o.» are, for example,

—curl curln, =nk
I yo Io+2Ao «(o kfo)+(1/~) Im(4o*~o k+o k*'Vo)

[(Ã/K) +Ap] pk+2A, [(i'7/ii) +Ao]go=mr[1+a jop j+oA'jkiop jooki] '(v'k I
—

o o I +2&p Re(&utp) )

X[1+4jopij+2fiij'klooiiopkl]+»Iii[(&ii+iiiikiooki) —
I 4'o

I (&ii+&iikiooki) ]go. (4b)

Inserting o =op+'g& l//=go+Pop
&

and A =Ap+ gnn &n

the free-energy equation (2), we obtain the energy of
the solution with no defect and additional terms
which we arrange in rising powers of g. Using the fact
'that Ap leap op'& are a solution of Eqs. (3), (4), and (5),
we obtain the erst-order term

HQ
(ik'

I A I'+o&'i I A I )
4m

(11)

We have neglected higher orders of the very small
parameter Sgk&(H, o/4s) in this result, and consequently
for g;; the strain field of the defect in normal material
gp 'j may be taken, because the corrections from the
terms containing

I P I' in Eq. (5c) are also of the order
S;;ki(H,o/4s) .

For the second-order energy contribution we obtain
a very lengthy expression containing y», n», ep, and p.
Since a solution of Eqs. (3b) and (4a) for opk and nk is
not known and is very difficult to obtain, we give here
only a second-order formula for the simple case where
for symmetry reasons the strain field of the defect p;;
is a pure shear. Then a;,q;j and the cross products
8 '~Icgp '~gp ~ aild 0 'jk ~6p 'j'Qp ~ are zero, and therefore the
first-order corrections p» and 0.» are zero. The second-
order energy contribution in this case is

n;~~ki(oCeki" —(H'/g~) (&'ski I A I'

—o&' ki I A I') )d'» (»)
where q;, is the solution of Eq. (Sc) with f =Pp. Higher
orders of $@ki(H,o/47r) have again been neglected in
this result.

DISCUSSION

AE» can be interpreted as the first-order interaction
energy between a Quxoid or a configuration of Auxoids
characterized by fp Ap op)i and an elastic defect
characterized by its strain field gp;j. AE2 contains the
elastic energy of the defect itself, and therefore the
energy EE2 of the defect at a large distance from the
Auxoid configuration has to be subtracted from AE2
to obtain the second-order interaction energy. We com-
pare now our general results with the explicit calcula-
tions of the interaction between defects and single
Quxoids by previous authors. The expression in brackets
in Eq. (11) can be interpreted as the stress field op;,
of a Quxoid. The first-order interaction energy is then

E» = qp'~'&p "d'r.

This form, and the appropriate calculation of op'j
from Eq. (Sa), is identical with the formalism used by
Kramer and Bauer in their calculation of the first-order
interaction between a Auxoid and an edge dislocation.
But their result for o;, is only obtained from Eq. (Sa)
if the coeKcient b;; is assumed to be zero. Whether or
not the corresponding difference in AE» is significant
cannot be decided because no measurements are avail-
able from which a;j and b;, can be determined separately.
Equation (Sc) with P=Pp and Eq. (12) are identical
with the problem of a defect in a medium with local
variations 8C;,ki(r) of the elastic constants C;;ki, where
in our case BC@ki —(H.o/47») (c;;ki I

P——o I'—-', f;,ki I Po I') .
The formalism used by Webb4 to calculate the interac-
tion between a Ruxoid and a screw dislocation and,
following the same scheme, by Toth and Pratt' to cal-
culate the interaction between a Quxoid and the shear
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stress field around a coherent precipitate, correspond to
use of our Eqs. (Sc) and (12) with the additional
assumption b;;&&=0. Alternatively these calculations
may be regarded as relying on the assumption that
/ P f'=f P [' everywhere. Then the same factor u;,z&-
—',b;;~~ appears in Eqs. (Sc) and (12) and in Eq. (7a) for
C;;I,p —C;,I,~". Under either of these assumptions, the
appropriate coefBcients are available for niobium,
vanadium, and tantalum from the measurements by
Alers and Waldorf" on the changes of elastic constants
between the normal and superconducting states
C;;I,&' —C;;&p. More recent measurements by Alers on
some lead-indium alloys have shown that in fact the
terms in b;;I,~ are much smaller than the terms in a;;a~
for these alloys (see Table l) . However, the coeKcients
may be quite different in other materials and should be
measured for each material separately. The basis of
the aforementioned detailed calculations is con6rmed
by our more general approach although additional
terms have been found. It should be pointed out
however that if the strain field of a defect has dilata-
tional components, the second-order interaction in-
volves terms containing the first-order corrections yi, o,i
of $0 and Ao which are then nonzero. These terms can
be comparable in magnitude with those given in Eq.
(12). Since the first- and second-order interactions
seem to be of the same magnitude for small Quxoid-

"G.A. Alers and D. L. Waldorf, Phys. Rev. Letters 6, 677
|,'&96&).

defect distances, ' reliable values of the total interaction
energy for these defects, i.e., essentially for all defects
except screw dislocations, cannot be obtained from the
existing calculations. (Since our equations indicate
no exact cancellation between the various terms con-
tributing to the total energy, these calculations may
then still give the right order of magnitude. )

VALIDITY OF THE METHOD

It should be emphasized that the validity of our
calculations is not only restricted by the limitations of
the two-parameter local Ginzburg-Landau theory but
also by our implicit assumption that the local value of
the free-energy parameters depends on only the local
value of the strain and not on its derivatives. We expect
this to hold only if the strain is nearly constant over
regions of the size of the coherence length. Thus for
instance the calculation of the interaction force between
a Quxoid and a dislocation by means of this method is
not correct if the Quxoid is near the dislocation core, but
nevertheless may give a good estimate of the true inter-
action.
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