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incorporates the correct linewidth while at the same
time reproducing of the results of perturbation theory
through first order. Although the justification we have
given here is based on a particularly simple interaction,
it is plausible that our treatment is satisfactory for
other types of off-diagonal perturbations as well.

APPENDIX B

In this Appendix we outline a calculation of the
Fourier transform of (S.S.(!)) which is carried out
with the help of Green’s functions. The main results
presented here are implicit in Ref. 5, to which the
reader is referred for further details. The Fourier trans-
form of the longitudinal correlation function can be
written in the form!®
1= _ 1[G (wtie) —G(w—1e) ]
= [ " dte(S.5.(0) i

04

(B1)

Here G(w) denotes the Fourier transform of the re-
tarded Green’s function —i6(¢)(S.(¢)S.+S.S.(8) ),
where 6(x) is the unit step function. As shown in

18D, N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) [English
transl.: Soviet Phys.—Usp. 3, 320 (1960) ].

Ref. 5, the use of spin-phonon interaction as an off-
diagonal perturbation leads in lowest order to a Green’s
function of the form®

1 1:|:z(1/T1w) tanh21B#iw,

G(wie) = Ll

Honce wohave | /8 tant (6Ra)d).  (B2)

/ dt €4S, S, (1) )= eﬂﬂw+1

X[ (1~ tank(3fe)) ﬁ%Jr tanh?(—%ﬁhwo)a(w)],
(B3)

in agreement with (4.5). As is the case in Appendix A,
the calculation was carried out for a model interaction
but is expected to hold for a wider class of off-diagonal
perturbations.

19 Reference 5, Eq. (IL, 22), in the limit E—w=ie. In the one-
phonon approx1mat10n a couphng of the form S,Z,B,(a,+a,")
does not contribute significantly to (S,S,(¢) ).
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A quantitative evaluation has been made of the Ruderman-Kittel and pseudodipolar parameters A4:;
and B;; for Rb® and Cs'® nuclei in the respective metals using one-orthogonalized-plane-wave functions
and calculated band structures. All the possible mechanisms that contribute to A4;; and B;; have been
considered. For 4;; ,about 90.54 and 92.25 9, of the total contribution for rubidium and cesium, respectively,
are found to arise from the second-order effect of the contact hyperfine interaction. For B;;, the corresponding
figures are 89.95 and 88.84 %, arising from one order each in the electron-nuclear contact and dipole inter-
actions. For each mechanism, the calculation involves an integration over the region of k space within the
Fermi surface. The integrand is composed of three k-dependent factors, an expectation value over the wave
functions, a density-of-states term, and a phase factor which depends on the distance between the nuclei.
The final result depends sensitively on the k# dependence of these factors, and in some cases there is a
cancellation between positive and negative contributions from different regions of k space. In the light
of this, a critical analysis is made of earlier approximations, where some of the k-dependent factors were
replaced by their values at the Fermi surface. Self-consistency and correlation effects are explicitly included,
and produce less than 10% correction for 4;; and B;in both metals. Our calculated values for 4:; are
22.73 and 124.65, respectively, for rubidium and cesium, as compared to recent experimental values 5145
and 200410 cps. For B;;, the calculated values are 0.398 and 2.330, as compared to experimental values
11.80 and 35.00 cps. Possible sources for the discrepancies, and additional factors whose inclusion could
lead to improved agreement with experiment, are discussed.

I. INTRODUCTION

HE role of conduction electrons in producing
indirect coupling between two localized moments or
between nuclear moments in a metal was first realized
by Frohlich and Nabarro! For transition metals,

* Supported by the National Science Foundation.
L H. Frohlich and F. R. N. Nabarro, Proc. Roy. Soc. (London)

A175, 382 (1949).

Zener? proposed that this indirect exchange interaction
between localized d-electron magnetic moments can
lead to ferromagnetism. These authors only considered
the diagonal contribution to the coupling, which is non-
zero for the case of metals because of their Pauli
paramagnetism. They did not take into account the
contributions from second-drder polarization effects

2 C. Zener, Phys. Rev. 81, 440 (1951).
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obtained from the nondiagonal excitations of the con-
duction electrons. A complete theory for the indirect
exchange coupling was first proposed by Ruderman and
Kittel* and Bloembergen and Rowland? in order to
explain the anomalous linewidths observed in the
nuclear magnetic resonance (NMR) of silver) tin,* and
thallium.* Bloembergen and Rowland also suggested
that a combination of the Fermi-contact and classical
dipolar interaction between electron and nuclear spins
could give rise to a pseudodipolar coupling between the
two nuclei. The Ruderman-Kittel and pseudodipolar
interactions are usually described by two parameters
A;j and B;; in the spin Hamiltonian of the form
Hij=H*"+H™,

where

HinK=A,'jL"Ij (1)
and

Hi?P=Bi[L:-;—3(L+Ry) (I;+Ry) Ri ], (2)
R;; being the radius vector joining the two nuclei
1and j.

Kasuya® has investigated the indirect interaction
between localized spins in systems like the rare-earth
metals, through their interactions with the conduction
electrons. For copper-manganese alloy systems, Yosida’
has considered the similar indirect interaction between
localized Mn* + moments and Cu®:® nuclear spins and
between two localized Mn* + moments as mediated by
the conduction electrons. Van Vleck® has reviewed the
relationships between the theoretical methods for
indirect spin-spin interactions that have been adopted
by various authors. It may be noted that essentially
the same mechanism for indirect coupling between
nuclei in molecules was proposed by Ramsey and
Purcell’ to explain spin-echo modulation effects ob-
served by Hahn and Maxwell® and additional line
splitting observed in steady-state NMR spectra by
Gutowsky, McCall, and Slichter.! The details of the
procedure for evaluating the indirect interaction are
somewhat different for molecules because of their
discrete energy states, in contrast to the Bloch orbitals
in metals which are associated with continuous energy
bands.

In the present work, we are interested in the evalua-
tion of indirect exchange coupling between the nuclear
spins in metals. Although this effect exists in all metals
with finite nuclear spin, its magnitude is large enough to
be experimentally detectable only in the case of rela-
tively heavy metals. The various metals where this cou-
pling has been measured so far are rubidium,? cesium,?

3 M. A. Ruderman and C. Kittel, Phys. Rev. 96, 99 (1954).

4N. Bloembergen and T. J. Rowland, Phys. Rev. 97, 1679
(1?§)i3. Sogo and C. D. Jefieries, see Ref. 3.

6 T, Kasuya, Progr. Theoret. Phys. (Kyoto) 16, 45 (1956).

7 K. Yosida, Phys. Rev. 106, 893 (1957).

8 J. H. Van Vleck, Rev. Mod. Phys. 34, 681 (1962).

9 N. F. Ramsey and E. M. Purcell, Phys. Rev. 85, 143 (1952).

10 E, L. Hahn and D. E. Maxwell, Phys. Rev. 88, 1070 (1952).

1 H. S. Gutowsky, D. W. McCall, and C. P. Slichter, Phys.

Rev. 84, 589 (1951).
12 J, Poitrenaud, J. Phys. Chem. Solids 28, 161 (1967).

INDIRECT NUCLEAR INTERACTIONS IN Rb AND Cs METALS

4217

platinum,’ silver,’ tin, thallium,* and also in lead-
bismuth alloys.!* We shall confine ourselves to the case
of Ruderman-Kittel and pseudodipolar interactions in
alkali metals which have recently been measured by
Poitrenaud? using an ingenious NMR line-shape
analysis based on observations of absorption modes in
weak fields and dispersion modes in strong fields.

The present work is part of a program for the study of
metallic properties other than those that can be inter-
preted purely from band-shape information. Examples
of the latter are density of states, cyclotron resonance,
and de Haas—van Alphen effect. In contrast, one could
consider other properties that require an explicit
knowledge of conduction-electron wave functions for
their interpretation. Among these are the indirect
spin-spin interactions, nuclear relaxation times, Knight
shifts which are obtained from NMR experiments, and
electronic g shifts and relaxation times from conduction-
electron spin-resonance experiments. In view of the
current availability of improved methods for calcu-
lating conduction-electron wave functions®® and recent
advances in the understanding of correlation effects in
metals,’® one can now attempt a quantitative under-
standing of the Ruderman-Kittel (RK) and pseudo-
dipolar (PD) interaction parameters and analyze the
theory in detail to understand the respective roles of
important contributory factors such as the k de-
pendence of the interaction, band structure, and ex-
change and correlation effects.

It is well known from the analysis of band structure
and wave functions in metals that as one goes from the
center of the Brillouin zone towards an edge or corner,
there is a significant change in the relative s, p, d+ -
characters of the wave function. The RK interaction
depends only on the s character of the conduction-
electron wave function. The PD interaction, on the
other hand, will be shown to also involve p character
of the wave function, although all non-s components can
make finite but small contributions. One therefore
expects a change in the relative contributions to RK
and PD from various k states as one proceeds from the
zone center towards the zone boundary. It is well known
that the anisotropic Knight shift also arises mainly
from the p character of the conduction-electron wave
function near the Fermi surface. However, the expecta-
tion value of the electron-nuclear dipole interaction
which leads to the anisotropic Knight shift averages out
to zero for cubic metals. The PD coupling constant
thus provides an alternate mechanism for studying the
p character of the wave function when the anisotropic
Knight shift vanishes.

Concerning the role of band structure, there can be

B R. E. Walstedt, M. W. Dowley, E. L. Hahn, and C. Froide-
vaux, Phys. Rev. Letters 8, 406 (1962).

14 H, Alloul and C. Froidevaux (private communication); we

thank the authors for making a report of their work available
before publication.

157, Callaway, Energy Band Theory (Academic Press Inc.,
New York, 1964).

16 D. Pines, The Many-Body Problem (W. A. Benjamin, Inc.
New York, 1962).



428 S.

two important effects on these indirect interactions.
First, there is a significant variation in the density of
states as one varies k from the center to the edge of the
Brillouin zone. It will be shown that this variation has
an important influence on the strengths of the RK and
PD interactions and has to be handled carefully in
order to obtain quantitatively reliable results. A second
influence of the details of the band structure manifests
itself through the departure of the Fermi surface from
sphericity. Roth, Zeiger, and Kaplan have shown that
for severe departures from sphericity one can obtain a
rather slow variation of the RK interaction with inter-
nuclear separation. Such effects could be quite signifi-
cant for the transition metals and semimetals. However,
for the alkali metals, band-structure calculations!®*®
as well as de Haas—van Alphen data? indicate that the
departure from sphericity is rather small.

The role of exchange and correlation effects is two-
fold. First, they can modify the zero-order wave func-
tions through their influence on the potential. A second
interesting effect arises from the role of the exchange
and correlation among the conduction electrons in in-
fluencing their response to the magnetic fields produced
by the nuclei.

Our present interest in the study of RK and PD
interactions in alkali metals was dictated primarily by
the availability of Poitrenaud’s results. However, there
are two other important reasons. First, since no signifi-
cant effects are expected from Fermi-surface anisotropy,
one can focus attention on the other contributing
factors listed in the last paragraph. Secondly, the wave
functions and energy bands of alkali metals have been
obtained with enough accuracy that one can rely on the
quantitative nature of the results and from comparison
with experiment try to draw conclusions about the
accuracy of the model in general.

In Sec. II, we develop the necessary theory for the
various contributions to the isotropic exchange and PD
coupling constants using orthogonalized-plane-wave
(OPW) functions. Effects of band anisotropy in
k space have been incorporated through the use of
the calculated density of states. For a parabolic band
approximation, our expression for the isotropic coupling
constant reduces to that of Ruderman and Kittel.?

Section III deals with the contribution of electron-
electron interaction to the coupling constants. A self-
consistent field method® has been employed similar to
that used in the calculation of wave-vector-dependent
susceptibility, and leads to an enhancement factor. In

17 L. M. Roth, H. J. Zeiger, and T. A. Kaplan, Phys. Rev. 149,
519 (1966).

18}, S. Ham, Phys. Rev. 128, 2524 (1962).

( 19 % D. Mahanti and T. P. Das, Bull. Am. Phys. Soc. 12, 414
1967).

% K., Okamura and I. M. Templeton, Phil. Mag. 7, 1239 (1962) ;
8, 889 (1962).

2 C. Herring, in Magnetism, edited by G. T. Rado and H. Suhl
(Academic Press Inc., New York 1966), Vol. IV, p. 17; D. R.
Hamann and A. W. Overhauser, Phys. Rev. 143, 183 (1966) ; L.
A. Kleinman, invited talk, American Physical Society Chicago
Meeting, 1967 (unpublished).
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Sec. IV we present the results of numerical calculation
and discuss the significance of various contributions to
44 and Bj;. The results appear to be very sensitive to a
phase factor in the integrand in k space, and in the
light of this, a critical analysis of the earlier approxima-
tions®* jis made. A quantitative comparison with
experimental results brings out clearly the significance
of the factors considered by us and allows us to speculate
on the importance of other effects which have not been

considered.

II. ONE-ELECTRON THEORY FOR RK AND
PD INTERACTIONS

Let us consider a pair of nuclei with spins I; and I;
and gyromagnetic ratios y; and v;, respectively, situated
at positions R; and R; and interacting individually with
the conduction electrons. The electron-nuclear part of
the Hamiltonian in which we are interested is given by

H=3;+3;= ;D%(l) +h;(1) ], 3)

where the hyperfine terms? associated with the nucleus
i are given by

hi(?) =5 (16m)yiv AtL;» Sid(1:—R;)
=27 B[ —3(Li 100) (S+100) /1P +Li» So/ri]
F2yviy (L L(ra) /rif].  (4)

The first term in (4) is the usual Fermi-contact inter-
action. The second term describes the dipolar inter-
action between the nuclear spin I; and the electron
spins ;. The third term is the nuclear spin-electron
orbit interaction. An expression similar to %; can be
written for %; by making the replacement I,—I; and
r;—1j. Here ry; is the radius vector of electron 7 with
respect to nucleus ¢ and L(ry;) is the angular-momentum
operator for the electron / with respect to nucleus 7 as
center. In order to obtain the second-order correction
to the energy of the total system one has to compute
the total second-order energy for the electronic system
due to JC. By standard second-order perturbation

theory,
NE= Z ©lse|n)n|se|0)/(B—E), (5)

where | 0) represents the ground-state wave function
for the many-electron system and | #) the excited states.
In the one-electron approximation, the wave function
| 0) is a determinantal function made up of all the
occupied Bloch states within the Fermi surface. Since
3C is composed of a sum of one-electron operators, the
excited states | ) will differ from | 0) by having an
empty orbital within the Fermi surface, and an occu-
pied orbital outside. By the usual manipulations for
matrix elements over determinantal states®® one can

2 A. Abragam, The Principles of Nuclear Magnetism (Oxford

University Press, London, 1961), p. 149.
%D. R. Hartree, Calculation of Atomic Structure (John Wiley

and Sons, Inc., New York, 1957).
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reduce (5) to an expression involving one-electron
states:

NE=2, 2

nks n'k/s/

(ks | k| W'K's"Y('K's" | k| nks)
en(Ks) —en (K's)

(6)

In Eq. (6) the Bloch states nks are labelled in the
reduced zone scheme, 7 representing the band, k the
reduced wave vector, and s the spin state. The sum on

ANEgga= 2, >, B[ {nks|heoot(r;) | w'K's Y'k's' | hiont(1;) | nks)+ c.c.],

nks n'k’s/

INDIRECT NUCLEAR INTERACTIONS IN Rb AND Cs METALS

429

nks runs over all the occupied states and #'k’s’ runs over
the unoccupied ones. Following the general procedure
of Bloembergen and Rowland* and assigning super-
scripts to the different terms of (2), namely, contact,
dipolar, and orbital, describing the different mecha-
nisms, one obtains the following expressions for the
second-order energy associated with various types of
coupling between the two nuclei ¢ and j under con-
sideration:

(7a)

AEppa= », >, B[ {(uks | hiont(rs) | w'k's'Yn'K's' | hjdiv(r;) | nks)

nks n/k’/s!

+ (nks | k3 (r;) | W'K's"Y(W'K's" | hiort(x;) | nks)+ c.c.],
AFpga= », >, B[(nks| ho(r;) | W/K's'Yn'K's" | b (r;) | nks)+ c.c.],

nks n'k/s!

N FEgk 3+ AEpp 2= Z E B[(nks | hidie (1) ] n’k’s’)(n’k’s’ | hjdip(rj) I nks)—!— C.C.],

nks n/k/s!

where
B=[e,(ks) —e, (K's") T

In Eqs. (7) r; describes the radius vector of an elec-
tron with respect to the nucleus 7. These four equations
give all possible contributions to the RK and PD inter-
action energies arising from the hyperfine Hamiltonian
3¢ given by (3) and (4). Physically, the various con-
tributions to A2Egrk i and A?Epp,; can be described as
follows. A?Fgk, results from the mutual magnetic
polarization of the conduction electrons by the nuclei ¢
and 7 through their contact interactions. After summing
over the electronic orbital and spin states in (7a) one
ends up with an interaction of the form (1). The energy
A?Fpk 2 results from the polarization effects due to the
electron-orbital interactions of nuclei 7 and 7, while
A?’Fgx,s arises from second-order effects due to the
classical dipole-dipole interaction between the electron
and nuclear spins. A similar second-order effect also
contributes to the PD energy A?Epp,. The other type
of PD coupling arises out of a combination of the con-
tact interaction of nucleus ¢ with the electron spins and
the classical dipole interaction of the electron spins
with nucleus j and vice versa. Following the manipula-
tions of the second-order energies later in this section, it
can be shown that no PD interaction between the
nuclei can result from the mutual polarization of the
conduction electrons by nuclear spin-electron orbit
interactions.

The evaluation of the second-order energy terms in
Egs. (7a)-(7d) requires a knowledge of the Bloch
functions | 7ks)=y,(r) | s) (where |s)=a, 8 repre-
sents the spin state) for the conduction-electron states.
We shall develop the algebra here for the OPW for-
malism. For the alkali metals of interest here, single
OPW functions represent the Bloch functions very well.
Thus, in common with the situation in other good

(7b)
(7c)

(7d)

metals®* like beryllium, aluminium, and indium, one
finds by actual calculation®® with linear combination of
OPW that the admixtures of higher OPW functions are
rather small for alkali metals. For matrix elements in-
volving the Fermi-contact interaction the algebra for
many OPW is a simple extension of the case of single
OPW. For the electron-nuclear dipole matrix elements,
however, there is substantial simplification when one
uses a single OPW. The extension to many OPW is
straightforward following a procedure analogous to that
presented here. Concerning the energy-band properties
arising from the energy denominators we shall make use
of the calculated band structure® in the many-OPW
approximation.

We next proceed to the simplification of the relevant
second-order energy expressions (7a)-(7d). The RK
and PD coupling constants 4;; and B;; can be obtained
by reexpressing A2E in the form of the spin Hamiltonian
in Egs. (1) and (2). For bookkeeping purposes we shall
add superscripts (example 4;*, B;*) to describe the
various contributions to RK and PD coupling constants
in Egs. (72)-(7d).

A. Derivation of Expression for A;;!

On substituting for %"t from Eq. (4) in Eq. (7a)
and using the periodic property of the Bloch functions
which gives

(&|f(r—R) | k')= exp[—i(k—K') -R](k | (1) | k'),
we obtain
MFpga= ., >, Bfexp[—i(k—K')-Ry]

X (ks | hiont(r) | W'K's’Y(W'K's" | hieont(x) | wks)+ c.c.}.
(8)

24 W, M. Shyu, Ph.D. thesis, University of California, Riverside,
1965 (unpublished) ; W. M. Shyu, G. D. Gaspari, and T, P, Das,
Phys. Rev. 141, 603 (1965) ; 152, 270 (1966).
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The spin summation in (8) is relatively simple and will
be carried out first:

Z(SII S|s)( [ 18] s)=3L:

Replacing the sum over k and k' in (8) by integrals and
using Eq. (9) one obtains

a3k ak’
=1
43=3C 2 | i) Gy

[ &(nk, n'k’)
en (K') —eu ()

©)

exp[—i(k—k’) ‘R ]+ c.c.] s

where
(10)
(11)

C=—(16m/3)*viviveht,
®(nk, W'k') = | Yux(0) [* | Y (0) 2

As has been suggested by earlier authors?®* in the
spirit of the one-electron picture one can, to a very
good approximation, ignore the effect of exclusion
principle in the summation over excited states. As a
result, the #’k’ summation can be made to run over
both the occupied and unoccupied regions of k space.
In order to evaluate (10), we shall integrate over con-
stant energy contours. Thus, instead of integrating
over k, 6y, o, we shall use the variable ¢, 0, ¢, the
value of € defining a particular energy contour. Let us
define a function g(x, ¢, €) such that

dPr=Fk (Ok, ¢k, 6) Sinakdekd(ﬁk(dk/de) de
= g(Ok, ¢r, €) dedOrdepy.
Using Eq (12) Eq. (10) can be rewritten as

Aif=3 (211')6 / de / dbrdd / de / Ay dey

x[q}(k D exp(—ifI(B, ¢, ) —K (0, d0, )} -Ry)

(12)

+ C.C.] g(ak, ¢k‘; €)g<0k’, ¢k’; 6’) . (13)

We shall carry out the €, 6, ¢’ integration first. For
convenience, we choose a coordinate axis system such
that R;; is along the z direction. In analogy with
Ruderman and Kittel’s procedure®*# it is convenient to
analytically continue € to the complex energy plane
E’ and introduce a step function O(ReE’) to avoid
contributions from negative energy states. The integra-
tions in (13) can be carried out in steps. Thus, the F,
6, ox’ part of the integral is given by

2 T d El
I(e)= / dir / By [f dE’—I(E,—_’ei)e(ReE’)
0 0 ¢

X exp[+ik’ (Bx, dwry E') RijuJg(Orry bwr, E')] , (14)
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where u= cosf’. Since u can be both positive and
negative when 6’ goes from 0—m, u>1 represents an
integration over a closed contour in the upper half of
the E’ plane while u<1 refers to the lower half-plane.
Introducing a quantity ¢ in Eq. (14) such that

t==41 for u=1,
one obtains

1(e) =ir /0 " dbw /o " 48D (e, €)10(e)

X exp[ik’(ﬁk,, i, E) Riﬁ“]g(a’ﬂ': b, 5): (15)

where we have taken the principal value of the integral
over E' in (14). Substituting (15) in Eq. (13) we get
for the RK coupling constant

b Sl o

X {exp[[ik (0, $x, €) Risu I (€) g6, b, €)1+ c.c.},  (16)

the upper limit of the integration over occupied energy
states e being ep. In principle, the angular integrations
in both (15) and (16) can be evaluated from a knowl-
edge of the constant energy contours, that is, of 2 as a
function of 0, ¢, and e. For simplification, we shall use
a spherical contour approximation so that % is only a
function of ¢, not necessarily parabolic. In the parabolic
band approximation our result will reduce to Eq. (7)
of Ref. 3. Thus, on substituting &’ (e, 04, ¢r) =k'(e) in
(15), one can evaluate I(e) quite easily and obtains

I(e) = (4n%/R:;)O(€) B(e, €) k(dR/de) cos(kRy). (17)

If one defines a k-dependent effective mass m*(k)
such that

e(k) =k*/m*(k),

where e(k) is in Rydbergs and #*(%) is in units of 2,
then

k(dk/de) =m*(k)[2— (k/m* (k) ) (dm* (k) /dk) T
Using a particular e(k)-versus-% relation of the form'
E(k) =E2k2+E4,1k4+E5,1k6+' MY (18)

where E,, Ey, and Eg have been obtained from band
calculations,?

m* (k) = [Ez+2E4,1k2+3E6,1k4]—'1
3mi(k),

My (k) = [E2+2E4‘1k2+3E6,1k4]_1.

The quantity m.(k) is usually referred to as the thermal
or density-of-states mass. Equation (17) can then be
reexpressed in the form

I(e) = (27%/Ry;) 0 (e) P (¢, €) mi(e) cos(kRy). (21)

Equation (21) holds for a general spherical band, which
is typically expanded for a cubic lattice as in Eq.

(19)

and
k(dk/de) = (20)

where
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(18). In the parabolic band approximation employed
by Ruderman and Kittel and Bloembergen and
Rowland, m,(¢) =m*, from Egs. (18) and (20), and is
independent of ¢ and %. In the work of Roth, Zeiger,
and Kaplan,'” emphasis has been placed on contribu-
tions from some regions of special shape on the Fermi
surface. For cases where the main contribution to 4;;
arises from a small limited region of the Fermi surface
one can replace m;(e) by its appropriate value in that
region and this is equivalent to using the proper
cyclotron mass in the expression for 4;;. For the alkali
metals which are of main interest here, the Fermi
surface is nearly spherical and Eq. (21) is adequate.

On substituting Eq. (21) in Eq. (16) and carrying
out the integrations over 6; and ¢, one obtains

1_ ¢
2 (27)%R;
If one makes use of the parabolic band approximation
and also replaces ®(%, k) by ®(kw, kr), its value at the
Fermi surface, Eq. (22) reduces to the result for A4;;
obtained by Ruderman and Kittel* and Bloembergen
and Rowland# The consequence of the & dependence of
the entire integrand in (22), in influencing the result for
A4, is important and will be discussed in Sec. IV.

kr
Ap= f Ema(k) B (k, k) sin(2kRy;)dk. (22)
0

B. Derivation of Expressions for B, B;?, A;? A;f

For the derivation of suitable expressions for B;;* as
well as for the other contributions to 4;; and By, it is
convenient to introduce some additional notation. The
normalized OPW for a state with wave vector k is
given by

Vi (r) =A () [e™r— Db, (k) 2,() ],
t
with
bu(k) = (@ | e™7), (23)
the sum ), running over all the occupied core states

Onim(T) =Ryi(7) Y1 (8, ¢) . Using the spherical harmonic
expansion for ¢, ¢y (r) can be rewritten as

(1) = 1247ri’xz(k, 7) Viw™* (O, 1) Vi (0, 6),  (24)

where

Xi(k, ) =A (k) [ jr(kr) — 2_Tni(k) Rur(r)]
and

Tu(k) = f " Ru(r)ju(hr) Pdr. (25)

0

For easier manipulation, the operators A®2t(r) and
hdie(r) can be reexpressed in irreducible tensor-operator
notation.?

heont(r) =5 (16m) ysv 726 (1) [1.Se+3 (1e.S_+1-54) .
(26)
% A. K. Saha and T. P. Das, Theory and A pplications of Nuclear

Interaction (Saha Institute of Nuclear Physics, Calcutta, India,
1957), p. 254.
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The Fermi-contact Hamiltonian A%"t(r) is expressed as
a scalar product of two tensors of rank unity built out
of the components of the vectors I and S. Corre-
spondingly, A4ip(r) is a scalar product of two tensors of
second rank, one built out of the components of r

alone and another out of the components of both I
and S:

hai(r) =2yoy 2 ) 0n2(r, 1, S),  (27)
where
0.2(1, I, S) =Con0,2(r) 0_2(1, S), (28)
Omz(r) = (1/731) YZm(g; ¢') ’ (29)
and
02(1, S) =—2I.S,+3(I,S_+I1_8,),
0:2(1, 8) = —3(IsS.+1.84),
042(1, 8) =—1(1:8,). (30)
The coefficients Cay, are
Czo’—‘- (411'/5) 1/2,
Coya=£(24r/5)12,
Copo=(967/5)12, (31)

We proceed next to the evaluation of B;!. Sub-
stituting the expressions in (26) and (27) for Acnt(r)
and 44»(r) in Eq. (7b) and using the periodic property
of the Bloch functions, one obtains

AEpp1=2DY Y [e('s’) —e(ks) I

ks ks/

X {expli(k~K') “Ry;12 Conlle | On (1) | ')

X&' |8(x') &) (s | O-?(L;, 8) | §')(s" | ;-S| s)+c.c.},
where
D=31(32r)viyiyihit (32)

and the factor of 2 outside the summation in (32)
arises from the interchange of ¢ and j. The spin summa-
tion in (32) can be readily carried out, leading to

2 (s 102X, 8) | )¢5 | ;S | 5)=30_n2(1;, I).

(33)

We shall again use spherical energy contours for
carrying out the angular integrations over the directions
of k and k’. Equation (32) then reduces to the form

AEpp 1= > TiiConO_2(L;, 1) 0,2(Ry), (34)

6D\ [* ©
Tijl — Rijs (__é) / F Rk f klzdk/
S/ Je b

(@)=

x [ 1277 e(¥) —e(k) A(IF2)Qu (R, k)ji(RR:)

X o (K R (0) i (0) + c] . (35)
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where
Oval¥, D)= [ xu(®, 1) (1/)xalh, . (36)

The functions xp (%, 7) are as defined in the expan-
sion of OPW in Eq. (24). The factor A('IL) defines the
usual triangular relationship® between the angular
momenta //, I, and L. Using Eq. (2) for the definition
of B;;it follows that

quj1=.Rij~3Tij1.

It will be shown in Sec. IV that from the various
combinations (s-d), (p-p), (p-f), +++ arising out of
different combinations of /" and ! the dominant con-
tribution comes from the (p-p) term. The PD inter-
action thus provides a measure of the p-wave part of
the conduction-electron wave functions. It should be
remarked that had we not used a spherical Fermi surface
for our integrations over 6; and ¢, we would have ob-
tained additional terms in the spin-Hamiltonian which
are different in form from those in Egs. (1) and (2).
In view of the near-spherical nature of the Fermi
surface in the alkali metals, such additional terms are
insignificant in strength.

Before proceeding further, we shall derive expressions
for B;?, A:?, and A;? corresponding to (35), since a
common procedure for integration over k and k’ can
be used for all of them. Substitution of the tensor form
of the dipolar interaction from Eq. (27) into Eq. (7d)
and use of the periodicity property of Bloch functions
yields

AEpy s+AEpps=F ), D [camczm«k | 0,2(x) | &)

k,k/ m,m/

expD (kl —'k) . R”]
e(k) —e(k’)

XK' | On(r) | k)

(5| 0mni(Ly S) | 36" | O (L;, ) | 5)+ ] ,
37

2L+1\12
FEK, k) =5(4m)* 3 {(~—~+ )
LM dr my  lame lsms m

l/my! la'my! leme m/
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where
F=4yyypy 2t

One can easily carry out the space integrations in (37),
using the angular expansion of the OPW functions in
(24), a typical space matrix element being

(&|0,2(r) |K)=(4m)2 >, > (i)

lim1 lV/my1/

20,-41) (21, 41) T2
><Qz1,w(k,k'><—1>m‘[<1_+>_<_i_>]
4
ll 2 lll ll 2 ll/
X Ylwu(elc, ¢k)
m m mll 0 0 O
XY 1ymy™ (O, 1), (38)

where the
(l VL
m m M
are the usual Wigner’s 3j symbols. In carrying out the

spin summation it is convenient to introduce the
following notation:

{Li, Lifmme = Z: (10021, 8) | )" | Ow?*(Ly, ) | 5).

(39)
Proceeding exactly as in the case of B!, that is, ex-
panding exp[i(k’—k):R;;] in terms of spherical
harmonics and carrying out the angular integrations in

k and Kk’ space, we obtain the following expression for
the second-order energy in (37):

e prdk [ k2dE QE(R, k)
AEpg 5+ A Epp 2= F / / :
RrK 3+ AEpD,» o (2m)3)iy (2m)3e(k) —e(R)’

(40)

where

> Y S ConComr Ly L}

X (3) Wit h=td=ty 0 (ky k) Quyr 1y (R, k) J15(RR:;) F1s(R' Rij)
X (20-+1) (2y-+1) (20 1) (28 4-1) (2s--1) (2g4-1) (— 1) mo—mi—me

<11 2 ll’> (lz’ 2 lg) (lz L L\ /W W L\ /[ It L
X
0 00 0 0 0/\0 0 0O/\O O O (O 0 0

ll 2 ll’ lz, 2 lg 12 11
X
—my m 'n'h’ - le’ m’ e, —ms My

Is I A s Il L
Viu*(Rij)
ms - 1%2, ml’ Mg, —ms M M

+ c.c.} .41
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In order to obtain the contribution 4;? to the RK
interaction from this general expression we have to
collect only the L=M=0 terms in (41) and for the
PD term B, we have to consider only the L=2 term.
Because of the complexities of the algebra we present
only the p-wave contributions here arising out of the
terms involving =10 =l =1y’ =11in (41). Contributions
from s-d, p-f, and other such terms (see Table II) are
much smaller in magnitude for the alkali metals, as in
the case of B;t. There will now be two contributions to
A;# arising from ly=1[;=0 and l;=/;=2 leading to

Aip=TA+1I4,

24 [ re KK
IA=—F2= / ik [T
5n2J, rr €(R') —e(k)

X[Q1,2(k, &) jo(kRi;)jo(k Rij) + c.c.],

24 [k o kel
A= —F — f par [T
2572 J, i €(B) —e(k)

X[O1,2(k, &) j2(kRi;)j2 (K Rij) + c.c.].  (43b)

For the case of PD coupling B;? one has L=2, and by
inspection only the (0, 2), (2,0), and (2, 2) combina-
tions of (l5,l;) are seen to contribute. After some
manipulations involving products of 35 symbols, the
final expressions come out in the proper tensor inter-
action form (2) and one obtains

Bif#=1B+IIB+IIIB,

42 [hr w k2R
il pdp | ———
2572 ./; w €(R') —e(k)

X[Q1,2(k, k')jo(kRij) ja (K Rij) + c.c.],

4 e o Kk
[[B=—F —= f pap 724
257 ), vr c(F) —e(k)

X[Q1,2(, k')j2(kRij)jo(K'Rij) + c.c.],

4 ke o k2R
IIIB=—F — f kdk | —————
3572 J, w €(R) —e(k)

X[Q1,%(k, k') jo(kRij)ja(R' Rij) + c.c.].  (45¢c)

Finally, we derive the contribution to 4;? from the
effect of nuclear spin-electron-orbital current inter-
action, given in Eq. (7c). The operator I-L can be
reexpressed as

I.L=I,L,+3(I,L+I_L,).

The spin summation in (7c) gives a factor of 2 and
the angular integration proceeds exactly as for Bjl.
Retaining only the contribution from the p-p mode,

(42)

(43a)

(44)
where

IB=—F

(45a)

(45Db)

A;2=IVA+4VA, (46)
where
16 [kr o k2dk
IVA=—F — k2dk —_—
w Jy kr €(R") —e(k)

XLOu2(k, &) jo(kRi;)jo(R Rij) + c.c.]  (47a)
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and

16 fkr o Bk
VA=F— / gk [T 24
w 0 kp €(kl) —-e(k)

X[Q1,2(k, k') ja(kRi;)j2(R'Rij) + c.c.]. (47b)

In order to obtain the final results for the coupling
constants one has to carry out the £ and &’ integrations
in (35), (43), (45), and (47). As has been pointed out
earlier one can ignore the effects of the exclusion prin-
ciple in the excited states.

For convenience of notation we introduce the
following integrals:

N Fedk
r,n= [Tk |
X Q1 (k, k') ju(kR:j)jv (K Rij)  (48)
and
o R4k
wp €(K') —e(k)
X1,V (K, k)j1(kRij)jv (K'Rij) ¥i*(0) ¥ (0) .

Only a few T'(}, V') and S(I, ') for specific values of I
and 7' occur in the expression for B,/ and 4;/*. One can
carry out the integrations in (49) in an exactly similar
manner as was done for 4;* by taking principal values
in the contour integrations over the complex energy
plane. One then obtains

kr
S@, 1) = / kdk
0

(49)

T [k .
70,0~ 2 /0 ma(k) Qu (k, k) k sin(2kR) dk,
(50a)
x  [kr
= 2
70,2)= g5 [ MBI
X[(S _'kz.Rijz) COS(kR,'j) +3kR,, sin(kRi,-):I
Xjo(kR:;)dk, (50b)
T [kF
— 2
70,20= g [ mB0u0 R
X[(3 '—kZRi]z) COS(kRij) +3kR” sin (kR“> :I]o(kR,J) dk,
(50c)
T [k .
70,0 = 55 [ om0 unth, kR
X COS(kRij) dk, (SOd)
and
x  [FF
S0 = g [ bma(h) [94(0) FQus(l 1)
X[COS (kRﬁ) +kR¢j sin(kR;,-)]
X[sin(kR,-j) —kR«;j COSkR"j:l(k2Rij2 _ldk, (506)
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where kp is the value of % associated with €7 from Eq.
(18). The remaining integrations over % in Egs. (50)
have to be performed numerically. Equation (50e) is
equivalent to the expression (49) of Bloembergen and
Rowland,* except that they used the Bardeen approxi-
mation®® for the wave functions and had an error in the
first square brackets of the phase factor in (50e),
namely, a negative sign in front of kR;;sinkR;;. A
quantitative comparison of our results with this
approximation will be made in Sec. IV.

Finally, for ready reference, we list the expressions
for 4.2, A%, B!, and B;? in terms of the pertinent
T(,UV) and S, 7).

A f=—2F[(16/7*)T(0,0) —(16/7%) T(2, 2) ],
Aiff=—2F[(24/57*) T(0, 0) 4 (24/257%) T(2, 2)],
Bi*=D[(12/57%)S(1, 1)],

Bi=—F[(42/2572) (T(0,2)+T(2,0))

+(4/357)T(2,2)]. (S1)

<kS I )\,Af(r——R@-)I,--S l k’S’)(k’S' I )\,-f(r—Rj)I,--S lkS) +c
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III. EXCHANGE AND CORRELATION
CONTRIBUTION TO RK INTERACTION

In this section, we shall study the effects of correla-
tion and exchange among conduction electrons on the
indirect coupling between nuclei. We shall specialize
to the case of the dominant mechanism for RK inter-
action, namely A4,;1, but from the nature and magnitude
of the exchange and correlation corrections for this
case one can make certain conclusions regarding the
importance of such corrections for other coupling
mechanisms. In addition, the treatment adopted here
for A;* can be easily adapted to the indirect coupling
between localized electron moments and nuclei and
between localized moments in metals. To retain the
generality of the procedure, we shall write the contact
interaction in the form

heont (1) =NIi Sy f(r—R.), (52)

which encompasses both conduction-electron nuclear-
moment and conduction-electron localized-electron-
moment interactions. Using Eq. (52), the second-order
energy in (7a) can be rewritten as

NMErga=. ) [

ks k’s/

In analyzing the effects of exchange and correlation
among the conduction electrons on the energy A?Egxk ;,
it is convenient to regard the contact interaction as
resulting from the magnetic field ~\; f(r—R;)I; due to
the 7th nuclear moment at the position of the electron
spin. In this respect the problem is similar to that of
the exchange enhancement of the magnetic suscepti-
bility of conduction electrons in the presence of an
external field, which has been studied by various
authors®® using the random-phase approximation.
In the present problem, the magnetic field produced by
the nucleus is not uniform. It is therefore more appro-
priate to Fourier analyze the field and study the effects
of exchange and correlation on x(q). One then Fourier
transforms back into real space to obtain the correction
to A?FEgk,;. It should be remarked that the self-con-
sistent perturbation treatment to be employed here and
used by previous authors for susceptibility is somewhat
analogous to the Hartree-Fock perturbation formula-
tion developed by Dalgarno and others” for atomic
polarization problems.
It is convenient to rewrite (53) as

A Epg 1= (0¥ 5@ | 3ourt’ | TO)+ cc.,  (54)

(126 1;) K. Rajagopal and S. D. Mahanti, Phys. Rev. 158, 353
967).

% A. Dalgarno, Proc. Roy. Soc. (London) A251, 282 (1962);
P. W. Langhoff, M. Karplus, and R. P. Hurst, J. Chem. Phys.
44, 505 (1965).

e(ks) —e(k’s’)

c.:l . (53)

where W0 is the zero-order determinantal function for the
electrons, 6% (;® is the first-order perturbation in the
wave function due to nucleus 4, and JCpers' is the
perturbing potential due to nucleus j.

gcpert(Ri) = Zhicont(l) . (55)
7

The summation over !/ runs over all the conduction

electrons. On Fourier analyzing the perturbation,

FCpert(R;) can be rewritten as

IChert ( Ri) = chpert ( q, R@)
q

=2 \f(Q)IL- ; exp(iq-1,) S/
X exp(—iq-R;). (56)

For the time being we will suppress the index 7. The
various ¢ components of the perturbation will be
treated independently since one can show that up to
second order there is no interference between different
q components. In the absence of the external perturba-
tion /pert(q), the one-particle Hartree-Fock equation
for the conduction electron in the state | ks) is given by

[704-04+COT¥ 0 = e, Ve, (57)

where %° includes the kinetic energy operator and the
contribution of the core electrons and nuclei to the
single-particle potential. The operators O and Cp
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describe the unperturbed exchange and Coulomb
potentials arising from the conduction electrons and
are as follows:

Oue(1) = — kZ?, ¢ f Y™ (1) e (1)
Xg(r, ') (1) dr’

(58)
and

Cou®) = T ¢ [ Yoot Pin, ©)lodr, (59)

where the primed summation in (58) is over only the
parallel spin states and g(r,r)=1/|r—r'|. In our
calculation, we shall neglect the effect of the magnetic
field on the core-conduction one-electron potential since
the magnetic field is too weak to excite the strongly
bound core electrons. The exchange and Coulomb
operators Oy and C° being state-dependent, will them-
selves change in the presence of the perturbation.
Assuming that the perturbed one-electron states are
orthogonal, the Schrodinger equation for the first-order
perturbed electronic states can be shown to be

[h0+hpert(Q) +0x(q)+C(q) ]‘l’ka(Q) =exs( Q) Yis (),
(60)

where Oy and C are given by Eqgs. (58) and (59) but
with a0 replaced by ¢i,. It should be noted that in
contrast to ¥, Yis can be a mixed spin state. For
cubic metals, the RK interaction is isotropic and it
turns out that one can derive 4;;! from A?Egk,; in Eq.
(53), using any of the terms I,,S, (u=w, v, 2) in the
perturbation. For the sake of simplicity we shall use
p==, in which case the perturbed one-electron wave
functions can be written as

Vs (@) =¥+ (Q)

o¥is(q) having a spin opposite to ¥xL. The exchange
and Coulomb operators O, and C can be separated into
zero-order and first-order parts:

Ox(q) =0+80x(q),
C(q) =C"+4C(q). (62)

One can then lump 80y and 6C with Fper(q) and regard
them as additional self-consistency perturbations with
80 (q) and 8C(q) given by

(61)

0L pua(r) =—=¢* 3 [ bherar (@, D)o (8)

F3fera (4, ) (5) 185, 7)) E (63)
and
(@) =¢ 3 [ Dhonsr*(@, 1) ()
oteren (G ¥ )erer* () Jg (5, T (D), (64)
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integrations over spin states being implied. Since
0Yrrrs has opposite spin from g, it follows from
(64) that 6C(q) =0. We shall therefore work with the
effective one-electron perturbation Hamiltonian

hperte“ ( q) = hpert ( (I) +60k ( Q) )
where

Proert (Q) =hpere (q, Ri) =N f(q) eXp[iq' (r—R;) [i.0,.
(65)
For calculating A?Egk,; as given by Eq. (54), but using

cherte“= therteff(q, Rz) 3 (66)
qQ

it is convenient to express the Bloch orbitals in the form
Y (1) = 20 (k+K,) exp[i(k+Ka) 1] | a), (67)

where the sum runs over the reciprocal-lattice vectors.
In the presence of the Aue®'(q), the perturbation in
the one-particle state ¥,” is given by i, where

k'8 | hperett ka
wkm:wka—‘l/ka():%: . jkI a) —e((cli)' lﬁ) :

g’
(68)

Here we have only included the nondiagonal terms in
the spin space because of the specific choice of the
nuclear spin orientation (I;). The notation ({ )) indi-
cates matrix elements over Bloch states as distinct from
() for plane-wave states. The perturbed wave function
is normalized to first order since the perturbation
correction to the normalization is of second order. On
substituting (67) in (68), we get

Wra= 2, a*(&+K,)a(k+K,)
k/nn/
<k/+Kn’, B I kperteﬂ(q) I k+K,, a‘>
e(k’ a) _e(k,y B)
Using the expression for /hpef(q), the orthogonal
properties of plane-wave states, and redefining

K,—K, =G, which is another reciprocal-lattice vector,
Y. takes the form

Wica= ZG a*(k+q+K,) e(k+K,)

Yo’

k+Ko+q, B | per*™(q) | K+Ks, @)
e(k, o) —e(k+q+G, )

We shall handle the contributions to éi. due to the
external and exchange perturbation parts of Zet*™(q)
separately. Using Eq. (63) for the exchange perturba-
tion and some algebraic manipulations, one obtains for
the off-diagonal matrix elements of this operator over

X

Yitara,s” (69)
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plane-wave basis states,
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&+Ko+0q, 8| Ipere=2(q) | k4K, a)= kl,; , &"+Ko+4q, B | hoexe?™(q) | K+ Ko, )

a* (&' +Kn+q) a(k’+K, )

x|z

+2

Mk, q,k"; G, K,)

e(k”) —e(k"+q4+G)

where

M (k, g, k"; G, K,) = B+Kn+q | Yrorrparc® (1) g(x, ¥)her™ (1) | K+Ko).

On adding the matrix element of % (q) to both sides
of Eq. (70) one obtains the integral equation

Lgk,(k, q) = f(q)+ k/g{: ) My, x. 2 (k k") Lk, (K", q)
(72)

for

LKn(ki q) = <k+Kn+q: B I hperteff(Q) l k+Km a).
(73)

In the matrix element for Lk, (k, q), given by Eq. (73),
the factor )\.I; exp(—iq-R) has been taken out from
hpertt(q) . The kernel of the integral Eq. (72) is related
to M(k, q, k", G, K,) of Eq. (71) by the relation

7 * (151! ,
S
¢ e(k’)—e(k"+q+G)

XMk, q,k”, G, K,)+the other term.

(74)

It is to be noted that the matrix elements for both
Ppert?tt and Jperie*eh are independent of the spin of the
initial state; this is why no spin indices are introduced in
Lx,(k, q). The effect of correlation can be incorporated
by screening the Fourier transform of the Coulomb
potential by the RPA dielectric constant.’® One thus
has to solve the integral Eq. (72) for the self-con-
sistent-field screened-exchange model in order to obtain
the requisite perturbed one-electron states and the
second-order energy. Equation (72) represents a
generalization of Hamann and Overhauser’s* procedure
for the case of Bloch electrons within the framework of
the screened-exchange model. They have, however,
presented a more rigorous treatment of correlation
effects for free electrons using Landau Fermi-liquid
theory.

The solution of the Eq. (72) for a general Bloch
function is a rather formidable task. Since we are
interested only in estimating the importance of exchange
and correlation effects as corrections to the one-electron
theory result of Sec. II, we shall be content with an
evaluation of these effects appropriate to a free-electron

a(k"+Kw+q)a*(K"+Ko) ]
M*(k—q, —q; k", G, K,) [, (70
G G(k,/) _e(kll+q+G) ( q q ) ( )

(71)

model. This is equivalent to dropping terms associated
with all nonzero reciprocal-lattice vectors K., Ky, and
G in Egs. (72) and (74). One might remark that this
is not a very serious approximation for alkali metals
since they are quite free-electron-like outside of the
volume occupied by the core electrons. This latter
volume is only a small fraction of the volume of the
Wigner-Seitz cell. With this approximation, Eq. (72)
reduces to

Lk, q)= f(Q)lj; 2 oma(k, k") L(k", q), (75)
where

"o 1
R P

X (k+q | exp[ —i(k"+q) -] exp (k" r)g(r, ') | k)
1
e(k”) —e(k'’4-q)
X (k+q | exp(—ik”-1) exp[i(k"+q) -r'Jg(r, ) | k).
(76)

+

Equation (71) has been utilized in obtaining Eq. (76).

The integral equation (75) reduces to an algebraic
equation if we neglect the k dependence of L(k, q).
One can then write

L(q) = f(@)/[1—-F(q) ], (77)
where
F(q)= g;fmq(k, k") (78)

depends parametrically on k. Since most of the electrons
taking part in the differential response to the external
field are those near the Fermi surface, one can evaluate
F(q) for k near the Fermi surface and consider it
essentially k-independent, in accordance with the
assumed k independence of L(k, q). The enhancement
factor in (77) depends sensitively upon the choice of
the screening parameter used for screening the poten-
tial. Three different types of screening?® have been
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utilized. Thomas-Fermi and self-consistent-type screen-
ing do not give rise to any appreciable enhancement.
On the other hand, a screening parameter obtained from
plasma-cutoff considerations gives values of the en-
hancement factors for various q which are in reason-
able agreement with the results of Hamann and Over-
hauser,” who have solved the integral Eq. (75) numeri-
cally.

The function L(q) in (77) represents the analog of
the one-electron function f(q) after inclusion of
screened exchange. We shall next use L(q) to compute
the total second-order energy and hence the correction
to A;'. Summing over the contributions from all q
components, the net first-order change in the one-

D i

o o G L1—F(q)

X (g | e k))&

On making the substitution
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electron wave function is given by
: f(9)
Wi (1) = —
() == 2170 S
k+ exp(s 'I‘-—Ri k))*
({k+q | exp(iq ) | k) berara (D). (19)

e(k+q+G) —e(k)

From the second-order energy expression in Eq. (54)
we get

AFERg = kZ[@\l/ks(i) | Fper (1) | 1)+ c.c.],  (80)

where 6, in (80) arises from the hyperfine effect of
nucleus 4. On substituting for 6. in (80)

(k+q,s" | Apert(, Rz) | ks)

(k+q+G, s’ I Trpert (15) ! ks))
e(k+q+G) —e(k)

+ c.c.] . (81)

1/[1-F(q)1=F(q)/[1—-F(q) ]+1

and using the identity
(&’ | B(r) | k))

(@er | k)(k+q | e | k))

2 ) —e) 0=

one obtains

(k+q| B
% e(k) —e(k+q+G)

Yierara’(1),

A%Egg 1= A?Egk 1"+ A2Egk 17,

where
or o0 (ks | Apers(1:) | K's"))(C's" | Bpers (13) | Ke5))
AFpx 2= ; kZ [ ) —e ) + c.c.] (82)
and
2 COTT — F(q) QT
Sl == T T 3 s (G ot )
X+ |a(afR) |y SEFTER L Im BN (] (o

Thus A2Egk ;1 is now separated into two parts. One part,
A?FEgx (0, is the one-electron contribution in (82) that
has been considered already in Sec. II. The other part,
A?Fgx 1°7, is the result of the susceptibility enhance-
ment from exchange and correlation effects as described
by the function F(q)/[1—F(q)]. The rest of this
section will deal with the evaluation of A2Egg i°°™
in (83).

There are two main parts to the calculation of
A?Erx 1°. The first is the evaluation of the function
responsible for the enhancement, namely F(q), and
secondly, that of finding suitable methods for carrying
out the integrations and reciprocal-lattice summation
in Eq. (83). We consider the evaluation of F(q) first.
One notices from Eq. (76) that the limit ¢—0 has to be
handled specially because of singularities in 92(k, k”).

One way to avoid this difficulty is to use a stationary
perturbation cos(q-r) rather than efer. On making
this replacement in (76) and carrying out the necessary
integration, one gets

F(0) = lim8—7-r Z[ 1 1

Y & et —e) [ k=K' ]
1 1
. (84
+ =@ e @

For evaluating F(q) no special precaution is necessary
and one can make direct use of Egs. (76) and (78),
which lead to

1 1
F(q)=8 .
(q) 0 kZ/: é(k”"l'q) —e(k") | k_kll Iz

(85)
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At this stage one can introduce the effects of correlation
using the screened-exchange approximation, which is

equivalent to replacing
1/|k—Kk"[* by 1/(|k—Kk"[*+&ks)

in the Fourier component of the potential, being a

suitably chosen screening parameter. It is well known

that the Thomas-Fermi screening overestimates the

correlation effect and cuts off the potential much too

sharply. As a matter of fact, this particular choice of

the screening does not lead to a paramagnetic instability

for 7¢~10. Another possibility is to choose the screening

parameter from plasma cutoff considerations, Eoutots

being given by

ars/’"'=£cutoff2[(£cutoif+2) In(gcutoff'i‘z/gcutoff) _2]—1,
(86)

where
a=0.521.

A detailed description of this type of screening has been
given by Rajagopal and Mahanti.? For this particular
type of screening, x (0) shows an instability at 7,=10.93,
which is reasonably close to the value obtained by
Hamman and Overhauser® by solving the requisite
integral equation in the self-consistent field approxima-
tion. This indicates that the prescription for £muotr in
Eq. (86) is a reasonable one. For densities appropriate
to rubidium and cesium, namely, 7,=5.289 and 5.640,
respectively, one gets from Eq. (86) £rp=1.0484 and
ECS = 1.0728.

With the screened-exchange approximation and
replacing the summation in (85) by integration over
the Fermi volume, one gets, using an effective-mass
approximation for simplicity,
k”zdk,,dgk"

(¢+2°K) [ k—K" P+Ek)

m* kp

F(q)=—

2
™ Jo

(87)

2.0

The reduction of F(0) as given by (84) requires a
more careful consideration. The summations are now
best carried out by introducing Fermi functions to take
care of the occupied k space and extend the limits of
integration to infinity. This procedure, along with
suitable expansions for Fermi functions for small g,

leads to

m* 1 (k—kp)2+£2kp2
gy |SETRR) SR e
FO) == il | ok (88)

To carry out the angular integration in (87) we first
remind ourselves that according to our earlier approxi-
mations we are only interested in a spherical average of
F(q) over directions of k and also with k=kp. Carrying
out the averaging procedure first simplifies the integra-
tion over dQi”’ and leads to

% kr
d / k" In l
471"qu 0

X In

q_zk//

(kp—FE")24-Ekp?
(kp+k")24-Ekp?

F(0) and F(g) have been numerically computed for
various values of 7. In Fig. 1 we present our calculated
enhancement factor F(q)/[1—F(g)] as a function of ¢
for a value of 7, appropriate to cesium. In Fig. 2,
1/[1—F(0)] is plotted as a function of 7,. In both
figures, comparable results of Hammann and Over-
hauser?! are presented for reference. The agreement
between our results and theirs justifies the validity of
the screened-exchange approximation.

We shall next consider the summations in Eq. (83)
for A?Fgk ™. Equation (83) is quite general and
applies to any type of indirect interaction, between
nuclei, localized moments, and between nuclei and
localized moments with the proper substitutions for

Flg)=— o

(89)
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Nij and f(r—R;) in the expression (52) for Apert(T;).
We shall now specialize to our case of interest, namely,
the RK interaction between nuclei, making the requi-
site substitutions for /pe(r;) from (4). With this step
and replacing the summation over k' by q'=k’—k,
Eq. (83) reduces to

..corr — 1 F(q) <<k+q I efar I k>>
Am=ic qua 1—F(q) [e(k—i—q-l—G) —e(k)

X¥itrqrc™(0) ¥ (0) exp(—iq-Ryj) + c.c.] , (90)

where C is defined in Eq. (10).

The exact evaluation of A4;™ in (90) is a rather
formidable task because it involves a triple summation
over three variables k, q, and G. In fact, it involves an
integration over nine variables corresponding to the
magnitudes and directions of three vectors. We have
made a reasonable estimate of the results to be expected
from the summations by examining the sensitiveness of
the dependence of the summands on the variables in-
volved. The following sequence of approximations has
been made:

(1) The matrix element ({(k-+q | ¢®@* | k)) has been
replaced by its value at k=kp. This is justified because
this matrix element, which would be unity for plane
waves, varies only about 29, for OPW functions
inside the Fermi volume.

(2) The quantity Yiiqrc*(0)¥x(0) has been re-
placed by Yietaic®(0)¢a,(0), with kr taken along the
(111) direction. This approximation was based on the
observation that the dependence of this quantity on
the magnitude and direction of k was rather slight in
the process of carrying out the other summations and
integrations involved.

a,k

(3) The dependence of the integrand, except for the
phase factor exp(—iq-R;;) on the direction of g, was
found to be weak by testing with three directions (111),
(110) , and (100) for q. With these approx1mat10ns and
carrying out the integration over angles of k in the
denominator one obtains

1 =, F(q) L
(2#)5.[0 q dqdﬂq[l—F(q) exp(—iq- Riz)

X ST (kr, | 4G DI(| q+-G |, k) + c.c.] , (1)

A ijcorr —_ %Cm*

where
kr k2dk | a+G | +2k
I G |, kr) =
=1kp [1+(2X)‘1(1 X2 In ‘1+))§ ]
_latG]
X= 2kp ©2)
and

= ((&+q | e | B)n[Fir-rq+a(0) Yy (0) Jav-

Next the summation in G was performed over the
first 228 reciprocal-lattice vectors. The convergence in
G was quite good, primarily because of the decrease in
Wiptqra(0) for large values of kr+q-+G. For brevity
we define

B(kl") Q) = ;‘I/kr}-lq-l-(}l(o)l(ki') I q+G D: (93)

where a separate summation has to be carried out for
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Fic. 3. Variation of |¢:(0) |4, thermal mass m.(k), and phase
factor ®rx (k) with £ for RK interaction in cesium.

each value of q. Finally, integrating over q, Eq. (91)
reduces to

corr— S e [C9F(Q)
Aij - (27r)4 2m ‘I’kF(O) (Rw) 1/(; I—F(g)
X[B(kr, q) sin(qR:;) ((kr+q | e | kr))+ c.c.]dg.

(94)

The evaluation of 4, from (94) has been carried out
numerically and the results will be discussed in the next

section.
IV. RESULTS AND DISCUSSION

The results of our calculations will be analyzed in
two steps. First, we shall study the relative importance
of various contributions to A;; and B, for which
expressions have been derived in Secs. IT and III. Such
an analysis enables one to make a critical evaluation of
earlier calculations®*!? as well as a general assessment
of the relative importance of the different contributing
factors. Information of this type should be helpful in
channeling efforts towards only the most important
contributions in future calculations on other metals.
The second step in the analysis concerns the comparison
of our results with experiment. The nature of the agree-
ment between theory and experiment for 4;; and B;;
will be utilized for assessing both the correctness of
electronic wave functions and the importance of effects
which have not been taken into account in our calcula-
tion. In particular, we shall be interested in information
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on the influence of relativistic and exchange polarization
effects on 4;; and By;.

A. RK Coupling Constant A;;

We first consider the one-electron results for 4,; based
on Egs. (22), (46), and (42) for A4, A.?, and 4.3,
respectively, derived in Sec. II. The principle con-
tribution to 4,; comes from A4,;!, which arises out of the
contact interactions alone. It is instructive to first
study the % dependence of the various terms in the
integrand of Eq. (22). In Fig. 3, the different functions
| ¥%(0) |4, m;(k) and the phase factor ®rx(k)=
ksin(2kR;;) are all plotted as functions of %, for the
case of cesium. Core wave functions required in the
construction of the OPW functions yi(r) were taken
from both Hartree-Fock® and Hartree-Fock-Slater®®
calculations for cesium atom. The values of ¥ (0) for
the two cases were very close to each other, indicating
that the results would not be too different if one had
available and made use of actual core-electron wave
functions in the metal. The value of y;(0) varies from
51.49 a3 for k=0 to 41.82 ay73?2 for k=kp, a 209,
change. The decrease in | ¢4(0) |*is considerably more
magnified, namely about 559%. The phase factor ®rx
also shows drastic variation in the range 2=0 to &r
and in particular it changes sign at k=0.5kr and
0.9%kp. Such a behavior produces a significant can-
cellation between the contributions to 4! arising from
the regions £<0.5k7 and 0.5kr <£<0.9%p. The thermal
mass m;(k), defined in Eq. (20), also shows sizeable
variation in the range 0<k<kp. In particular, it varies
from 0.73 m at k=0 to 1.32 m at k=kp. In view of
these rather drastic variations of all the three k-de-
pendent factors that occur in the expression for 4,
the replacement of m.¢(k, k) in (22) by its value at
kp can be rather inaccurate.®

The rapid variation of the various contributory
factors to 4 with % should lead to a sensitive depend-

Tasre I. Contributions to A;; in cycles.

Cesium Rubidium
A 115.00 20.58
A;? 2.55 0.42
A 4.0X10™ 1.7X10
Ajjeorr 7.10 1.73
A;; (total) 124.65 22.73
Aq; (experiment) 20010 5145
A;; (approximate)® 97.92 19.34

2 This row gives the value obtained by making an approximation similar
to Ruderman and Kittel (Ref. 3) but using actual wave functions.

8 F, Herman and S. Skillman, Atomic Structure Calculations
(Prentice-Hall, Inc., Englewood Cliffs, N.J., 1963) ; T. L. Gilbert
(private communication) ; We thank Dr. Gilbert for making the
Hartree-Fock wave function for Cs and Rb available. These were
calculated using a program written by Dr. C. Froese Fisher.
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ence of 4;; on the dimensions of the Fermi surface. One
would therefore expect to see important variations in
A;; with external factors which distort the Fermi
surface, such as applied pressure or alloying. No such
data are currently available for 4,; but they should be
accessible to measurement with either steady-state? or
echo techniques.’* A sensitive 2 dependence, analogous
to what has been found here, has also been obtained for
the coupling between localized moments in transition
metals by Watson and Freeman.

In Table I, the contributions to 4,; for cesium and
rubidium from both A4;* as well as 4,7 and 4,7 are
listed together with our total A;;, experiment, and the
value that would be obtained by the RK-like approxi-
mation of using the Fermi-surface result. The con-
tribution 4,7 arising from second-order effects of the
orbital interactions is seen to be smaller than 4. by
two orders of magnitude. This is understandable be-
cause A;;! arises from the predominant s density of the
electronic wave function while 4,7 is obtained from the
p and higher components of the wave function which
can only contribute through the (1/7%) term. The tensor-
tensor contribution 4, is about five orders of magni-
tude smaller than A4;! and three orders smaller than
A2 A# also arises from the non-s components of the
wave function; its smallness with respect to 4,7 is due
to the cancellation of two terms in (51) arising from
the phase factor exp[4(k—k’) -R;;]. Similar factors for
A2 on the other hand, interfere constructively.
Correlation corrections have not been applied to 4.7
and 4;® because their magnitudes are rather small.

CESIUM

2 ,
o

00 02 04 086 08 0

Fic. 4. Variation of | ¢x(0) 2, Qu(k, k), thermal mass m,(k),
and phase factor ®pp(, k) with & for PD interaction in cesium,
indicating the sensitive % dependence of integrand in Eq. (50e).

% R. E. Watson and A. J. Freeman, Phys. Rev. 152, 566 (1966).
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Tazsre II. Dependence of Qy, 1 (k, k) on ] and /' in cesium.»

k in units Qo2 (k, k) Qu (%, k) Qi (B, k)
of kr (sd) () (#f)
0.0 0.0 0.0 0.0
0.25 0.1253 3.8183 0.0475
0.50 0.0993 13.2928 0.0410
0.75 0.0831 25.8087 0.0378
1.0 0.0640 37.6198 0.0353

& Results for Qi+ are in atomic units (oo™3).

The correction factors for 4, are found to be respec-
tively 6.2 and 9.99, for cesium and rubidium from
numerical computations using Eq. (94) together with
effective masses m*=1.32 (cesium) and 1.24 (rubid-
ium). By virtue of the various approximations made in
deriving (94), some uncertainty is expected in these
correction factors. However, even an overconservative
estimate of a factor of 2 for the uncertainty would still
make these corrections less than 159, of the one-
electron results. The smallness of the correlation
enhancement factor as compared to that for uniform
fields (q=0) can be understood from Fig. 1 for
F(q)/[1—F(q)]. The Fourier spectrum of §(r—R;),
namely f(q) in (56), is a white spectrum which leads
to an integration of q over all values from 0 to « in
Eq. (94). Since F(q)/[1—F(q)] falls off rapidly for
large values of ¢, the correction factor to 4, turns out
to be small. The one-electron value of A4;; for cesium in
Table I obtained from Eq. (22) using the predicted
variations of different factors with %' in Fig. 4 is to
be compared with the value 97.92 that one obtains
using a parabolic band approximation (m*=m,=0.91)
and replacing ®(k, k) in Eq. (22) by ®(ks, kr). This
was the approximation proposed by Ruderman and
Kittel.? The smaller approximate value can be under-
stood from Fig. 3, since | ¥x(0) |* decreases continually
from k=0 to kr; however, Poitrenaud,”® using the
Fermi-surface approximation, has obtained a value of
214 cycles, which is fortuitously close to the experi-
mental value. Here large theoretical value is the com-
bined result of using #*=0.89 and the arbitrary ap-
proximation ¥ z2(0) =¢4(0)Q, where ,,*(0) is the den-
sity at the nucleus for the free cesium atom and Q is
the volume of the Wigner-Seitz cell. This approximation
overestimates the density at the nucleus by a factor of
about 1.7 and would also lead to a gross overestimation
of the Knight shift.® A discussion of the reasons for
disagreement between our value and experiment will be
made after presenting the results on PD interaction.
All features of the results for cesium metal seem to
apply to rubidium as well, as seen from Table I.

3 Analysis of the Knight shift will be given in a subsequent
paper aealing with the band structure of cesium.
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TasLe III. Contributions to B;; in cycles.

Cesium  Rubidium
Bt 2.07 0.36
Bi? 0.26 0.04
B;; (total) 2.33 0.40
B;; (experiment) 35.00 11.80
B;; (approximate)® 12.96 2.42

2 This row gives the result of an approximation similar to Bloembergen
and Rowland (Ref. 4) but using calculated OPW functions.

B. PD Interaction

In calculating B!, one obtains contributions from
the 7 and 7 components of the wave function, where
I=0'42, and 7, the latter possibility being excluded for
l1=0'=0. One can label such contributions as (&)
terms. Thus one can get contributions from (pp),
(pf), (sd)+--terms. From Table II, it can be seen that
the pp term is by far the major contributor to Q.- (k%’),
the contributions decreasing rapidly as / and /' increase.
Such a behavior can be understood by examining the
various ! components of the wave functions, the p part
starting from zero at £=0 and rapidly increasing as one
approaches %r. The d part also starts with zero value at
k=0 but increases much more slowly in approaching
k=Fp. One can thus obtain a fair estimate of Qu (k%)
by keeping only the p-p contribution.

The PD interaction B;* has a much stronger &
dependence than 4. Part of the reason for this sensi-
tive dependence is due to the stronger variation of
Qu(k, k) with % than is the case for | ¥4(0) [2. Thus for
the case of cesium, Qy starts out with a zero value at
k=0 and increases to 37 at k=Fkp. In addition, there is
now a much more sensitive cancellation between
positive and negative contributions to B! from
different regions of %2 than was the case for 4. The
phase factor, ®pp=~Fk(coskRij+kR;; sinkR:;) x(sinkR;;—
kR;; coskR;;)/(kR;;)? is positive over a large region
k=0 to 0.812kr and negative over the remainder of the
Fermi radius. While the product of Qu(%, k) and
| ¥%(0) | in the integrand has smaller values over the
positive phase factor region, the larger extent of this
region overwhelms the negative region and leads to the
positive result listed in Table III. Because of this
sensitive cancellation effect, a small change in kr by
external means can have a more drastic change on Bj;.
Another consequence of the rapid variation with % in
the case of B;* is that one now makes a much larger
error by replacing?® the integrand in Eq. (50e) (except
for ®pp), by its value at £=ky. Thus, in Table III, such
an average approximation is seen to lead to a value
about four times larger than the actual theoretical
value obtained by % integration. The relative largeness
of the approximate value of B;;* can be understood from
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Fig. 4 by noticing that the Fermi-surface average over-
estimates the positive value of the integrand in regions
of small .

The tensor-tensor contribution B;? to B,; has been
obtained by a numerical evaluation of the requisite
equation in (51). From Table III, this contribution is
seen to be an order of magnitude smaller than B
This order of smallness is to be compared to the even
larger order of smallness (~1075) for 4,7 as compared
to A;*. The larger ratio for the PD case occurs because
B;;! involves the combined effects of s and p characters
while B;? involves p character alone (the contributions
from higher ! components is again small). This is in
contrast to the case of RK interaction where A7 in-
volves only p character, whereas A4;* involves only s
character. One might remark here that in transition
metals where higher non-s orbital components, particu-
larly d character, can predominate, the contributions
A+ and B;;t will be expected to be comparatively less
predominant than other contributions which depend
strongly on non-s components. We have not made any
estimates of exchange and correlation corrections for
B;t. However, the general procedure to be followed is
the same as for the RK case, the only modification is
that wherever f(r—R) refers to dipolar interaction it
has to be replaced by (3 cos?;—1) /7. The spectrum
for the Fourier components is now no longer a white
spectrum as it was for §(r—R;) but it should still be
quite broad because of the localized nature of the
interaction. We therefore expect a similar or perhaps
slightly stronger enhancement than for the RK inter-
action. Using a factor of 109, for the enhancement, our
theoretical value from Table IIT comes out as 2.56
cycles for cesium. The features of the PD interaction
in rubidium are closely analogous to those in cesium,
except that the contribution to the variation in B;; due
to m;(k) is now less pronounced because of the more
parabolic nature of the Fermi surface. A similar com-
ment also applies to the A4;; results in rubidium.

We next turn our attention to comparison with
experiment. From the results in Table I, the theoretical
values of 4;; are seen to be about 60% of experiment
for cesium and 509, for rubidium. On the other hand,
from Table ITI, the theoretical values of B;; are an order
of magnitude smaller than experimental ones. There are
primarily two sources of error which could influence the
theoretical results. First, there are those connected with
approximations adopted in the process of our calcula-
tion. Secondly, there are some additional causes which
have not been considered in the present work. In con-
sidering the former source, it is convenient to discuss
A ;j and B;; separately.

In the construction of OPW functions, one should
use crystal-core wave functions rather than atomic
ones. However, the difference between the atomic-
and metallic-core wave functions can at best be com-
parable to that between Hartree-Fock-Slater and
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Hartree-Fock -atomic wave functions. Since, as men-
tioned earlier in this section, only a rather small (~3%)
difference in A ;; was found with these two types of core
wave functions, one does not expect the error due to the
use of atomic core functions instead of actual ones to
amount to more than 3%. A possibly more important
source of error within the framework of our calculation
is the use of one-OPW instead of a linear combination of
such functions. However, calculations?*# in beryllium,
aluminum, and indium indicate that a one-OPW
representation is reasonably adequate for the conduc-
tion-electron wave function. Furthermore it has been
found® from band-structure calculations for cesium
that admixture of higher OPW’s is rather small. Thus
the amplitude Cj; x| is less than 69 for thehigher OPW,
with | k+K | nearest to the reduced vector and rapidly
decreases for increasing K. It can be shown that y4;(0)
falls off rapidly beyond %2=Fkr. Since the magnitude of
the nearest K vector will be of the order of 2kp, the
many-OPW correction will be quite small, due to the
smallness of both Cix| and ¥k (0).

In the case of B;;, we are concerned with both s and p
characters of the conduction-electron wave function.
The choice of atomic p cores again is not expected to
affect the p character of OPW function significantly.
This point was again confirmed from tests with Hartree-
Fock and Hartree-Fock-Slater cores. The effect of
including higher OPW functions could be different in
this case than for 4;;. The amplitude factor is, of course,
similar in nature. The variation of Q11(k, k), on the
other hand, is somewhat different in nature than
¥i2(0). Thus Q1,1(%, k) keeps increasing beyond 1.5%r,
where it is about 309, larger than at kp. For 2> 1.5kp,
the function Qy1(k, %) falls off rapidly and is quite
small beyond 2=3kp. The effect on B,; of including
higher OPW’s is expected to be more important than
for A4, but not by anything more than 30%. This
change is far short of the order-of-magnitude increase
required to explain the experimental B,; for both
metals. To further confirm that it is not the accuracy
of the OPW functions which is in question to explain
the experimental B;;, we have evaluated Qy,1(%, k) and
¥:2(0) for several values of &, using Callaway’s cellular
wave functions for cesium, based on the Bardeen
approximation. The values of Q11(k, k) with these
functions are always about 209 larger than that from
one-OPW functions over the range 0<% < kp, while the
values of ¢42(0) from both functions agree within 59%,.

Two other approximations that have been utilized
in our calculation are spherical Fermi-surface (except in
the & dependence of m,) and the use of free-electron gas
approximation to evaluate correlation corrections. We
believe that the Fermi surface of rubidium is very
nearly spherical and therefore nonsphericity corrections
cannot be more than a few percent. Cesium, although it

8 G, D. Gaspari and T. P. Das, Phys. Rev. 167, 660 (1968).
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has a slightly more distorted Fermi surface, is still not
distorted enough to expect a large nonsphericity correc-
tion. The use of free-electron approximation for the
exchange-correlation enhancement is not expected to
be serious either, because of the predominantly free-
electron-like nature of the wave functions over most of
the Wigner-Seitz sphere except near the cores, and also
because the exchange-correlation enhancement is itself
rather small. It is therefore clear that one has to look
for an answer to the discrepancy between experiment
and theory elsewhere. This brings us to the considera-
tion of the second type of sources of error.

The second kind of error can occur because of the
omission of certain neglected factors that have not been
considered in our work but which can significantly
influence the theoretical values of A;; and B;;. These
factors are: (a) relativistic effects, (b) isotropic and
anisotropic core-polarization effects, (c) core-conduc-
tion correlation and to a less important extent, core-core
correlation. Casimir®2 has demonstrated that relativistic
effects can have important influence on the hyperfine
interaction for atoms with large atomic number. Pre-
liminary results from recent calculations® on relativistic
corrections to the hyperfine constant in the ground
states of the two alkali atoms of interest indicate that
this correction is about 259 for rubidium atom and
489, for cesium. Since the RK and PD parameters
both involve hyperfine interactions between the nuclei
and conduction electrons it is quite possible that
relativistic effects can make similar sizeable contribu-
tions to A;; and By;. The second mechanism that can
produce significant corrections to 4;; and By; is the
spin polarization?*® of the core electrons surrounding
the nuclei. The hyperfine interactions of both the scalar
and tensor types in Egs. (3) and (4) can be considered
as producing magnetic fields at the positions of the
conduction electrons and polarizing them. This con-
duction-electron spin polarization can induce a similar
effect on the core through exchange interaction. The
cores which were otherwise spin-symmetric now get
polarized with different up and down spin density, the
up and down directions being in reference to the
direction of surplus conduction-electron spin. The net
core magnetization can interact with the nucleus via
both contact and dipolar interactions. This core-
polarization effect can lead to either positive or negative
corrections. Calculations by Goodings on sodium and
potassium atoms indicate that it produces a positive
correction to the hyperfine constant in both cases. The
positive effect may be a property of s-valence elec-
trons.243¢ However, for lithium metal,?¢% whose con-
duction electrons at the Fermi surface seem to have

32H. B. G. Casimir, On the Interaction Between Atomic Nuclei
and Electrons (W. H. Freeman & Co., San Francisco, Calif., 1963).

3 L. Tterlikkis (private communication).

3 M. H. Cohen, D. A. Goodings, and V. Heine, Proc. Phys,
Soc. (London) 73, 811 (1959).
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substantial amounts of both s and p characters (as is
also the case for rubidium and cesium metals), the core-
polarization contributions from these two different
angular-momentum components have a tendency to
cancel. Therefore, actual calculations of the spin-
polarization effects in cesium and rubidium metals are
very desirable, in the absence of which nothing definite
can be said about the relative importance of such
effects.

The third factor that could provide corrections to
A and B;; is the correlation effect between core and
conduction electrons. From recent calculations of
Nesbet,* Kelly,* and Chang® for the ground state of
the lithium atom, intershell correlations do not seem to
have much effect on the energy while hyperfine calcula-
tions®% indicate that the 2s-1s correlation can give rise
to a 209, enhancement in the hyperfine constant. Core-
conduction correlations in metals represent the parallel
of intershell correlations in atoms. However, no sat-
isfactory procedure is available currently for han-
dling core-conduction correlations quantitatively. The
Brueckner-Goldstone theory®+# is specially adapted to
correlation effects between localized electrons and has
in fact been applied only to atoms so far. The dielectric
formalism'® is applicable primarily to delocalized
systems. Core-conduction correlation effects form the
twilight zone between the two types of correlation and
neither of these procedures is well suited for our
problem. Another type of correlation effect that could
influence the theoretical results for A;; and By; is the
correlation among core electrons themselves. This type

% R. K. Nesbet, Phys. Rev. 155, 51 (1967).

3 H. P. Kelley, Phys. Rev. 144, 39 (1966).

3 E. S. Chang, Ph.D. thesis, University of California, River-

side, 1967 (unpublished); E. S. Chang, T. P. Das, and R. T. Pu,
Bull. Am. Phys. Soc. 12, 68 (1967).
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of correlation is expected to be of less importance than
the core-conduction exchange because of the following
reason: Since the core electrons have paired spins, pure
correlation effects among them cannot directly con-
tribute to hyperfine interaction. However, core-core
correlation could indirectly influence the spin polariza-
tion?* of core electrons produced by conduction elec-
trons. Any or all of the above mechanisms could explain
the nearly 409% difference between experimental results
and theoretical values of 4;; for rubidium and cesium.
However, these factors are not expected to influence the
theoretical values of B;; sufficiently enough to produce
agreement with experiment. The explanation of the
smallness of the theoretical B;; for both metals thus
presents a dilemma. It is possible that the experimental
results are in error since the values of By; are quite
small, and their accurate measurements by steady-state
line-shape technique presents some difficulty. Echo
measurements that have recently been applied* to other
metals could perhaps lead to more accurate values of
B;;. In addition, it would be quite interesting to obtain
theoretical values of B;; in platinum and lead along the
lines developed here to see if the theoretical result is
again an underestimate. It is hoped that this combina-
tion of experimental and theoretical efforts will help us
understand better the difference in the nature of
agreement between current theory and experiment for
B,; in alkali metals.
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