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The resonant scattering of photons from a perturbed two-level system is studied in detail. Adiabatic
perturbations are approximated by a randomly Quctuating term in the level splitting. 06'-diagonal perturba-
tions are accounted for in the linewidth and the time dependence of the correlation functions. Explicit
expressions for the cross section are obtained in the statistical and motional-narrowing limits. The detailed-
balancing symmetry of the scattering is established. Minor modifications of the approximate expressions
for the cross sections are proposed in order to preserve this symmetry. The effects of off-diagonal perturba-
tions, which couple the atom to a thermal bath, are investigated at length for a model interaction.

plain below, there are many points which are common
to both the calculation of the absorption spectrum and
the spectrum of scattered radiation. For this reason
we will not go into detail about the situations where
our particular model is appropriate. It is sufIj.cient to
say that in general the model has the same range of
validity in both the absorption and scattering calcula-
tions.

The starting point in our study is the equation relat-
ing the differential cross section to the induced dipole-
moment correlation function PI, Eq. (1.6) $;

I. INTRODUCTION

d 0 (cup) coimq
dt exp(ico2t) (Pr, r; (t) ). (1.1)

d&co2 2' C co

Here co2 is the angular frequency of the incident light,
or& is the angular frequency of the scattered light, c is
the velocity of light, and the angular brackets indicate
an ensemble average. The symbol I'~, denotes the in-
duced dipole-moment operator

Pr;(t) =exp( —is&~t) exp(iHt'/5)Pr; exp( —iHt/5),

(1 2)
with

i
CO

t (d) r, exp (i''/h) (d); exp( i''/5—) 5

Xexp( —i(vent'+et') dt'. (1.3)

In (1.3), H is the Hamiltonian of the total system
including both the atom and the perturbers. The sym-
bol (d); Lor (d) f) denotes the component of the dipole-
moment operator along the direction of polarization of
the incident t or scattered( light. The limit ~~0+ is
understood.

As in I we view the atom as a two-level system
which is characterized by the effective spin operators
S„S„,and 5,. The Hamiltonian of the unperturbed
atom takes the form ScooS„where Scop denotes the
diGerence in energy between the two levels. We ap-
proximate the effect of the perturbers by a Quctuating
term in the level splitting, Meso(t). The full Hamilton-
ian is thus written

*Work supported by the National Science Foundation.' D. L. Huber, Phys. Rev. 158, 843 (1967).
'V. Hizhnyakov and I. Tehver, Phys. Status Solidi 21, 755

(1967).' Reference 2, Eq. (46).
4 A general discussion of the application of stochastic models to

line-shape calculations is given in an article by R. Kubo, in Ii lnctla-
tion, Relaxation, and Resonance in Magnetic Systems, edited by
D. ter Haar (Oliver and Boyd, Edinburgh, 1962), pp. 23—68. a(t) =%~os.+9~0(t)s'
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'N a recent paper' (hereafter referred to as I) the„.author discussed the resonant scattering of photons
from an atom which was coupled to a crystal lattice.
It was shown that the frequency spectrum of the scat-
tered radiation is dominated by three terms: a coherent
elastic component, a quasi-elastic component, and the
resonance fluorescence. These results were obtained
from a study of the induced dipole-moment operator.
It was pointed out that the differential cross section
could be written as the Fourier transform of the in-
duced dipole-moment correlation function. An approxi-
mate expression for the cross section was obtained by
expanding the induced dipole-moment operator to first
order in the atom-lattice interaction. This approach,
together with a phenomenological treatment of the
linewidth and the population Quctuations, Ied directly
to the three-component spectrum.

Subsequent to the appearance of I, Hizhnyakov and
Tehver' published a general treatment of scattering
from an atom-lattice system. By utilizing a diferent
method of approximation, these authors were able to
obtain an electively nonperturbative expression for
the cross section in the vicinity of the resonance. ' In
view of the fact that their analysis was limited to
temperatures such that the thermal population of the
upper state could be neglected and, further, was ap-
propriate only to phonon-induced perturbations it was
believed that a finite-temperature treatment of the
resonant scattering based on a simple stochastic model
would be of interest. The present paper outlines such
a treatment. Our approach will be suKciently general
to encompass not only atom-lattice interactions but
other types of perturbations as well.

Stochastic models have long been used in the calcu-
lation of the absorption line shape. 4 As will be made
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assuming that (BMO)=0. The dilferential cross section is seen to depend on the autocorrelation function of the
frequency Ructuations. It is convenient to consider two limiting types of behavior for this function. In the erst
of these it is assumed that the correlation time for the fluctuations is long compared with the smallest of the
times EMon ',

I
Ms —Mr I

', and
I

Ms —Ms I
'. In this limit, which is sometimes called the statistical limit, we may

replace (BM(}(rr)BMO()ts) ) with the constant (BMs ). As a result we obtain

P(o(M')r2MrMs
I

cx;
I I crf I di expLi(Ms —Mr) t](S,S,(h)) )

dQdor2 m fPc4 —00

0 0
dt' df" exp/i(Mo M—)) (f i ) ——AMon( I f I + I

t"
I )j expL" —s(BMo')()I' —)(' )'j. (2.6)

An explicit expression for the cross section follows from approximating (S,S,(/) ) by ((S,s)—(S,)') exp( —
I t I/Tr) +

(S,) LI, Eq. (2.18)7. Further refinements in the treatment of longitudinal correlation function are discussed in
Sec. IV. Note that the appearance of Tt~ both in the linewidth and as the relaxation time for the population dif-
ference holds only for two-level systems. For systems with more than two levels the ofF-diagonal linewidth is half
the sum of the inverse lifetimes of the two levels involved in the transition. If we also assume that AMon ( =1/2Tl)
is much less than (BM(}s)",we have the result

d'o (Mr) M,Mes
I a; I'

I nr I'
tanh'(-, 'dli a} t(,—a}+(I—tanh'(-, 'ttttw) )

1/(s Tr)

dQA02 A c Mr —Ms +
X(2s/(BMss))u'Tr expL —(Ms —Mr)s/2(BM()s)jt (2.7)

where P =1/kT, with T being the temperature and rt, denoting Boltzmann's constant.
On the other hand, if the condition AMoo»(BMO )'I' is satis6ed we End

dso (Mr)
tanh'(-', PSMo) B(Mr —Ms)+ (1—tanh'(-, 'P)r)M()) )

1/(s Tr)
I (Mo

—»)'+(1/2Tr)'3
dQdko2 fPc4 (Mr —Ms) '+ (1/Tr) '

(2.8)

We postpone discussion of (2.7) and (2.8) until Sec. III.
In the opposite limit, when the correlation time is short compared with AMon ',

I Ms —Mr
I

', and
I Ms —Ms I

the autocorrelation function can be approximated by a delta function;

(BMp())) BMs($) )=2AMnB()) —$), (2.9)

where EMn denotes the diagonal linewidth. This width is on the order of (BMs )r„with r, being the correlation
time. 4 In this limit, which is frequently referred to as the motional narrowing limit, ~ we have

t" f+t' 2

axp — ila (t)dt — lla, (Od)
I2 p t

=expL —~Mn( I
)t'

I + I
&"

I ) —»n( I
i

I + I
&+i' —&"

I
—

I
)I'+)I

I
—

I
~—~"

I )3 (210)

The cross section can then be written

d o(Mr) MrMs I
cr;

I I
cry I t. h -r. B»—

dQdMs fPC $(MO —Mr) +(1/2Tr+AMz))sf (Mr —Ms)s+(1/T )s 1/2T

(AMo+ 1/2Th)/s, (AMz)+ 3/2 T,) /m

(M —M ) g(DM +1/2T )s (M — )s+(g +3/2T )s

' N. Bloc)nbergen, E. M. Purcell, and/R. V. Pound, Phys. Rev. 6(), 37 (]946).
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Although discussion of this cquRtlon ls left to Scc. III
we should point out that the results of Ref. 2 are
obtained as the zero-temperature limit of (2.11) in
which tanh2~Pfuoo is replaced by unity and 1/2' by
the natural linewidth. '

IIL DISCUSSIOH

It is apparent from Eqs. (2.7) and (2.8) that the
spectrum of scattered light has no Quorescent compo-
nent (i.e., there is no component which as a function
of a&2 peaked about coo) in the statistical limit. The
Qnite width arises only from the Quctuations in the
populations of the two atomic levels. For frequencies
in the visible and near-infrared part of the spectrum the
condition Pfuoo»1 generally holds so that tanh-', PA+0 1.
In this region nearly all the scattering is coherent. This
result is not unexpected since the statistical limit is
equivalent to having an ensemble of atoms with a
static distribution of level splittings. At absolute zero,
or in the absence of OG-diagonal perturbations, the
spectrum of bght scattered by any member of the en-
semble is identical to the spectrum incident upon it.

In the motlonal-narrowing llllllt, Eq. (2.11),we have
the same three-component spectrum as was obtained
in I by applying perturbation theory to the atom-lattice
interaction. The only signi6cant diRerence between Eq,
(2.11) of this paper and Eq. (3.1) of I is that in the
former equation the Quorescence terms are multiplied
by the factor ha&n/(1/2T, ). This factor has its origin
in the expression

gtt {+gt

exp dt, dh(boo(t) b~o(I) )
p t

Were we to have expanded this expression in powers
of the autocorrelation function and kept only the
zeroth- and 6rst-order terms we would have obtained
an equation similar to. (2.11) but without the factor
ha&D/(1/2'). It is apparent that the integrated in-
tensity of the Quorescence diGers from the sum of the
integrated intensities of the elastic and quasi-elastic
components by the same factor. This result has a simple
physical interpretation. '

We note that the integrated intensity of the Quores-
cence is independent of the relative populations of the
upper and lower states, except insofar as they affect
A~0. This happens because the Quorescence can occur
in either of two ways:

(a) An atom in the ground state absorbs a photon
and makes a transition to the upper state. While in
the upper state it is perturbed and then emits a photon
and returns to the ground state.

(b) An atom in the upper state emits a photon

%. Heitler, Quantum Theory of Eadiotiol (Oxford University
Press, London, 1954), 3rd ed. , p. 302.

9 A similar argument, appropriate to the zero-temperature limit,
has been given by T. Holstein, Phys. Rev. V2, 1212 (1947),
Appendix.

6(oDS,

1/2T,
' (3.5)

while making a transition to the ground state. %bile
it is in this state it is perturbed and then subsequently
absorbs a photon.

The intensity of the Quorescence, measured relative
to the sum of the integrated intensities of the coherent
RIll quas&-clastic pcaksq Is then glvcn by thc relative
number of atoms which are perturbed by the frequency
Quctuations compared with the number which undergo
the absorption-emission process without being per-
turbed. This fraction may be inferred from the follow-

ing argument.
The number of atoms undergoing Quorescence via

process (a) is proportional to the number of atoms
which have absorbed a photon and have then been
perturbed. Under steady-state conditions this number
is obtained from a consideration of the relevant transi-
tion rates. The number of coherent systems which are
brought to the upper state is equal to the population
factor of the lower state, L1+exp( —Pkcvo)] ', multi-

phed by E„ the total number of systems responding
coherently to the field. The rate at which they are
perturbed is hcoo. The rate at which the incoherent
systems are removed from the upper state is deter-
mined by the transition rate from the upper to the
lower state. This we designate by A+ (P). Then under
steady-state conditions the number of incoherent sys-
tems which are created per unit time equals the num-

ber which are lost through transitions to the ground
state, i.e.,

60)DXg
=A+ (P)Er+, (3.1)

1 exp —PAG&0

where Si+ is the number of incoherent systems in the
upper stRtc.

A similar argument for the lower state yields

ZMnlVq exp (—PS&0)

1+ exp (—Pkoo)

where A +(P) is the transition rate from the lower to
the upper state and EI is the number of incoherent
systems in the lower state. The total number of Quo-

rescing systems, Sr++Sr, is thus given by

Sr++Sr =N, d coD I[(-1+exp( Pfirao) )Ap —(P)j '

+LB+exp(P&~o) )~-+(P)3-'I (3.3)
The arguments of detailed balance, when applied to
the transition rates, show that

A+ (P) =A(P) exp(PAa)0), A +(P) =A(P), (3.4)

where A(P) is an arbitrary function of P. Hence we
have

2+c~{'do

A (P) Ll+exp(Pfuup) j
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where we have made use of the result'

1/22'~=2L~+ (p-)+~ +-(p) j
=—', A (P) I 1+ exp(P5(ap) j. (3.6)

Since the number of systems which scatter via the
elastic and quasi-elastic processes is S„we conclude on
the basis of these arguments that the integrated (over
~,) intensity of the fluorescence differs from the sum
of the integrated intensities of the elastic and quasi-
elastic components by the factor Aa»/(1/2T&), in
agreement with Eq. (2.11). Implicit in this analysis
is the assumption that the lifetime in the upper state
is limited by relaxation processes rather than radiative
processes —as must be the case if the populations of
the upper and lower levels follow the Boltzmann dis-
tribution.

We note that when hero ——horoD or, equivalently,
when the relaxation rate equals the linewidth, the inte-

grated intensity of the coherent and quasi-elastic peaks
equals the integrated intensity of the fluorescence. In
the limit of zero temperature this result agrees with
the 6ndings of Holstein, who studied the resonant
scattering from a classical oscillator perturbed by totally
quenching collisions. ""After a totally quenching colli-
sion the atom is returned to the ground state. Hence
in this case the collision rate equals the relaxation rate.
The analogy is completed by the identiication of the
collision rate with the (transverse) linewidth.

IV. FURTHER REFINEMENTS

In this section we discuss modifications of Eqs. (2.7),
(2.8), and (2.11) which arise from a more rigorous
treatment of relaxation eGects. We begin by establish-
ing a general symmetry property of the cross section
for photon scattering from systems in thermal equilib-
rium. We write the expression for the cross section in
the form $I, Eq. (1.1)j

d'0 ((ug)
=MyCOg C Z ~

QQ Bc'

&~'
I (d)' I

~")&~"
I (d) r I ~& '

exp E„
E„+5(og—E„- ~l/ E~ SQ2 E~&~

(4.1)

where Zr =g„exp( pE„)j is the pa—rtition function of the scatterer whose energy levels are designated by E .
We make use of the restrictions imposed by the delta function and the Hermitian character of the dipole-moment
operators to rewrite (4.1) in the form

PO'(Ny)
~&+2 c ' expL —p&(%2—Ml) 3Z '

dQcko2

~ (~ I(d)'I ~"&&+"
I (d)~ I

~'& ~ &I I (d)r IN"&&~"
I (d)'ll') '

exp —E„
Ee'+~+2 En" ~II E+~—L)y—Ez»

Xh(~,+E„/5 ui E„/-5)-
GOg d'0 ((og)

r
=—exp)-p5((o, -u, )]

M] dQ~
(4.2)

Here d'0 (s&2) /dM&uq denotes the cross section charac-
terizing the time-reversed scattering process where the
incoming photon has frequency cd and wave vector—k2, and has associated with it the dipole-moment
operator (d)r, while the scattered photon has fre-
quency or&, wave vector —kI, and dipole-moment oper-
ator (d);."

The physical signi6cance of Eq. (4.2) can be inferred
from the conditions necessary for maintaining a state
of thermal equilibrium between the scattering system

and a photon gas having a blackbody frequency dis-
tribution. In an equilibrium situation the rate of scatter-
ing from photon state 1 to photon state 2 is the same
as the rate for the time-reversed process from 2 to 1.
The rate of scattering from 1 to 2, Z», is given by

2~2 ——(2s)~c

XLexp(p~~) 1j &ppjp—~JQ,+20(~)/dQ~. 2)dQ2Aym

X exp(Pkum) /Lexp (PAar2) —1], (4.3a)
'0 See Ref. 9
"Resonant scattering from a perturbed harmonic oscillator has also been studied by D. Towne, thesis, Harvard University, 1954

(unpublished) .
"In the case of circularly polarized light, the sense of polarization is reversed in the time-reversed scattering process.
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where the factor preceding the cross section is the
flux of photons with frequencies between o» and rot+
Cko& heading in the solid angle dQ& determined by the
wave vector k~. We have also included the factor
exp(Pfuos)/{ exp(PE@os) —1] to account for the enhance-
ment of the scattering which comes from induced emis-
sion. The rate for the reverse process can be written

Rrs~ ——(2s') 'c

XLexp(PRos) —1] 'ks dksdQs)d'o (o») /dQdo)s]dQrdo)r

Xexp (PRo&) /Lexp (P))labor) —1]. (4.3b)

Equating E» and E»~ leads directly to a result which
is equivalent to the second line of (4.2) . It is apparent
that (4.2) displays the detailed balancing symmetry
of the scattering process. "

An examination of (2.7), (2.8), and (2.11) indicates
that these equations fail to satisfy Eq. (4.2) when the
frequencies co& and co2 are interchanged. The origin of

the failure lies in the approximate treatment of the
o6-diagonal perturbations. As a erst step towards
remedying this defect we will replace our previous
expressions for the cross section by the symmetrized
combinations

-', {d'{r ((or) '/dQdoos+ (ro,/oo, ) '

XexpL —P5 (&os—oo, ) ]d'o (o») r'/dQdoI, },
where the prime indicates that it is to be evaluated
with (2.7), (2.8), (2.11) and their time-reversed coun-
terparts.

Although having the proper symmetry the revised
expressions for the cross sections have the undesirable
feature that they become infinite in the limit as p
approaches infinity whenever co~ is greater than co2.
This feature is corrected by an improved calculation
of the Fourier transform of (S,S,(t) ). Iiy assuming
an exponential decay in S,(t), as in Sec. II, we obtain
the result

dt e'"'(S,S,(l) )= tanh'(-'Pfuop) 8(oo) + (1—tanh'(-, 'PRop) )
7l T]

~ + (1/»)' (4 4)

An alternative method of obtaining this transform is with the help of Green s functions. It is shown in Appendix
8 that an analysis based on Green's functions leads to the result

dt e' '(S.S.(t) )= tanh'(sP4&p) 3(&u) + (1—tanh'(-', Pfuop) )
1/rrTi

exp PRo +1 oP+(1/Ti)' (4 5)

Equations (4.4) and (4.5) differ only in the factor 2/(es""+1). This result suggests that we alter the approxi-
mate expressions for the cross section a second time in the manner suggested by Eq. (4.5). We thus obtain the
modiaed cross section

d 0(o»)I' d'o. (oor)
'

&o,
' d'o (&or)

r'
{exp+5 (ops —d'or) ]+1}

' +—exp) —Pf) (o)s—rot) ]{expL —
Pf{ (o)s—o») ]+.1}

-i
dQda)2 dQAo2 coq dQAo2

d 0'(o») res d {r((or)= {expD3fi(o),—oo,)]+1}-' +—,0 2 coy
(4.6)

The modified counterparts of (2.7), (2.8), and (2.11) take this form:

A. Statistical limit, (dooos)'I'»1/2Tr.

d {r(ror) I horror
~

cr1 [ [ {rg
~ h, (, ~ ) ( ) (1 „,, 1/Trm

dQd&os f c'{exp+fr(Ms Qr)]+1} (&or —~)'+(1/Tr)'

( 2s 'l "s
X ( [ Ti {exp} —(ooo—rot) '/2 (Bo)o')]+exp L

—(coo—ros) s/2 (Scop')] }; (2.7')
E (do)o')j

3. Statistical limit, (8(op ) ((1/2Tr'.

(t. hs(rpa, )3(,—.) + (1—tanhs(r r,) )
dO&, 5's'{exppr{ — )]+)) \ {~—wa)'+{1/TO')

X {L(ooo o)1) +(1/2Ti)']- +} (o)p—cos)'+(1/2Tr)'] —'}. (2.8')

1{{Detailed balancmg symmetry in neutron scattering has been discussed by P. Schofield, Phys. Rev. Letters 4, 239 (l96O).
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C. Motional-narrowing limit:

t, h( ~,)g(» „,)+(1 t,„h(; ~,))dad(o 0'c'Iexp[jN(« —or&) ]+1I ' ' (»—«)'+(1/Tg)'

X jL(»—«) '+ (»n+ 1/2T, )'j-'+L(« —«)'+ (»n+ 1/2T, )'g-~]+»n/(1/2T, )

L(«—«)'+(»n+1/2T~)'j 'I:(»n+1/2')/~j
1 „h, , ~ »n+3/2T~

(»—«) '+ (»n+ 1/2T~) '

X
L(«—«)'+ (»n+3/2T, )'j-

t {»—«)'+(S»+3/2T, ) j-
(2.11')

(o)y —«) '+ (»n+ 1/2') ' («—«) '+ (»o+1/2') '

There are several features of Kqs. (2.7'), (2.8'),
and (2.11') which deserve further comment. First,
under typical experimental conditions (» ««,
Pfi

~ «—»
~

&&1) the difference between the modified
cI'oss scctlons Rnd thc original cxpl csslons ls slight.
Second, in the limit PS

~ «—»
~

&&1 the expression
(»«')-'d'0 (») I/dQd« is symmetric under the inter-
change of ~~ and cd. This symmetry is classical in
origin and is related to the conditions necessary for
equilibrium between a classical radiation field and the
scattering system. Third, at absolute zero the cross
section vanishes for cd&~~. This latter result has a
simple physical interpretation. At absolute zero the
scRttcI'lng system ls ln its lowest cncI'gy state Rnd
hence the photon cannot carry away more energy than
it brings to the system.

7. SUMMARY

To summarize, we have outlined a stochastic theory
of resonance scattering based on a Gaussian approxi-
mation for the frequency Quctuations. Explicit expres-
sions have been obtained for the differential cross
section in the statistical and motional narrowing limits.
It should be pointed out that the Gaussian model,
while appropriate for many solid-state phenomena (e.g.,
phonon modulation, which corresponds to the motional-
narrowing limit" ) is unsatisfactory for the simulation
of the CGects of collisions in gases. As emphasized by
Kubo, ' the perturbations acting on atoms in a gas are
better approximated by a Poisson rather than a Gauss-
ian distribution of frequencies. Resonant scattering in
gases, including kinematical CGects, will be dealt with
ln R scpRlRtc paper.

APPENDIX A

This Appendix is devoted to a discussion of the
CGects of OG-diagonal perturbations, with the aim of
justifying our treatment of them in the calculation of
the cross section. Ke use as a model an oG-diagonal
atom-lattice interaction of the form S,Q„A„(a„+g„t),

14 D. K. MCCumbel, Phys. Rev. 133, A163 (j.964}.

where the a, and a, are phonon annihilation and
creation operators which obey the usual Bose commu-
tation relations and A„ is a coupling constant. The
effects of such an interaction on the absorption spec-
trum have been studied in detail. 5 It contributes to the
width of the absorption line and to the Auctuations in
S,. It is apparent that both effects appear in the scatter-
ing cross section. The inhuence of the OG-diagonal per-
turbations on the fluorescence which is present in the
motional narrowing limit comes about mainly through
the 1/2T, term in the linewidth, with population fluc-
tuations having only a small effect. This is to be con-
trasted with the quasi-elastic scattering, which comes
entirely from the Quctuations in 5,.

The justification for our approximate treatment of the
1/2T~ term in the linewidth comes from a study of
the operator S+(t) =exp(iHt/5) S+ exp( —iHt/5). For
the purpose of illustration we will neglect the diagonal
perturbations. The Hamiltonian II can then be written
Ho+H~, where Ho is the sum of the unperturbed atom
and lattice Harniltonians Rnd Hl is the coupling. Using
standard techniques, "we may expand S~(t) in powers
of IIj. Thus to second order we have

t

Sp(t) = 1+- Hg(t)dt
o

(j 2 t t

dt df Hg(f)Hg(t) S+ exp(j«t)
o o

t

X 1— K(t) dt —— dt df Hg(t)Hg(f)
o o o

where H, (t) =exp(~Hot/f) H, e~(—aver/g).
The terms in (A1) which are linear in H~, when

included in the cross section, give rise to the quasi-
elastic scattering which is discussed below. These we

'5 J. Hamilton, Theory of E/enserttary I'articles (Oxford Univer-
sity Press, London, j.959},pp. 186-18It'.
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wiH neglect for thc moment. Thus w'c have

S+(t)~S+e~" 1—
i

—g A„A; dt dkexp[fMO($ —t)g
I,2III .,„r

X {[o,cxp( —~.&)+o, exp(~, &) 3[o„.Cxp(-~„.l)+o„.t cxp(~.,&) 3

+[o„em(—~ ~)+& ' em(~.~) j[o"exp( —~"~)+o"'em(~"&) 3} (A2)

where the M, are the frequencies of the lattice oscillators. In writing (A2) we have omitted terms of the form
gi(/I) S+pi(&&) which do not contribute to the resonance cross section since they commute with S . Since the
cross section involves the ensemble average of the induced dipole-moment operator, ere replace the products
of tile lattice opcratol's in (A2) by tliclr ensemble avci'ages;

t'1 t'
s+(f) s+s'"&' 1—

i

—
i Q 2„' dh dl'exp[fMd(f —t) 1 coth-', pfIM„{exp[us„($—t) )+exp[—ko. ($—t) j} . (A3)

&25)

In the resonance region with t&0 we may evaluate
the integrals in (A3) by first introducing the variable
N=k —t and then extending the lower limit in the I
1ntcg1'at1on to — '%1th the convcI'gcncc factoI' 8'"

(e—4+)."As a result we find

/1)2
S+(t) S+ exp(mot) 1—/

i

—
i g A.' cothi2Pfuo,

&2hj

X. +.j.

$(MD+M~)+6 $(Md —M~)+CrJ

S+ exp (fat) (1—t/2TI)

S+ exp(icoot —t/2TI), (A4)

ln aglccIDcnt with thc approximations ma(k 1n Scc. II
since w'e have

j.—=2m
i

—
i Q A„' COth-,'pfIM„8(MO —M,), (AS)

T, df/
which is the standard expression for the spin-lattice
relaxation time. 'I In obtaining (A4) we have made
use of the symbolic identity (M+ie) '=P/MWArh(M), .

w'herc I d.cnotes thc principal value. In addition w'c

have neglected the small shift in frequency,

i
—

i
I' g A„' coth-,'phM, [(MD+M,)-I+ (MQ

—M,)-ij
&2fi/

coming from Hj.
%C may justify our calculation of the quasi-elastic

and coherent scattering by comparing the limiting ex-
pressions obtained from (2./'), (2.8'), and (2.11') with
the results of perturbation theory. If wc neglect adi-
abatic CGeets we may write the cross section in the
resonance region as a sum of e-phonon cross sections,
with x=0, 1, 2 ~ . The zero-phonon cross section is
written

d 0'(MI) i n i i nr i Mich(MI —Mg)
(A6)

dQdM2 fi d (Mo Mi)—
which agrees with the sum of the coherent and quasi-

«' The Iinevridth treatmerit' that @re are following is discussed,
for example, in Ref. 4, pp. 59—64.

«'R. Orbach, Proc. Roy. Soc. (London) A254, 458 I;196j.).

elastic terms in (2."/'), (2.8') and (2.11') in the limit
T«-+~. Note that it is independent of temperature.

The one-phonon cross section is easily calculated as
a third-order process involving two photons and one
phonon. Neglecting nonresonant contributions we ob-
tain the result

d'o(MI)' MIM1'
i n; }2

i nr i'S
dMM2 r %~(MI Mrr) (Mi—Mm)—

X P lyly 8(MI+My —Mi —Md)

MiM2'
I n' I'

I nr I'&+

C%'(Mm —Mo)
' (M, —M2)

'
X Q (N.+1)A.'h(MI+MP —M2

—M.). (A7)

where E+ 1s the fraction of atoms 1n the upper state,
exp( —

/fuego) [1+exp(—Pkoo)]-', E is the fraction in
the. lower state [1+exp(—Pkuo) ) ', and I„is the pho-
non occupation number (e~ "'—1) '. If we ignore M2 —Mi

in comparison with ~0, we obtain the result

IPo(MI)' MIM1'
i n; i'

i nr i'(1/IrTI)

dQdM2 2C fP (Mi —. Mp)X,+, (1—tanh'(12~0) ), (AS)
CPy Mo (02 GOO

wlicl'c Ti is again givcI1 by (AS) .
It is evident that (AS) very nearly agrees with the

leading term in the expansion of the quasi-elasticscatter-
111g cl'oss scctioll 1I1 (2.'7 ), (2.8 ), and (2.1V) 111 powcl's
of 1/Ti as long as MIWM2. The difference arises solely
in the presence of the factor 2/{exp+5(M2 —Mi) j+1}.
The presence of this factor in our approximate cross
sections is necessary in order that the symmetry condi-
tion Eq. (4.2) be satis6ed. It is worthwhile pointing
out in this regard that although the cross section given
in (Ag) does not satisfy (4.2), the one-phonon cross
section from which it was obtained, (A"/), does have
the property symmetry.

We thus conclude that our treatment of the OG-

diagonal perturbations is essentially correct in that it
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incorporates the correct linewidth while at the same
time reproducing of the results of perturbation theory
through first order. Although the justification we have
given here is based on a particularly simple interaction,
it is plausible that our treatment is satisfactory for
other types of oG-diagonal perturbations as well.

APPENDIX B

In this Appendix we outline a calculation Of the
Fourier transform of (S,S,(h) ) which is carried out
with the help of Green's functions. The main results
presented here are implicit in Ref. 5, to which the
reader is referred for further details. The Fourier trans-
form of the longitudinal correlation function can be
written in the form"

1 . i'(m+ie) G(—pp ie)—j
Ch e'"'(S,S,(h) )=

2s
' ' e@"+1

Here G(tp) denotes the Fourier transform of the re-
tarded Green's function —i8(h) (S,(h) S,+S,S,(h) ),
where 8(x) is the unit step function. As shown in

's D. N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) /English
transl. : Soviet Phys. —Usp. 3, 320 (1960)j.

Ref. 5, the use of spin-phonon interaction as an oG-
diagonal perturbation leads in lowest order to a Green's
function of the form'

1 1+i(1/Trs&) tanh'-,'Pkep
G pp+se

4rr Co+i/Tt

W(i/4) tanhs(-,'Pfupp) 8(rp). (32)
Hence we have

co

Ch
p' '(S,S,(h) )=

X (1—tanh'(-, 'PAmp) ) +tanh'(-,'Pfitpp) 8(pp),
1/(rrTt)

cp +(1 Tr

(&3)

in agreement with (4.5). As is the case in Appendix A,
the calculation was carried out for a model interaction
but is expected to hold for a wider class of oG-diagonal
perturbations.

"Reference 5, Kq. (II, 22), in the limit B—+co+ie. In the one-
phonon approximation a coupling of the form S,Z,8,(a,+a„t)
does not contribute significantly to (S,S,(t) ).
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Theory of Indirect Nuclear Interactions in Rubidium and
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A quantitative evaluation has been made of the Ruderman-Kittel and pseudodipolar parameters 3;;
and 8;2 for Rb" and Cs'33 nuclei in the respective metals using one-orthogonalized-plane-wave functions
and calculated band structures. All the possible mechanisms that contribute to A;; and 8;; have been
considered. For A;;,about 90.54 and 92.25 % of the total contribution for rubidium and cesium, respectively,
are found to arise from the second-order effect of the contact hyperfine interaction. For 8;;, the corresponding
figures are 89,95 and 88.84 %, arising from one order each in the electron-nuclear contact and dipole inter-
actions. For each mechanism, the calculation involves an integration over the region of k space within the
Fermi surface. The integrand is composed of three k-dependent factors, an expectation value over the wave
functions, a density-of-states term, and a phase factor which depends on the distance between the nuclei.
The final result depends sensitively on the k dependence of these factors, and in some cases there is a
cancellation between positive and negative contributions from different regions of k space. In the light
of this, a critical analysis is made of earlier approximations, where some of the k-dependent factors were
replaced by their values at the Fermi surface. Self-consistency and correlation effects are explicitly included,
and produce less than 10%%u~ correction for 2;; and 8;; in both metals. Our calculated values for 3;;are
22.73 and 124.65, respectively, for rubidium and cesium, as compared to recent experimental values 51~5
and 200+10 cps. For 8;;, the calculated values are 0.398 and 2.330, as compared to experimental values
11.80 and 35.00 cps. Possible sources for the discrepancies, and additional factors whose inclusion could
lead to improved agreement with experiment, are discussed.

I. INTRODUCTION

i 1HE role of conduction electrons in producing
J . indirect coupling between two localized moments or

between nuclear moments in a metal was erst realized

by Frohlich and Nabarro. I For transition metals,
*Supported by the National Science Foundation.' H. Frohlich and F. R. ¹ Nabarro, Proc. Roy. Soc. (London)

A175, 382 (1949).

Zener' proposed that this indirect exchange interaction
between localized d-electron magnetic moments can
lead to ferromagnetism. These authors only considered
the diagonal contribution to the coupling, which is non-
zero for the case of metals because of their Pauli
paramagnetism. They did not take into account the
contributions from second-drder polarization effects

' C. Zener, Phys. Rev. 81, 440 (1951).


