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The resonant scattering of photons from a perturbed two-level system is studied in detail. Adiabatic
perturbations are approximated by a randomly fluctuating term in the level splitting. Off-diagonal perturba-
tions are accounted for in the linewidth and the time dependence of the correlation functions. Explicit
expressions for the cross section are obtained in the statistical and motional-narrowing limits. The detailed-
balancing symmetry of the scattering is established. Minor modifications of the approximate expressions
for the cross sections are proposed in order to preserve this symmetry. The effects of off-diagonal perturba-

tions, w.
I. INTRODUCTION

N a recent paper' (hereafter referred to as I) the
author discussed the resonant scattering of photons
from an atom which was coupled to a crystal lattice.
It was shown that the frequency spectrum of the scat-
tered radiation is dominated by three terms: a coherent
elastic component, a quasi-elastic component, and the
resonance fluorescence. These results were obtained
from a study of the induced dipole-moment operator.
It was pointed out that the differential cross section
could be written as the Fourier transform of the in-
duced dipole-moment correlation function. An approxi-
mate expression for the cross section was obtained by
expanding the induced dipole-moment operator to first
order in the atom-lattice interaction. This approach,
together with a phenomenological treatment of the
linewidth and the population fluctuations, led directly
to the three-component spectrum.

Subsequent to the appearance of I, Hizhnyakov and
Tehver? published a general treatment of scattering
from an atom-lattice system. By utilizing a different
method of approximation, these authors were able to
obtain an effectively nonperturbative expression for
the cross section in the vicinity of the resonance.? In
view of the fact that their analysis was limited to
temperatures such that the thermal population of the
upper state could be neglected and, further, was ap-
propriate only to phonon-induced perturbations it was
believed that a finite-temperature treatment of the
resonant scattering based on a simple stochastic model
would be of interest. The present paper outlines such
a treatment. Our approach will be sufficiently general
to encompass not only atom-lattice interactions but
other types of perturbations as well.

Stochastic models have long been used in the calcu-
lation of the absorption line shape.* As will be made

* Work supported by the National Science Foundation.

1D. L. Huber, Phys. Rev. 158, 843 (1967).

( 2\{7.) Hizhnyakov and I. Tehver, Phys. Status Solidi 21, 755

1967).

3 Reference 2, Eq. (46).

* A general discussion of the application of stochastic models to
line-shape calculations is given in an article by R. Kubo, in Fluctua-
tion, Relaxation, and Resonance in Magnetic Systems edited by
D. ter Haar (Ohver and Boyd, Edinburgh, 1962), pp. 23-68.
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hich couple the atom to a thermal bath, are investigated at length for a model interaction.

plain below, there are many points which are common
to both the calculation of the absorption spectrum and
the spectrum of scattered radiation. For this reason
we will not go into detail about the situations where
our particular model is appropriate. It is sufficient to
say that in general the model has the same range of
validity in both the absorption and scattering calcula-
tions.

The starting point in our study is the equation relat-
ing the differential cross section to the induced dipole-
moment correlation function [ I, Eq. (1.6) J;

d%c (wl) w1w2
dﬂdwz

Here w, is the angular frequency of the incident light,
wy is the angular frequency of the scattered light, ¢ is
the velocity of light, and the angular brackets indicate
an ensemble average. The symbol Py; denotes the in-
duced dipole-moment operator

Pi(8) =exp(—iwt) exp(iHY /h) Ps; exp(—iHt/h),

/ dt exp(int) (Pt Pr(d)).  (1.1)

T 2met

(1.2)
with
7 [0
Pri=s [ L@y, exp(RE/) (@) exp(—illt /)]
Xexp(—iwt'+e')d. (1.3)

In (1.3), H is the Hamiltonian of the total system
including both the atom and the perturbers. The sym-
bol (d); [or (d) ;] denotes the component of the dipole-
moment operator along the direction of polarization of
the incident [or scattered] light. The limit e—0% is
understood.

As in I we view the atom as a two-level system
which is characterized by the effective spin operators
Sz, Sy, and S,. The Hamiltonian of the unperturbed
atom takes the form 7iwyS,, where 7w, denotes the
difference in energy between the two levels. We ap-
proximate the effect of the perturbers by a fluctuating
term in the level splitting, fidwo(#). The full Hamilton-

ian is thus written
H(t) =TS, +7dw(l) S.. (1.4)
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It is apparent that the perturbation #dw,(?) .S, modu-
lates the splitting between the two levels. In addition
to perturbations of this type, which are frequently
referred to as adiabatic, the atom is also subject to
perturbations which induce transitions between the two
levels. It is the off-diagonal perturbations, which are
sometimes called diabatic, which maintain the average
populations of the two atomic levels at their thermal-
equilibrium value. For the moment we will not deal
directly with the mechanism responsible for the transi-
tions. Rather, as in I, we introduce relaxation effects
through the time dependence of the longitudinal cor-
relation function and by the artifice of replacing dwol
by 4wof—Awop | ¢ | at appropriate points in the calcula-
tion. Here Awop denotes the off-diagonal (diabatic)
linewidth, which is equal to half of the inverse relaxa-
tion time (1/27%) for a two-level system.® Additional
comments on this approximation will be made in Sec.
IV and Appendix A.

II. CALCULATION

In this section we outline the calculation of the cross
section for the two-level system with the Hamiltonian
given by Eq. (1.4). In the vicinity of the resonance
(i.e., wiRdewo) the induced dipole-moment operator can
be written [I, Eq. (2.5)]

y 0
P,,-=7-:a,-a, f [S_, Si(¢)] exp(—iat+e')dt, (2.1)

where a; and «, denote the matrix elements of (d);
and (d);, respectively. From the equation of motion
of Sy (=8,+14S,) we obtain the result

dS+/dl=i[wo+5wo(i) ]S+, (22)

Po(w) 2| ail?| o [Pwwsd

dQdews whZct

X f_o _ar” [, i expli(an—or) (F~1") —Awon( | | +| '] >]<exp [—i /o " sn(@)diti /t
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which integrates, if [8wo(t;), dwo(fa) ]=0 as we assume,
to

Sy () =Sy exp l:iwot-l—i ft dewo (1) dl’] . (2.2)

0

Consequently we may write

Pfi(t) =—2 % aiafS,(t)
Xexp(—iwlt) </;0 exp[i(wo—wl) t'—AwOD l 4 D

Xexp [i / Y sn(D) di]>dt’, (2.3)

after having inserted the off-diagonal linewidth. The
limits on the integration of 8wy are to be noted. They
come about because we have

t
S_(f) =S_exp [-—iwot-—if 5w0(t’)dt’]
0

so that the commutator [S_(¢), S.(¢+#)] can be
written

-t
—28, exp [iwot’+i/ Bwo(f)df] .
t

It also should be pointed out that we have anticipated
the effect of the off-diagonal perturbations on S, by
allowing for it to be time-dependent.

The cross section that is obtained from (2.3) takes
the form

/:o dt exp[i (we—w1) £](S.S:(8) )

-t

so(?) dz]>, (2.4)

after having separated the average of S,S.(¢) from the average over dwy. This is permissible since the fluctuations
in the frequency do not affect the populations of the atomic levels.
At this point we specialize to a Gaussian model for frequency modulation. With a Gaussian distribution we have

the result®

<exp [—i /o " boo(D)diti / * D) di]> —exp { —% <[ ot" o () di— ft * (@ df]2>}

1 tll
-l 4]
0

e ~ 1 ettt -
d dt{Bax(T) o (T) )—= d dt{wo(T) deo
[ dan®on®)— [t [ dtanDien(®)

+ /; “a /‘ + 8o (T) eo(?) )], (2.5)

5D. L. Huber and J. H. Van Vleck, Rev. Mod. Phys. 38, 187 (1966).

¢ Reference 4, pp. 28-32.



420 D. L. HUBER 170

assuming that (Swp)=0. The differential cross section is seen to depend on the autocorrelation function of the
frequency fluctuations. It is convenient to consider two limiting types of behavior for this function. In the first
of these it is assumed that the correlation time for the fluctuations is long compared with the smallest of the
times Awop™?, | wo—wi [, and | wp—w; [L. In this limit, which is sometimes called the statistical limit, we may
replace {(Swo(1)dwo(fz) ) with the constant (Swy?). As a result we obtain

Po(w) 2w |ai[*|ay 2

dQdws whict

[ : d expl[i (wr—en) 11(S.S:(2) )

0
X /j ) ar /_ ) dt" exp[i(wo—wr) (¢ —1") —Awon (| | 4+ | ¢ | ) ] exp[ —3{0we?) (¢’ —¢")%]. (2.6)

An explicit expression for the cross section follows from approximating (S,S.(¢)) by ({S:2)— (S.)?) exp(— | ¢ |/T1) +
(S.2 [1, Eq. (2.18) 7. Further refinements in the treatment of longitudinal correlation function are discussed in
Sec. IV. Note that the appearance of T both in the linewidth and as the relaxation time for the population dif-
ference holds only for two-level systems. For systems with more than two levels the off-diagonal linewidth is half
the sum of the inverse lifetimes of the two levels involved in the transition. If we also assume that Awop (=1/2T%)

is much less than {8w?)!/2, we have the result

1/(7“T1) }
(wr—w2) 2+ (1/T1)?

X (2m/ (8e?)) V2T exp[ — (wo—w1)?/2(8ws?)], (2.7)

d2 3 ; 2 2
d‘;zfi:’lj =w1w2 l ;:26!1 l af l {ta,nh2(%ﬁﬁwo) 0(wy—ws) + (l—tanhz(%ﬂﬁmo))

where 3=1/kT, with T being the temperature and % denoting Boltzmann’s constant.
On the other hand, if the condition Awop>>>(dw? )2 is satisfied we find
1/ (7I‘T 1)
(w1—we) 2+ (1/T1)2

@o () _w1w23 | ai 2| ay lz[tanh%%ﬁﬁm) 3(w1—ws)+ (1 —tanh?(1Biwo) ) :l[(wo—‘w1)2+ (1/271)° T

dQdws fizct
(2.8)

We postpone discussion of (2.7) and (2.8) until Sec. IIIL
In the opposite limit, when the correlation time is short compared with Awop™, | wo—wi [, and | wy—wy [

the autocorrelation function can be approximated by a delta function;
(Bwo(8) 8o (T) Y =2Awpd (I—1), (2.9)

where Awp denotes the diagonal linewidth. This width is on the order of (fw?)r., With 7, being the correlation
time.4 In this limit, which is frequently referred to as the motional narrowing limit,” we have

1 tlI _ _ t_,_tl _ n 2
exp {—— <[ Sun(t) dt— / 6wo(t)dt] >}
2 0 ¢
=exp[—Awp( ||+ [¢"]|)—Awp( ||+ [t+8=" | = | #'+2| = [ =" ])]. (2.10)
The cross section can then be written

1/(xTy) Awp

d’s (1) wiwg® | i 2| oy 2 2(1 _ — 2(1 )
Wden TR (ar—an) -+ (/2T D)) \ 1 B0e0)8 (n e (Aanbe G e 7y 1,

(Awp+3/2Ty) /=
wz—wo)2+(AwD+3/2T,)2]>- (2.11)

(AwD+ 1/2T1)/1l’
(wz'—wo) 2+ (Aw[)+ 1/2T1

Xl:tanhz(%ﬂﬁwo) )2 } (1—tanh2(%ﬂﬁwo)) (

7N. Bloembergen, E. M. Purcell, andfR. V. Pound, Phys. Rev. 69, 37 (1946).
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Although discussion of this equation is left to Sec. III
we should point out that the results of Ref. 2 are
obtained as the zero-temperature limit of (2.11) in
which tanhiSfiw, is replaced by unity and 1/2T; by
the natural linewidth.?

III. DISCUSSION

It is apparent from Eqgs. (2.7) and (2.8) that the
spectrum of scattered light has no fluorescent compo-
nent (i.e., there is no component which as a function
of wp peaked about wp) in the statistical limit. The
finite width arises only from the fluctuations in the
populations of the two atomic levels. For frequencies
in the visible and near-infrared part of the spectrum the
condition Bfiwe>1 generally holds so that tanh}Sfiwe=1.
In this region nearly all the scattering is coherent. This
result is not unexpected since the statistical limit is
equivalent to having an ensemble of atoms with a
static distribution of level splittings. At absolute zero,
or in the absence of off-diagonal perturbations, the
spectrum of light scattered by any member of the en-
semble is identical to the spectrum incident upon it.?

In the motional-narrowing limit, Eq. (2.11), we have
the same three-component spectrum as was obtained
in I by applying perturbation theory to the atom-lattice
interaction. The only significant difference between Eq.
(2.11) of this paper and Eq. (3.1) of I is that in the
former equation the fluorescence terms are multiplied
by the factor Awp/(1/2T4). This factor has its origin
in the expression

exp [ /0 " / " oan(@) s ) >] .

Were we to have expanded this expression in powers
of the autocorrelation function and kept only the
zeroth- and first-order terms we would have obtained
an equation similar to (2.11) but without the factor
Awp/(1/2Ty). It is apparent that the integrated in-
tensity of the fluorescence differs from the sum of the
integrated intensities of the elastic and quasi-elastic
components by the same factor. This result has a simple
physical interpretation.®

We note that the integrated intensity of the fluores-
cence is independent of the relative populations of the
upper and lower states, except insofar as they affect
Awop. This happens because the fluorescence can occur
in either of two ways:

(a) An atom in the ground state absorbs a photon
and makes a transition to the upper state. While in
the upper state it is perturbed and then emits a photon
and returns to the ground state.

(b) An atom in the upper state emits a photon

8 W. Heitler, Quantum Theory of Radiation (Oxford University
Press, London, 1954), 3rd ed., p. 302.
9 A similar argument, appropriate to the zero-temperature limit,

has been given by T. Holstein, Phys. Rev. 72, 1212 (1947),
Appendix.
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while making a transition to the ground state. While
it is in this state it is perturbed and then subsequently
absorbs a photon.

The intensity of the fluorescence, measured relative
to the sum of the integrated intensities of the coherent
and quasi-elastic peaks, is then given by the relative
number of atoms which are perturbed by the frequency
fluctuations compared with the number which undergo
the absorption-emission process without being per-
turbed. This fraction may be inferred from the follow-
ing argument.

The number of atoms undergoing fluorescence via
process (a) is proportional to the number of atoms
which have absorbed a photon and have then been
perturbed. Under steady-state conditions this number
is obtained from a consideration of the relevant transi-
tion rates. The number of coherent systems which are
brought to the upper state is equal to the population
factor of the lower state, [1+exp(—@fiwy) 1™, multi-
plied by N., the total number of systems responding
coherently to the field. The rate at which they are
perturbed is Awp. The rate at which the incoherent
systems are removed from the upper state is deter-
mined by the transition rate from the upper to the
lower state. This we designate by 4, _(8). Then under
steady-state conditions the number of incoherent sys-
tems which are created per unit time equals the num-
ber which are lost through transitions to the ground
state, i.e.,

AwDN c
14-exp (—pfie)
where Nt is the number of incoherent systems in the
upper state.
A similar argument for the lower state yields
AwpN, exp(—Biw)
=4_ N
1+exp(—-[37uoo) +(6) I,
where A_ (B) is the transition rate from the lower to
the upper state and Ny~ is the number of incoherent
systems in the lower state. The total number of fluo-
rescing systems, N+ N7, is thus given by
Nrt+Nr=NcAop{[ (1+exp(—pfie) )4+ —(8) I
+L(1+exp(Bhiwn) JA- +(B) I}, (3.3)

The arguments of detailed balance, when applied to
the transition rates, show that
A, _(B)=A(B) exp(Bfic),  A_1(8)=A(8), (3.4)

where A(B) is an arbitrary function of 8. Hence we
have

=4, (BN, 3.1)

(3.2)

_ ZNcAwD
"~ A(B)[1+exp(Bhiwn) ]

_—ALODNC
121

Ni+Nr

(3.5)
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where we have made use of the result?
1/2Tv=3[A4 —(B)+A4-+(8)]
=3A4(8) [1+exp(Bis) J.

Since the number of systems which scatter via the
elastic and quasi-elastic processes is V,, we conclude on
the basis of these arguments that the integrated (over
we) intensity of the fluorescence differs from the sum
of the integrated intensities of the elastic and quasi-
elastic components by the factor Awp/(1/2T%), in
agreement with Eq. (2.11). Implicit in this analysis
is the assumption that the lifetime in the upper state
is limited by relaxation processes rather than radiative
processes—as must be the case if the populations of
the upper and lower levels follow the Boltzmann dis-
tribution.

We note that when Awp=Awop or, equivalently,
when the relaxation rate equals the linewidth, the inte-

(3.6)
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grated intensity of the coherent and quasi-elastic peaks
equals the integrated intensity of the fluorescence. In
the limit of zero temperature this result agrees with
the findings of Holstein, who studied the resonant
scattering from a classical oscillator perturbed by totally
quenching collisions. 1! After a totally quenching colli-
sion the atom is returned to the ground state. Hence
in this case the collision rate equals the relaxation rate.
The analogy is completed by the identification of the
collision rate with the (transverse) linewidth.

IV. FURTHER REFINEMENTS

In this section we discuss modifications of Egs. (2.7),
(2.8), and (2.11) which arise from a more rigorous
treatment of relaxation effects. We begin by establish-
ing a general symmetry property of the cross section
for photon scattering from systems in thermal equilib-
rium. We write the expression for the cross section in
the form [1, Eq. (1.1)]

d;;f;::) =wwlc 2!
@@ )" | @)i]n) | | (@) n”)n" | ()| n)|? o
xgn),exp(—ﬂEn) ; FE—— | }; oy 8(wnt Bt /h—ey— En/F),

(4.1)

where Z[ =Y, exp(—BE,)] is the partition function of the scatterer whose energy levels are designated by E,.
We make use of the restrictions imposed by the delta function and the Hermitian character of the dipole-moment

operators to rewrite (4.1) in the form
d*s ((01)

dQdew,

=wwlc* exp[ — B (wy—w;) 271

| @):[n")n” | (d)s]n') Ey (| @) [ (d)s|n)]?

X 3 exp(—BEv) | 5 U

d*s ((.01) T
dQdey

2
=w—22 exp[ —pf(wy—wi) ]
wy

Here d% (w;)T/dQdw, denotes the cross section charac-
terizing the time-reversed scattering process where the
incoming photon has frequency w; and wave vector
—k;, and has associated with it the dipole-moment
operator (d);, while the scattered photon has fre-
quency w;, wave vector —ki, and dipole-moment oper-
ator (d);.12

The physical significance of Eq. (4.2) can be inferred
from the conditions necessary for maintaining a state
of thermal equilibrium between the scattering system

10 See Ref. 9.

En’+ﬁw2—En"

wrt Ep—ficn—Ey
Xa(w2+En’/ﬁ_wl_En/ﬁ)

(4.2)

and a photon gas having a blackbody frequency dis-
tribution. In an equilibrium situation the rate of scatter-
ing from photon state 1 to photon state 2 is the same
as the rate for the time-reversed process from 2 to 1.
The rate of scattering from 1 to 2, Ry, is given by

ng = (27[') -aC
X [exp (8ficn) — 1T k2dkidu[ o (wr) /dQler JdQedes
Xexp (Bfuss) /[exp (Biws) —17], (4.3a)

11 Resonant scattering from a perturbed harmonic oscillator has also been studied by D. Towne, thesis, Harvard University, 1954

(unpublished).

12In the case of circularly polarized light, the sense of polarization is reversed in the time-reversed scattering process.
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where the factor preceding the cross section is the
flux of photons with frequencies between w; and w,+
dw; heading in the solid angle dQ; determined by the
wave vector k;. We have also included the factor
exp (Bfiwe) /[ exp (Biws) —1] to account for the enhance-
ment of the scattering which comes from induced emis-
sion. The rate for the reverse process can be written

Rug"=(2m)~%
X [:exp (ﬁ hwg) - 1]_1k22dk2d92[d20' (wl) T/ dﬂdwg:]dﬂldwl

Xexp(Bfiwr) /[exp(Bfier) —1].  (4.3b)

Equating Ry, and R;,T leads directly to a result which
is equivalent to the second line of (4.2). It is apparent
that (4.2) displays the detailed balancing symmetry
of the scattering process.’

An examination of (2.7), (2.8), and (2.11) indicates
that these equations fail to satisfy Eq. (4.2) when the
frequencies w; and w, are interchanged. The origin of

;zr / ® 1 694(S,5, (1) )= tanh? (37) 8 () + (1— tanh? (36fus) )
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the failure lies in the approximate treatment of the
off-diagonal perturbations. As a first step towards
remedying this defect we will replace our previous
expressions for the cross section by the symmetrized
combinations

%{(PO’ (wl) I/dﬂdwg-i— (wg/wl) 2
X exp[[ —BHi(we—wr) Jd?o (w1) T’ /dQdess}

where the prime indicates that it is to be evaluated
with (2.7), (2.8), (2.11) and their time-reversed coun-
terparts.

Although having the proper symmetry the revised
expressions for the cross sections have the undesirable
feature that they become infinite in the limit as g8
approaches infinity whenever w; is greater than ws.
This feature is corrected by an improved calculation
of the Fourier transform of (S.S.(¢)). By assuming
an exponential decay in .S,(¢), as in Sec. II, we obtain
the result

1/1I'T1

wm2+(1/T1)2 . (4.4)

An alternative method of obtaining this transform is with the help of Green’s functions. It is shown in Appendix
B that an analysis based on Green’s functions leads to the result

2 [ ) 2
2 f_ eSS0 = s

[tanhz(%ﬁﬁwo) 8(6) -+ (1—tanb? (36%ar))

1/7I'T1
Sramn 09

Equations (4.4) and (4.5) differ only in the factor 2/(e#**+-1). This result suggests that we alter the approxi-
mate expressions for the cross section a second time in the manner suggested by Eq. (4.5). We thus obtain the

modified cross section

%o (1) m
dQdws

d*a (w1) !
dQdes,

=[{expmh<w2—wl>3+1}-1

dQdws,

+Z—j2 exp[[—i (wr—awr) J{exp[ —B (e —wn) JH1} 1 M]

= (expah(en—an 1 |

d20' (wl)' . w22 dZO' (wl) T']
dQdwy * wf dQdewy

(4.6)

The modified counterparts of (2.7), (2.8), and (2.11) take this form:

A. Statistical limit, (swe?Y/2>1/27:

@0 (wy) u _ wwsd [ ai 2| ay 2

dQdws  Hct{exp[Bh(ws—wy) J4+1}

l2

[tanhﬂ(%ﬁwa(wl—wz) + (1— tank? (387ien) )

1/T11r ]
(‘01—0’2) >+ (1/T1)2

T \?
X (é@)l T {exp[ — (wo—w1)*/2 (@w’) TH-exp[ — (wo—wp)?/2(0wi)1};  (2.7')

B. Statistical limit, (Swe?)V2<<1/2T:

o () M _ wiwsd | e 2| ey 2

dQdwy  Hct{exp[Bhi(wp—w) J+1}

(tanhz(%ﬂﬁwo) 8 (w1—we) 4+ (1—tanh?(3B%iw) )

1/7I'T1 )
(w1—e2)?+(1/T1)2

X {[ (@o—wn)®+ (1/270) T+ [ (wo—as) M+ (1/2T1)7 1. (2.8)

13 Detailed balancing symmetry in neutron scattering has been discussed by P. Schofield, Phys. Rev. Letters 4, 239 (1960).
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C. Motional-narrowing limit:

d*o (1) _ ww® [ o 2| ey 2

dQdewy  Hct{exp[Bh(ws—wr) JH1}

D. L. HUBER

{ [tanh“’ (3Biex) 8 (w1 —w3) + (1—tanh?(367uw,) )
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1/7FT1 ]
(wr—cw2)?4-(1/T1)*

X{[(wr—w0)?+ (Awp+1/2T1) ¥4 [ (we—w0) >+ (Awp+1/2T1) 2T} +Awp/ (1/2T)

[(w2—wo)*+ (Awp+1/271)* ][ (Awp+1/2Ty) /7] |

X ( (2tanh?(367in) )

(w1—w0)*+ (Awp+1/274)2

+ (1 tanke (36iay) ) 2221321
™

y [[(wz—wo)2+(Awp+3/2T1)2:|‘1 [lo—o0)+ <Awn+3/2T1>23“‘]>} . (211)

(wr—wo) 2+ (AwD+ 1/2T1)2

There are several features of Egs. (2.7"), (2.8),
and (2.11') which deserve further comment. First,
under typical experimental conditions (wiRweRdwo,
Bh | wp—wn | K1) the difference between the modified
cross sections and the original expressions is slight.
Second, in the limit B% | wy—w | K1 the expression
(wrws) ~1d%0 (w1) m/dQdw, is symmetric under the inter-
change of w; and wy. This symmetry is classical in
origin and is related to the conditions necessary for
equilibrium between a classical radiation field and the
scattering system. Third, at absolute zero the cross
section vanishes for wy>w;. This latter result has a
simple physical interpretation. At absolute zero the
scattering system is in its lowest energy state and
hence the photon cannot carry away more energy than
it brings to the system.

V. SUMMARY

To summarize, we have outlined a stochastic theory
of resonance scattering based on a Gaussian approxi-
mation for the frequency fluctuations. Explicit expres-
sions have been obtained for the differential cross
section in the statistical and motional narrowing limits.
It should be pointed out that the Gaussian model,
while appropriate for many solid-state phenomena (e.g.,
phonon modulation, which corresponds to the motional-
narrowing limit") is unsatisfactory for the simulation
of the effects of collisions in gases. As emphasized by
Kubo,! the perturbations acting on atoms in a gas are
better approximated by a Poisson rather than a Gauss-
ian distribution of frequencies. Resonant scattering in
gases, including kinematical effects, will be dealt with
in a separate paper.

APPENDIX A

This Appendix is devoted to a discussion of the
effects of off-diagonal perturbations, with the aim of
justifying our treatment of them in the calculation of
the cross section. We use as a model an off-diagonal
atom-lattice interaction of the form S, ,4,(a,+a,"),

14 D, E. McCumber, Phys. Rev. 133, A163 (1964).

T (we—w0) 2+ (Awp+1/2T4)?

where the @, and a,' are phonon annihilation and
creation operators which obey the usual Bose commu-
tation relations and 4, is a coupling constant. The
effects of such an interaction on the absorption spec-
trum have been studied in detail. It contributes to the
width of the absorption line and to the fluctuations in
S:. It is apparent that both effects appear in the scatter-
ing cross section. The influence of the off-diagonal per-
turbations on the fluorescence which is present in the
motional narrowing limit comes about mainly through
the 1/27 term in the linewidth, with population fluc-
tuations having only a small effect. This is to be con-
trasted with the quasi-elastic scattering, which comes
entirely from the fluctuations in S..

The justification for our approximate treatment of the
1/2T term in the linewidth comes from a study of
the operator S, (¢) =exp(:Ht/h) Sy exp(—iHi/h). For
the purpose of illustration we will neglect the diagonal
perturbations. The Hamiltonian H can then be written
Hy+Hy, where Hy is the sum of the unperturbed atom
and lattice Hamiltonians and H is the coupling. Using
standard techniques,'® we may expand S, (#) in powers
of Hy. Thus to second order we have

840 =[1+,—j [ maa

0

_@)2 /O ‘i /0 0 R0Y: 00 ]s:, exp (ianl)

x[1—~7-:/0'1€r1(z)dt'—<%)2/0‘ dt'/:dlﬁl(f)ﬁl(i)],
(A1)

where H, () =exp (iHot/h) H, exp(—iHo/h).

The terms in (A1) which are linear in H;, when
included in the cross section, give rise to the quasi-
elastic scattering which is discussed below. These we

15 7. Hamilton, Theory of Elementary Particles (Oxford Univer-
sity Press, London, 1959), pp. 186-187.
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will neglect for the moment. Thus we have
S+(t)NS+e"‘"°‘[1 ( ) IR f ‘a / * &t explian(i—D) ]
X {[a exp(—iuwid) +a(:* exp (i) JLay exp(—iwwt)+av' exp(iwyd) ]
L exp(—iod) " expCind) Tow exp(—ianl) o' explianD)]} |, (42
where the w, are the frequencies of the lattice oscillators. In writing (A2) we have omitted terms of the form
A,(t,) S H1(t;) which do not contribute to the resonance cross section since they commute with S_. Since the

cross section involves the ensemble average of the induced dipole-moment operator, we replace the products
of the lattice operators in (A2) by their ensemble averages;

SO~ Swmt[ ~(3) =4 f & f  explion(i—1)] cothsie, {explia, (I~ 1+-exp[ — m(f—t)]}]. (A3)

In the resonance region with (>0 we may evaluate
the integrals in (A3) by first introducing the variable
u=I—% and then extending the lower limit in the #
integration to —o with the convergence factor e
(e—01) .16 As a result we find

Sy ()25 exp (iwt) [1— ( ) > A2 cothyBh,

1 1
X(i(wo+wv)+€Ti(wo—wv)+€>]
S, exp (i) (1—1/2T%)

NS.}. exp(z'wot—-t/ZTl) , (A4:)

in agreement with the approximations made in Sec. IT
since we have

%1=zqr (Zﬁ) 3 4.2 cothifiod(w—ws), (AS)
which is the standard expression for the spin-lattice
relaxation time.” In obtaining (A4) we have made
use of the symbolic identity (wzzie)t=P/wFinré(w),
where P denotes the principal value. In addition we
have neglected the small shift in frequency,

( ZIﬁ) P E A2 cothdBhw,[ (wotws) 1+ (wo—w,) ]
coming from H.

We may justify our calculation of the quasi-elastic
and coherent scattering by comparing the limiting ex-
pressions obtained from (2.7'), (2.8'), and (2.11’) with
the results of perturbation theory. If we neglect adi-
abatic effects we may write the cross section in the
resonance region as a sum of z#-phonon cross sections,
with #=0, 1, 2-++. The zero-phonon cross section is

written
Po(n)’ | i [*| o Punwss (o1 —ws)
= ) (A6)
dQdw, 2t (wo—wy)?

which agrees with the sum of the coherent and quasi-

16 The linewidth treatment that we are following is discussed,
for example, in Ref. 4, pp. 59-64.
17 R. Orbach, Proc. Roy Soc. (London) A264, 458 (1961).

elastic terms in (2.7"), (2.8’) and (2.11’) in the limit
T1—. Note that it is independent of temperature.

The one-phonon cross section is easily calculated as
a third-order process involving two photons and one
phonon. Neglecting nonresonant contributions we ob-
tain the result

&*o (wl) 1
dQdw,

wws® | i |* | ay [PV
c“ﬁ“(wr-wo) (w1—wy)?
X Z 144,76 (w1 Wy — wa—0p)

wws® | ai 2| oy PNy
cth (&&""Q’o) 2(0.)1—(,02)2

X 22 (not1) 4.2 (ot wo—we—w,). (A7)

1
-+

where N, is the fraction of atoms in the upper state,
exp(—BFiwo) [1+exp(—Bhwy) T, N_ is the fraction in
the lower state [ 14-exp(—g%iwo) T, and #, is the pho-
non occupation number (¢f ®»—1)~1, If we ignore wy—auy
in comparison with wp, we obtain the result

Po(w)' o’ i | oy *(1/7T1)
dﬂda)z 264ﬁ2 (w1 —wz) 2

1 , 1 a1
X |G o] (et @B, (49

where T is again given by (AS).

It is evident that (A8) very nearly agrees with the
leading term in the expansion of the quasi-elasticscatter-
ing cross section in (2.7'), (2.8'), and (2.11’) in powers
of 1/T; as long as wl#wg The difference arises solely
in the presence of the factor 2/{exp[B#(we—aw1) J+1}.
The presence of this factor in our approximate cross
sections is necessary in order that the symmetry condi-
tion Eq. (4.2) be satisfied. It is worthwhile pointing
out in this regard that although the cross section given
in (A8) does not satisfy (4.2), the one-phonon cross
section from which it was obtained, (A7), does have
the property symmetry.

We thus conclude that our treatment of the off-
diagonal perturbations is essentially correct in that it
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incorporates the correct linewidth while at the same
time reproducing of the results of perturbation theory
through first order. Although the justification we have
given here is based on a particularly simple interaction,
it is plausible that our treatment is satisfactory for
other types of off-diagonal perturbations as well.

APPENDIX B

In this Appendix we outline a calculation of the
Fourier transform of (S.S.(!)) which is carried out
with the help of Green’s functions. The main results
presented here are implicit in Ref. 5, to which the
reader is referred for further details. The Fourier trans-
form of the longitudinal correlation function can be
written in the form!®
1= _ 1[G (wtie) —G(w—1e) ]
= [ " dte(S.5.(0) i

04

(B1)

Here G(w) denotes the Fourier transform of the re-
tarded Green’s function —i6(¢)(S.(¢)S.+S.S.(8) ),
where 6(x) is the unit step function. As shown in

18D, N. Zubarev, Usp. Fiz. Nauk. 71, 71 (1960) [English
transl.: Soviet Phys.—Usp. 3, 320 (1960) ].

Ref. 5, the use of spin-phonon interaction as an off-
diagonal perturbation leads in lowest order to a Green’s
function of the form®

1 1:|:z(1/T1w) tanh21B#iw,

G(wie) = Ll

Honce wohave | /8 tant (6Ra)d).  (B2)

/ dt €4S, S, (1) )= eﬂﬂw+1

X[ (1~ tank(3fe)) ﬁ%Jr tanh?(—%ﬁhwo)a(w)],
(B3)

in agreement with (4.5). As is the case in Appendix A,
the calculation was carried out for a model interaction
but is expected to hold for a wider class of off-diagonal
perturbations.

19 Reference 5, Eq. (IL, 22), in the limit E—w=ie. In the one-
phonon approx1mat10n a couphng of the form S,Z,B,(a,+a,")
does not contribute significantly to (S,S,(¢) ).
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A quantitative evaluation has been made of the Ruderman-Kittel and pseudodipolar parameters A4:;
and B;; for Rb® and Cs'® nuclei in the respective metals using one-orthogonalized-plane-wave functions
and calculated band structures. All the possible mechanisms that contribute to A4;; and B;; have been
considered. For 4;; ,about 90.54 and 92.25 9, of the total contribution for rubidium and cesium, respectively,
are found to arise from the second-order effect of the contact hyperfine interaction. For B;;, the corresponding
figures are 89.95 and 88.84 %, arising from one order each in the electron-nuclear contact and dipole inter-
actions. For each mechanism, the calculation involves an integration over the region of k space within the
Fermi surface. The integrand is composed of three k-dependent factors, an expectation value over the wave
functions, a density-of-states term, and a phase factor which depends on the distance between the nuclei.
The final result depends sensitively on the k# dependence of these factors, and in some cases there is a
cancellation between positive and negative contributions from different regions of k space. In the light
of this, a critical analysis is made of earlier approximations, where some of the k-dependent factors were
replaced by their values at the Fermi surface. Self-consistency and correlation effects are explicitly included,
and produce less than 10% correction for 4;; and B;in both metals. Our calculated values for 4:; are
22.73 and 124.65, respectively, for rubidium and cesium, as compared to recent experimental values 5145
and 200410 cps. For B;;, the calculated values are 0.398 and 2.330, as compared to experimental values
11.80 and 35.00 cps. Possible sources for the discrepancies, and additional factors whose inclusion could
lead to improved agreement with experiment, are discussed.

I. INTRODUCTION

HE role of conduction electrons in producing
indirect coupling between two localized moments or
between nuclear moments in a metal was first realized
by Frohlich and Nabarro! For transition metals,

* Supported by the National Science Foundation.
L H. Frohlich and F. R. N. Nabarro, Proc. Roy. Soc. (London)

A175, 382 (1949).

Zener? proposed that this indirect exchange interaction
between localized d-electron magnetic moments can
lead to ferromagnetism. These authors only considered
the diagonal contribution to the coupling, which is non-
zero for the case of metals because of their Pauli
paramagnetism. They did not take into account the
contributions from second-drder polarization effects

2 C. Zener, Phys. Rev. 81, 440 (1951).



