
PHYSICAL REVIEW VOLUME 170, NUMBER 2 10 JUNE 1968
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The exact solution for a problem of E identical two-level molecules interacting through a dipole coupling
with a single-mode quantized radiation 6eld at resonance is given. Approximate expressions for the eigen-
vectors and eigenvalues for the ground and low-lying excited states, as well as the most highly excited
states, are developed and compared with the exact results.

I. INTRODUCTION II. FORMULATIOÃ OF PROBLEM

LMOST fifteen years ago, Dicke' pointed out the
.k importance of treating a gas of radiating molecules

as a single quantum system, in that the molecules are
interacting with a common radiation Geld and should
not be treated as independent. An independent molecule
picture is wrong in principle as are many results ob-
tained from it. Dicke s results were obtained in first-
order perturbation theory; many subsequent authors
have considered other approximations to the S-mole-
cule —radiation-field problem. ' '

Exact solutions to model problems have historically
provided much insight into realistic physical systems,
as well as affording a standard of comparison for
approximation techniques. Further, the states obtained
can be used as a basis set in which the state of a more
realistic model may be expanded. For example, a recent
analysis of a quantum coherent device by Scully and
Lamb' describes the system of X molecules by a 2&2
matrix, instead of by one of dimension 2~; the states
obtained in the present work may provide a convenient
basis for an E-molecule analysis along similar lines,
although no applications are given in the present paper.

Quantum electrodynamics has historically been de-

veloped in terms of the stationary number states of the
free radiation-Geld Hamiltonian. The classical limit of
quantum electrodynamics is one in which the quantum
numbers are typically large as well as uncertain, and
the photon number states are not a natural basis in
this case. Glauber' has discussed quantum states which
form an overcomplete set which are well suited to
treatment of the classical region. These states have a
"classical" dispersion in photon number, where the
dispersion is equal to the average photon number. It is
interesting to see the same classical dispersion for many
of the eigenstates of an E-molecule —radiation Hamil-
tonian as in the present analysis.

'R. H. Dicke, Phys. Rev. 93, 99 (1954).' J. P. Gordon, L. R. Walker, and W. H. Louiselle, Phys. Rev.
130, 806 (1963).These authors include a long list of references.

'A. K. Glassgold and D. Holliday, Phys. Rev. 139, A1717
(1965).' J. A. Fleck, Phys. Rev. 149, 309 (1966).' M. O. Scully and W. E. Lamb, Jr., Phys. Rev. 159, A208
(1967).' R. J. Glauber, Phys. Rev. 131,2766 (1963).

=Hp tt*aR+ —tttJtR .— (2.1b)

The S identical two-level systems (TLS) are assumed
to have nonoverlapping space functions, and the energy
separation of each TLS is equal to the mode frequency
(5=1) of the electromagnetic field. tt=I tt

I
e '&' is the

complex coupling constant divided by the mode fre-
quency. The TLS are coupled to the single-mode radi-
ation 6eld in the dipole approximation, and all TLS
are further assumed to be located at equivalent, 6xed
mode positions, or to be all confined to a container
whose dimensions are small compared to the radiation
wavelength. Terms have already been ignored in the
dipole coupling in Eq. (2.1) which do not conserve
energy in the first order of perturbation; their contribu-
tion is very small except for very high intensity Gelds. v

Their contribution can be considered as a perturbation
after the eigenstates of H are found.

States of the noninteracting system are defined' such
that

Hp I rt)I r, m) = (m+rt) I tt)I r, m),

Re I r, m&=P Rte I r, m&=m
I r, m&, (2.2b)

(2.2a)

R~ I r, m) =Q R;~ I r, m)
j=l

=e+eeeLr(r+1) m(m+1)—]'t' I r, m+1),

(2.2c)

u
I ss) =e'e Qss I rt —1). (2.2d)

The eigenstates of Ho have been chosen to be simul-
taneous eigenstates of R'—=Rea+ (R+R +R R+) /2,

7 E. T. Jaynes and F. W. Cummings, Proc. IKKK 51, 89 (1963)
have shown that the "counter-rotating" terms in the complete
dipole interaction, namely the terms proportional to A+a+ and
R a, are very small at resonance except for extremely high inten-
sity 6elds.

The Hamiltonian which describes the interaction of
E-identical two-level systems with a single-mode radi-
ation field is taken as

H =Re+ ata tt*aR—+ ttatR — (2.1a)
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2N on whether E is even or odd. For a given value of r,
an integer change in c corresponds to a change to an
adjacent block of dimension 2N.

Figure 2 shows the elements of one of the shaded
blocks of Fig. 1 of a particular r value. The block has
nonzero entries only along the diagonal and immediately
adjacent to it. If the value of c is such that c&r, then
the block will have dimension less than 2r+1 and
will be of dimension c+r+1 instead; thus, besides
having an in6nite number of blocks of dimension 2~,
there will also be N large blocks of dimension smaller
than 2~.

Denote eigenstates of H as
~
r, c, j).Then

N(N-3)2
2 H ( r, c j)=x„...; ( r, c j), (2.6)

Fra. i. Schematic of matrix representation of II.

where j takes on the 2r+1 values 0, 1, 2, ~ ~ ~, 2r, if
c&r, or the c+r+1 values 0, 1, ~ ", c+r if c&r
Recalling that the states

~
r, c,j) are eigenstates of H,

H0, and E.', and that m=c —e varies between r and —r,

analogous to the angular momentum formalism. The
"cooperation number" r satisdes

c+r

( r, c,j)= g A &"' »
t e) ( r, c—n), (2.'/)

with
(2.3)

( ez )(r&X/2, (2.4)

wherefr, om Eqs. (2.1), (2.2), and (2.5) the A„&"'»
satisfy the difference equation

where

(2.5b)

LEE, R~7=+Ep,

L~, R 7=2Rs,

where r and m are either integers or half-integers. The
operators in Eq. (2.1) also satisfy the commutation
relations

e+'g' 2g g q(~.e,»+, (~ ),)g (~,e,»

4 =4i+42+43 (2.9a)

(2.5c)

Since both E.' and Ho commute with H, the eigen-
states of H may be chosen to be eigenstates of these
two operators as well, and the eigenstates may be
labeled by r, the cooperation number, and c, the eigen-
value of Bo. For a given r and c, the (in general)
2r+1 energy eigenvalues will then be symmetrically
displaced about this constant c, where —r&c& ao.

It is helpful to display the elements

(e / (r, m
/
B [

r', m')f e')

as a matrix, vrhere there is a grouping into an in6nite
number of blocks of dimension 2~ along the main
diagonal. Each 2~ dimensional block in turn breaks
up into smaller blocks along the main diagonal,
their number and dimension determined according
to the irreducible representations of the group
SU(2). This is shown schematically in Fig. 1. Only
the shaded blocks have nonzero elements. There are
X!(2r+1)/L(X/2+r+1)!(X/2 —r)!7 identical blocks
for each value of r, and each smaller block is of dimen-
sion 2r+1. The values of r range from E/2 for the
largest single shaded block at the top left-hand corner
of the 6gure, down to either r=o, or r=-', depending

fr(r+1) ——(c—e) (c—II+1)7'~' (2 9b)

The A„~" '» satisfy the end conditions

c&r (2.10a)

Id( /s
a =)~]e I[c-m][r{r+I)-m{m+!)]

FIG. 2. Submatrix for given r and c.



c&r. (2.10b)

I25s 25' oI.y -An
II0 2?M7
{Rs)~ -8,BIO

A02,5, I2.5)0)
~0

(I ~S?,OI ~

AII2,5 22', OI

~ (I «l23.40 ' 6 ~

(qc")"B-
Q(nl)C, IC. s ~ ~ C, , c&r (2.11a)

It is very convenient to de6ne 8„'s so that
0

0
6
0

0
maaiw M

II "33o2I 5Q

6

~ ~

I M f0

n «Q I|=I6.54 25

12

6 6

n ~IQ II ~ 25,3

(qe's) "B„
Q(n!)C, IC, s ~ .C c&r (2.11b)

(25» 25s II
n

II ~259,IS

tR5& i -7.AS 0
6

6 ~
~5-

2

(6i 6,0).
An ~
(I0 ~52.55 6 e

n 7.8'74

q=(c—l()/2i )(i,

and the superscripts (subscripts) (r, c,j) have been
dropped for simplicity whenever this does not cause
confusion. Only the r subscript will be suppressed in
the C„„to conform to Fig. 2. The q's are now the
effective eigenvalues, the largest value of q for a given
value of r and c corresponding to the ground state of
the system. B„satisfies the diGerence equation

~2

AI25, 25, 2 I
n.3 - II2 ~ 245,5I

(Rs) & "Ti045 6

~ ~

~0
~ ~

6

Q am41

(I2.5o I2,5& II
An

-,I "u ~8?,Io

n ~ l5,98

3-

2"

2-

4-

la ~
n~Q

q'B„+I—2q'B„+nC „sB„(=0. (2.13)

IIL EXACT SOLUTION

The exact solution of Eq. (2.13) (non-normahsed)
can be seen to be

-.2-

0
II2 5, I2.5,2I1 I

II2 ~ 77.4S
n ~ I5.38

3-
~2"
~ I-

«6esi 2I
An

~2 II2 ~ IS~4l

II ~ 8.88
.-4-

1

e/2

2n Q(2q)-ÃS (e-I)( 1)I c&r (3.1a)
FIG. 3. Selected eigenvectors A ("».

(t+s-c) jR

B„=2"q~' p (2q) "SI("-')(—1) ' c&r. (3.1b)

The Sg&" '& are the sums of aH products of t' 's where
6„=—@ac „', l at a time, e„q being the maximum,
and no "nearest neighbors" are included in the products.
This de6nition may be clari6ed by the examples

Ss")=CICICs+ CICICs+ CI848s+ CsCsCs~

Ss"' =8(CsCs, Ss"'=CICs+ 8&84+CsCsi

Ss(")—=1, and SI'")=0 if l& -', (n+1}, e.g., Ss(s' =0.
The S&&") can be seen to obey, by induction or inspection,
the useful recursion relation

S (o) S (n-1)+8 S (m-s)

The exact eigenvalues, or equivalently the q's are de-
termined from the conditions

+7+v+I @e-7-1—Op

&.+~j=&-j=0
(3.3a)

(33b)

These are polynomials in 2q of degree 2r+1 (2r if r is
an integer) if c&r (and there is one root q=O if r is
an integer) and of degree r+c+1 (r+c if r is an
integer) if c&r (and again there is a root q=O if r is

an integer). Whenever r is an integer, the solution
corresponding to q=o is to be found directly from the
equation for the A„, and is given by

A =(—1)""S('" "/Q(nl)C C ~ ~ C

n even, 0&n&c+r (3.4a)

n odd, 0&n&c+r (3.4b)

~.= (-1)(~" '"S(+»-.)Is(" "/v'(nl) C.-iC.-s" C .
n —(c—r) even, c—r&n&c+r (3.4c)

n —(c—r) odd, c—r&n&c+r. (3.4d)

A high speed computer was used to calculate 3„&""».
Figure 3 shows A„(""~) as a function of I for several
representative values of r, c, and j. The value j=o
corresponds to the ground state, j= j. to the Grst excited
state, and j=2r to the most highly excited state. The
value q0 corresponds to the ground state, and is the
largest value of q. The q's are such that q2„= —

qo,

gy& y= —
gy, and so on, symmetrically displacing the

q-values about zero. The states A„&»,j=2r 2r—1 ~ ~-

r+1, if r is an integer (or r+ , if r is an half-integer)-
are found from the states A„U', j=o, 1, ~ ~, r—I
{or r—-', if r is a half-integer) by replacing q by —

q
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0
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Two diferent approximations will be made at this
point. First, let EP-+d'/dl', which will be accurate for
large enough values of r„when n takes on a su cient
number of values to make this lcplRccnMnt scnslMc
clearly it will not be for r= &, for example, when there
are only tv' values of e for a given c. Also this approxi-
Inatlon ls not cxpccted to bc RccurRtc for lalgc J when

am le fromB„osciHatcs rapidly as n varies; for examp e,
Kq. (3.4a,) it can be seen that A„changes sign on every
other value of I for the eigenvalue corresponding to
g —fe

4 4 4 0The second approximation which is made in q.
is most easily seen by reference to F g. . '

gi . 5. This 6 ure
shows the cubic equation, considered as a continuous
function of ts:

F(e) = nC—, „'+q'=e' (2—c+1)I'
—Lr(r+1) —c(@+1)pe+ q'. (4.3)

The minimum of F(I) is at N0, obtained from F'(no) =0,
naH1ely

"=-:(2.+1)+-.L3 (+1)+ (.+1)+1j

Fro 4. 3 .@'Na'&'&, j 0, 1, ~ ~ ~, 4;and l A, (K,SOO, N)

or by Q+s) in Eq. (2.11).The phase P has been
t k as zero for the plots of Figs. 3 and 4. Approximate

l t' l pressions will now be obtaine
with theclgcQvalucs and clgcnvcctols and compared with c

exact l'csults of this section.

IV. APPROXIMATE ANALYTICAL SOLUTIONS

In this section, approximate expressions will be ob-
tained which are quite accurate for the ground and
low-lying excl e s at d t tes (and because of the symmetry

=0 f the most highly excited states and
2.I3 IIlRl s as well). Toward this end Kq. (2. ) may

be rewritten in the form

B.+x+B. x
—2B.+ I («-' —q')/q'jB=i=o. (4 1)

0 dB„=B„+~ B„, then 6'B—„=B„+2+B„—2B+~, so
that (4.1) is written as

ZPB„g+ I (nC, „' q')/q'}B„g—=0. (4.2)

FIG. 5. Schematic of cubic
F(e) versus N.
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Note that the minimum position does not depend on
the eigenvalue q. Writing F(N) as a function of (e n,)—
giVCS

F(e) = —a~+q'+n2(l —eo) '+ (e—00) ', (4.5)
where the 0.'s are de6ned by

2 (4.6a)Ay= C—%0 P

,=Pr(r+1)+c(~+ 1)y1y.
For all (n no) suc—h that

I
e—eo l&&n2, discarding the

cubic term will be a good approximation. For example,
it turns out that the dispersion of the ground state is
less than +no„which means that the maximum
~
e—e0 ~

is about Qmo, but nm is of order No (or greater)
so that for large No this is clearly a valid approximation,
at least for the ground state, and, as it develops, or a
number of the 6rst excited states as well.

With these two approximations, Kq. (4.2) becomes

" '--'( - )*Is =o
dim
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TABLE I. Some limiting cases.

c=—r+e
r&)e»1 r»c&)1 r=c)&1 c»r»1

np

Pc (r—284) J/8

848(r-188)

cC8(»—fc) 1'"

$np

v3r (1+pc8/»8)

(r/v3) (1+2c/v3'r)

(g) 1/2r(1+c/2VSr)

(2/3v3)»8 (t+v3c/r)
31/4 (~1~)p3/2

np(1++6)

2c

gc

—,'V2c

(32/27)cp

8 (2)1 8C8 8

np/(1+2VS)

c(1+&r2/c2)

c(t+8»8/c8)

r'c(1+-,'r'/c')

rc1/2

r1
2

Making the change of variable,

t = (0/2/q2) '/4(n np)—

in Eq. (4."/) gives

(4.8)

a(t) =0. (4.9)~ ~

ny —
g

dt2 (n2) '"q

This is in standard form for the harmonic oscillator,
and if we apply the usual boundary condition that 8
vanish as t—++ 00, then

For all values of e and r (r)&1) except for c of the
order of r, the eigenvalues are very closely linear in the
index j, and the eigenvectors resemble the familiar
harmonic-oscillator eigenfunctions for all states (Fig. 4,
especially the lower right-hand corner which gives the
squared eigenvector for j=25). The expression q, =—q(422)'/2+(-'n2+421)'/' is accurate to about 0.1%%u& for
all cases considered.

In all cases, the average value (R2) is negative in the
ground state for specided r and c, and approaches zero
for c»r»1.

j=0, i, ~ -, r—1, r integer

j=0, 1, ~ ~, r —12, r half-integer. (4.10)

Solving the quadratic for q,

q' (422)1/2(g+ )+[(j+2)2822+421]t/2 (4 11)

which gives the approximate eigenvalues for j positive,
&r. For j&r, the eigenvalues are again to be given as
explained below Eq. (3.4d); they are the negative of
the values for j&r.

Also 8 (t) =e "/'H;(t), where H (t) is the Hermite
polynomial of order j.Then

8„1/» = I exp[—(u2) '/'(n np) '/2q—/] }

XH;[(n2/q, 2)'/'(n —np)]. (4.12)

All graphs which show eigenvectors are computed
from the exact results and are normalized. The phase tt

has been set equal to zero. In Fig. 6, exact eigenvalues
are compared with those computed from Eq. (4.11).
The lack of agreement between the exact and the
approximate results in the region j~r is due to the use
of harmonic-oscillator boundary conditions [below Eq.
(4.9)7 and the replacement of the second difference
by the second differential, rather than neglect of the
cubic term in Eq. (4.5). A second-order perturbation
calculation on the cubic term indicates that inclusion
of this term will correct the eigenvalues in the wrong
direction and by a negligible amount.

8L. I. Schi8, Quantlm 3Achanics (Mcoraw-Hill Book Co.,
New York, 1955).

V. DISPERSION IN PHOTON NUMBER IN THE
GROUND STATE

Table I lists limiting forms for ready reference of
several previously de6ned quantities, as well as 0', the
dispersion in the ground state. From the Table, it is
readily seen, for all four limiting regions considered,
that qo/C „, is very closely equal to (no)'/2. This is
also a statement that 0.2((cx~, for these limits, and so

qp
———2(n2)1/2+(4482+421)'/2 (n1)1/'. Then qo can also

be written as qo
——v2np{[(r+12)'+np']'/2 —no}'" from

which it is clear that qp&(2r+1)'"np. For the 6rst
two columns of Table 1, this is a good approximation.
For c»r&)1, C. „8—8r, and then qp +(no)'/2—r. In the
ground state, with negligible approximation, the product
of C„'s which appear in the denominator of Eq.
(2.11) can be written

Cc 1Cc2 '-Cc-rr~'Cc ap ~ Cr 1C» 2' ' '-Cc—88 —-(5—1)

So now the non-normalized A „&r c pt [since Ho(t) =1]are

A„&ot— "'
exp[ —(n —no) 2(422)'/'/2q„].

(qo/C. --,) "e'"'

(nt) /

(5.2)

Since qp/C 8
—(np)'/'»1, this may be well approxi-

mated by

n np ' 2 n2 '/2n—
p

A tot—exp — 1+ e'"& (5 3)
qo

Then the dispersion in photon number in the ground
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state is

os=((rt —rt )')=P )
g &+ ~'(rt —rt )'/g [ g t+ p

or, using Eq. (5.3),

So
02

1+ 2 (n') It'rto/y)
(5.4)

The bottom row of Table I shows a' for four limiting
cases. The dispersion t Eq. (5.4)$ is in every case
smaller than the classical dispersion obtained from a
Poisson distribution, namely 0'=no, ' although for r &c
the dispersion is of order mo, the average photon number.
When the amount of energy in the electromagnetic
Geld greatly exceeds the amount of energy available to

the uncoupled atoms, t,"))r, then the dispersion is much
less than the average photon number, eo—c, and is ~r
instead.

Note added ere proof. Figure 3 should have 2q every-
where instead of q, as in Fig. 4. Also, Fig. 5 deGnes
—F(rt), not F(rt) .
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Nonexponential Spin-Lattice Relaxation of Protons in Solid
CHICN and Solid Solutions of CHeCN in CDeCN*

MICHAEL F. BAUD] AND PAUI S. HUBBARD

Department of Physics, University of North Carolina, Chapel iVitt, North Carolina Z7$i4
(Received 25 January 1968)

The proton spin-lattice relaxation in solid CH3CN, and in 1:6 and 1:10solid solutions of CHSCN in
CD3CN, has been measured by pulsed NMR techniques at a frequency of 30.0 MHz, for temperatures
between 79.5 and 173'K. The relaxation is nonexponential at the higher temperatures, and exponential
only at the lowest temperature. The experimental results for 1:6 solutions are compared with the relaxation
previously predicted by a calculation based on the assumptions that (1) the relaxation is due to intra-
molecular dipole-dipole interactions between protons, which are time-dependent because of hindered
rotations of the methyl groups, (2) the axes of hindered rotation are randomly oriented, and (3) the cor-
relation time for reorientation is the same for all methyl groups at the same temperature. The distinctly
nonexponential relaxation predicted by the theory is due to the inclusion of the eGects of the cross cor-
relations of the intramolecular dipole-dipole interactions. The agreement between the experimental results
and the calculations is fairly good, the discrepancy being attributable to the e8ects of other relaxation
mechanisms, such as intermolecular dipole-dipole interactions. The results provide the first experimental
evidence of nonexponential spin-lattice relaxation produced by the eGects of cross correlations of dipole-
dipole interactions.

I. INTRODUCTION

r 1HZ nuclear magnetic relaxation of spin-, nuclei is
due in many cases mainly to nuclear magnetic

dipole-dipole interactions, which are time-dependent
as a result of the motion of the nuclei. The calculation
of the nuclear magnetic relaxation involves certain cor-
relation functions of each dipole-dipole interaction with
itself (autocorrelations) and with other dipole-dipole
interactions (cross correlations). If the cross-correlation
terms are omitted, the calculated relaxations of the
longitudinal and transverse components of the nuclear
magnetization are simple exponential decays. ' If the
cross-correlation terms are included in the calculation,

*Research supported in part by the National Science I"ounda-
tion and the Advanced Research Projects Agency.

t Present address: Great Lakes Research Corporation, Eliza-
bethton, Tenn.' P. S. Hubbard, Rev. Mod. Phys. 33, 249 (1961).

the longitudinal relaxation is found, in general, to be
the sum of more than one decaying exponential.

Calculations of the relaxation of systems of three and
four identical spin--, nuclei in molecules undergoing
isotropic rotational Brownian motion have shown that
there is little difference in the relaxation predicted when
cross correlations are included and the exponential
relaxation predicted when cross correlations are omit-
ted' '

One situation for which the inclusion of cross correla-
tions in the calculation has led to the prediction of a
distinctly nonexponential spin-lattice relaxation is the
case of three identical spin- —,

' nuclei at the corners of an
equilateral triangle which undergoes hindered rotations

2 P. S.Hubbard, Phys. Rev. 109, 1153 (1958);111,1746 (1958).' P. S. Hubbard, Phys. Rev. 128, 650 (1962).
G. W. Kattawar and M. Eisner, Phys. Rev. 126, 1054 (1962).

~ P. M. Richards, Phys. Rev. 132, 27 (1963).' L. K. Runnels, Phys. Rev. 134, A28 (1964).


