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Fermi-Liquid Transport Coefficients of Dilute Solutions of He?® in He*f
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A slightly modified form of the effective interaction between He® quasiparticles proposed by Bardeen,
Baym, and Pines, used with variational solutions of the transport equation, yields results in satisfactory a-
greement with recent measurements of the spin diffusion and thermal-conductivity coefficients of two dilute

solutions of He® in Het at very low temperatures.

INTRODUCTION

ECENT measurements! in the Fermi-liquid regime
of the thermal conductivity of dilute solutions of
He? in He* disagree considerably with the values calcu-
lated from the effective He® quasiparticle interaction of
Bardeen, Baym, and Pines.? This interaction is deter-
mined from measurements? of the spin diffusion coeffi-
cient in the solutions. It is the purpose of this article to
call into question the accuracy of the familiar expres-
sions*® used to relate the transport coefficients of a
Fermi liquid to the quasiparticle interaction, and to
suggest that agreement between theory and experiment
can be substantially improved by using more precise
solutions of the transport equation in determining the
effective interaction.

The determinations of the thermal conductivity « and
diffusion coefficient D in terms of an effective interac-
tion, as in Refs. 1 and 2, are based on the theoretical ex-
pressions given by Abrikosov and Khalatnikov* for «
and by Hone® for D. These expressions are derived by
solving the linearized Boltzmann transport equation
exactly, under the assumption that the excitation en-
ergies of the quasiparticles relevant to the transport are
small compared with the temperature. Thus, factors of
the form g(p) =1+ (ep— )%/ (wkT)? are approximated by
unity in the collision integral; e, is the energy of a quasi-
particle of momentum p, u the fermion chemical poten-
tial, 7 the temperature, and % Boltzmann’s constant.

The errors introduced by this approximation can be
examined by using the resulting Abrikosov-Khalatnikov
and Hone solutions for the nonequilibrium quasiparticle
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distribution functions as trial functions in a standard
variational calculation of ¥ and D. We give this calcu-
lation in Sec. I. In Sec. II, the resulting variational
solutions are used in conjunction with the measure-
ments!3 of x and D to examine the consistency of the
Bardeen, Baym, and Pines (BBP) theory of dilute
He?-He* solutions in this new context.

I. VARIATIONAL SOLUTIONS FOR x AND D

The general procedure used here is given by ZimanS;
in particular we follow fairly closely a derivation given
by Rice? for k and D in an interacting Fermi liquid, al-
though we do not include Fermi-liquid effects, which are
generally? 5-109%, in dilute solutions of He?® in He*.

The two transport coefficients are given in terms of
the irreversible entropy production by’

1/kear=T2S/ jé (1)
1/Dypr= TS/[Zjuz(a#a/a”a)] ’ (2)

where § is the rate of entropy production, 7. the energy
flux, j» the flux of quasiparticles of spin orientationg,
and du./ 9, the rate of change of the chemical poten-
tial for quasiparticles of spin orientation ¢ with respect
to the number density of quasiparticles of the samespin.
The subscript “var” denotes that we are finding varia-
tional solutions. If we write the quasiparticle distribution
function as

©)

fk¢7= fkao'!"(pkafkao(‘l_ fka’o)/kT )

where fi.® is the equilibrium distribution function, then
the energy and quasiparticle fluxes are®

Je=(2m)7® > fdkvk(gk,*u)@kafk,o(l"-fk,o)/kT, 4

Jo=(2m)78 f dkvi®yo fro®(1— fxa®)/kT . )

6 J. M. Ziman, Electrons and Phonons (Oxford University Press,
London, 1960), Chap. VIL

7M. J. Rice, Phys. Rev. 159, 153 (1967).

8 For convenience, we take 7 and V, the volume, equal to unity.
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vy is the quasiparticle velocity (vi=k/m*) and m* is
the quasiparticle effective mass. Furthermore, the en-
tropy production may be written as?

S=(4rTH)2r) 2 Y. | dkdk’dk”dk"”’

X (q)ko"*'q)k'a’""Qk”d—q)k"’u")2fk¢0fk'a’0
X (A= ferr®) (L= firrra®) Qurrrrr o™ 97"y (6)

where Qyiir 007" is the intrinsic scattering rate for
the process

(k,0)+(K',0") = (&”,0)+(K",0"). Y]

We do not allow for spin-flip because within the context
of the BBP theory, which is all that is of interest to us
here, it cannot occur. In terms of V(g), the BBP effec-
tive quasiparticle interaction,

Quorierr 114 = (2m)A| V (K"~ K) |2
X 3(€k+ €x/— €xrr— Ekln)as(k-{- k/— k”—‘ k’”) (8)
and

Queriorr 4 15K = Qpergerr K44 = (2)
X | V(k"—k)—‘ V(k”/_ k) I 26(6k+ €’ — Egrr— ekln)
XK —K'—K"). (9)

In the latter case, a factor of 4 should be included when
summing final states in order to avoid double counting.

The solution of Hone for ®y, in the case of spin diffu-
sion is

tI>k1=k-v; ¢k¢=—k~v, (10)

while that of Abrikosov and Khalatnikov for thermal
conduction is

Byo= (ec—m)k- v/ (11)

Here v is some arbitrary velocity vector in the direction
of the temperature or magnetization gradient. A factor
©~1 has been included in Eq. (11) for dimensional
convenience; over-all constant factors in &, are
irrelevant.
Inserting Egs. (8)-(11) into (6), we find that for
thermal conduction,

8= 2T~ 1(27)8 f dkdk ’dk" dk""’

X (Lexk+ ek’ — ek — e k""" ] v) (ex— 1) (k- v)
X 8(ext en— ewr— ewr) 83(k+ k' — k" — k')
XV &'=k) [*+3]| V(k"—k)— V(K" —k)|?)
X flfe’ (A= f) (1= firr®),  (12)

9 J. M. Ziman, Electrons and Phonons (Oxford University Press,
London, 1960), pp. 277 and 282.
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while, for spin diffusion,
Sp=2(kT?)~'(2r)* / dkdk'dk" dk'"

XA (k—K—K"+K"") - v]?6(ext e — €xrr— exrrr)
XK~ KK [ V= B) it
X (1= fe?) A= fir?). (13)

In Eq. (12), we have made use of the symmetry of the
scattering rate with respect to initial and final states to
write the factor (®xe+Pxrer—Prrre—Prrrrer)? as Py,
X @uot+Prr g —Prrrrg—Prrrrg).

We now resolve the integration so as to obtain the
lead term in T at low temperatures. Separating angle
and energy integration in the usual way,!® we are able
to write

8= [v?pr*(m*)4/9677u?] / sinfdfd ¢
X (sin2(36)/cos(30)W (6, ) / dede'de’de’" (e—u)

X[(e=¢)+cosp(e”—e€”)]f(e) ()1~ f(€))
X (1= f(")b(e+e—e"—€")  (14)

and

Sp=[2%pr*(m*)*/96x"] f sinfdfd o(sin%(16) /cos(16))

X (1—cos)W 14(6,¢) / dedéde’de"5(e+¢—€'—¢"")

X f(f(€)A— fleNA—f(€"),
J()={exp[B(e—m) ]+1}7, (16)

pr is the Fermi momentum, 8 is the angle between k
and K/, and ¢ is the angle by which the plane containing
the momenta k”” and k' is rotated relative to that con-
taining k and k’; also,
WO,o)=={|V(&"—k)[*+3|V(k"—k)—V (k"' —k)| 2}
=a{|V(2pr sin(30) sin(3¢))|?
+3|V(Q2pr sin(36) sin(3¢))
—V(2prsin(36) cos(Ge)) (2}, (17)

(15)
where

while
W14(8,¢) =27 | V(2pr sin(36) sin(3¢)) |2. (18)

The energy integration may now be completed; in Eq.
(14), the coefficient of cose integrates to zero, leaving

/ dedé'de’de”’ (e—u)(e—€) f(&) f(€)(1— f(€"))

XA—f("o(et€—e€'—€")=(8x4/15)(kT)5. (19)

10 E.g., D. Pines and P. Noziéres, The Theory of Quantum Liquids
(W. A, Ben]amm, Inc., New York, 1966), Vol. I, p. 60.
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Similarly,

f dede'de”’de’” f(e) f(¢)(1— f(e"))(1— f(¢"))
Xo(e+e—e'—€")=2n2(kT)3.
Thus we finally find
Se= (4572%2) AT %% g3 (m*)*
X (W (6,¢) sin*(38)/cos(39)) (21)

(20)

and
Sp= (3674~ k2T %02 p¥(m*)*

X{W(8,)(1—cosy) sin*(36)/cos(36)), (22)

where

e | " sinddd 10,0).  (23)

Equations (4) and (5) for the energy and particle cur-
rents are much more easily evaluated:

o= (drtum¥)t / dk k(ey—)?(k-v) fi(1— f0)/AT

=pr*v(kT/w)(3kT) (24)
and
jt=—3y=(8w3m*)1 [ dk k(k-v) f*(1— f0)/kT
= ppiv/6m2. (25)

Combining Egs. (21), (22), (24), and (25) in Egs. (1)
and (2), we find for the variational transport coefficients,

51('2\ 7)1«*3
Kyar= (— (26)
9 /m*T (W (6,¢) sin2(30)/cos(30))

and
Dyor=472

sz

% (m*)RETHW 14(6,¢) sin?(36)(1—cos¢)/cos(36))”

27

or, aside from corrections involving Fermi-liquid effects,

Dyor=2Dx (28a)
and

Kvar= (5/ 12) KA-K. (28b)

In these equations, vr=pr/m* and the subscripts H
and A-K denote the solutions of Hone and of Abrikosov
and Khalatnikov, respectively.

Actually, the only Fermi-liquid correction is a factor
1+4F ¢ in the spin diffusion coefficient. The Landau pa-
rameter Fo® measures the exchange correction to the
spin susceptibility and is less than one-tenth in dilute
He?-He* solutions.? We have included this correction in
Eq. (27) for use in the calculations of the following sec-
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tion, although it really is of no importance to the even-
tual results.

If the expressions (10) and (11) happened to be exact
solutions of the transport equation, then we would have
found, instead of Eq. (28), Dyer=Dg and kyar=xa_xk.
The deviation from this equality is in some sense a mea-
sure of the accuracy of the usual solutions. Because
Dyar and kvar are derived from a variational principle,
they are, on the face of it, at least as accurate, if not
more so, than the usual solutions. It should also be noted
that the variational solutions place lower bounds on the
exact transport coefficients (for a given scattering am-
plitude), since they are based on the principle of maxi-
mizing the entropy production. On the other hand, the
usual solutions overestimate the transport coefficients,
since they are derived by effectively neglecting some of
the scattering.

The difference between Dy, and D+ is relatively small.
However, we see that k4_x could be more than a factor
of two greater than the exact x. The reason is that in
thermal conductivity the quantity being transported is
essentially e,—pu so that particles far from the Fermi
surface play an important role, and (e,—u)? cannot
generally be assumed to be K(7%kT)2. A similar calcula-
tion for the viscosity 7 yields

(29)

the coefficient of proportionality is the same as for the
spin diffusion coefficient because the momentum and
particle fluxes involve, to lowest order, the same powers
of ep—u.

—3 .
Nvar= L NA-K;

II. APPLICATION TO DILUTE SOLUTIONS
OF He® IN He!

Turning to the dilute solutions of He? in He*, let us
suppose, for the moment, that the variational results
Dyar and kyar are accurate. Then the BBP effective in-
teraction Vggp(k), constructed to fit the spin diffusion
coefficients at 1.3 and 59, He concentration using Dx,
will no longer reproduce the data; rather, since Dyar, as
well as kvar, scale inversely as the square of the interac-
tion, one must replace the BBP interaction by

Vi(k)=(3)"*Vssr(k) (30)

to fit the spin diffusion data. The prediction for the
thermal conductivity using V; in the variational solu-
tion is then
(5/12) 5
K= xepp=—kppp=~0.56kpBP,
(3/4)

where kppp is the prediction based on the BBP interac-
tion and the Abrikosov-Khalatnikov formula for x. Now
the recent measurement of Abel ef al.! gives

Kupt(l .3%) = 07 1KBBP(1-3%)

Kexpt(5.0%) = 0.46kp5p(5.0%)

(31)

and
(32)



170

A

FERMI-LIQUID TRANSPORT COEFFICIENTS

349

2k4(1.3%) 2kg(50%)
i

—> k

o6

04r

— 02}
e
&

F16. 1. Effective interaction V (£), as 2 0

defined in Eq. (33) of the text, plotted <
in units of ﬂVBBP(O)[ =0.07§m4s2/n4, =

K
N

and compared with Vsgp(k).

£

-6

-0

in the Fermi-liquid regime; comparing with Eq. (31) we
see that the corrections suggested by the variational
solutions greatly improve the consistency of the BBP
theory with experiment.

Instead of determining V(%) from the experimental
D and then using this result to predict &, one could use
all the measurements of D and « to obtain a more defini-
tive form for V (k). This was tried by Abel ef al.}; it is
noteworthy, though, that they were unable to construct
a reasonable form for V(%) that would give, via the
formulas Dy and ka-x, good quantitative fits to the
measured D and « for 1.3 and 59, solutions. We have
carried out a similar search!! for a V(%) by machine,
using both the usual formulas Dy and ka_x and the
variational formulas for D and x. We find that it is im-
possible to improve materially on the results of Ref. 1
with any reasonably slowly varying V(%) when using
the former set of formulas. With the variational formu-
las, however, we were able to do considerably better;
one of our best results is a power-series fit:

V(E)=V1—1.15y—4.16y*+6.21y3—2.3294], (33)

where y= (k/2ko)? ko is the Fermi momentum of a 5.0%,
solution, ko/%=0.318 A-1, and

Vn= - 0.0647”432/%4 y (34)

with m, the He* atomic mass and s and 4 the first-
sound velocity and number density of pure Het at T'=0.
The interaction (33) is shown in Fig. 1; Vepp(k) is in-
cluded for comparison. The magnitude of V(%) is gen-
erally smaller than that of Vsgp(k), largely as a result
of the factor § in Eq. (28a). We note that V(%) begins
to flatten off at high %, an alteration in qualitative
agreement with the work of Campbell.!2 As can be seen

; 11 The possibility of nonmonotonic behavior of V (k) was allowed
or.

12L. J. Campbell, Phys. Rev. Letters 19, 156 (1967).

PRESENT V(K 7\

Vegp (k)

in Table I, the interaction V(%) gives generally a 109,
fit to the experiments, which is within the published ex-
perimental uncertainty, and a substantial improvement
over the best fits one can obtain using the Hone and
Abrikosov-Khalatnikov solutions for the transport co-
efficients. The Landau coefficients calculated from this
new V (k) are not markedly different from those calcu-
lated from Vggp.

It is significant that no physically reasonable form for
the effective interaction could be chosen to give an exact
fit to the transport data. Beyond experimental uncer-
tainty, this must be attributed to the inherent inac-
curacy of the variational solutions for the transport
coefficients, combined with the errors entailed in the
approximation of the exact scattering amplitude by a
simple velocity- and concentration-independent effec-
tive interaction. The relative magnitude of the velocity
and concentration dependence of the scattering ampli-
tudes should be on the order of the concentration, and
hence could produce corrections on the order of 109, in
the transport coefficients. These corrections are small,
however, compared with the improvements made by
using the variational solutions to the transport equa-
tion instead of the usual solutions.

In summary, we wish to emphasize that the generally
accepted solutions to the transport equation in the
Landau Fermi-liquid theory may contain considerable
inaccuracies, and that the present situation provides the

TasLE L. Values of xT (erg/sec cm °K) and DT [cm?(°K)2/sec]
for 1.3 and 5.09%, He? concentrations, as calculated from the effec-
tive interaction V(%) in Eq. (7), and from experiment.»

«T(1.3%) «T'(5.0%) DT*(1.3%)  DT*(5.0%)
Experiment 11 24 17.2X107¢ 90106
Calculated 10 26 18.6X107¢ 82X10¢

2 See Refs. 1 and 3.
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first experimental test of these inaccuracies. Within the
context of the variational calculation, and within recog-
nized theoretical limitations, the use of an effective in-
teraction, as proposed by BBP, is consistent with recent
measurements of the thermal conductivity and spin
diffusion coefficients of dilute solutions of He? in He*.
At the same time, improved solutions to the transport
equation are evidently desirable in general. It is
straightforward to arrive at these within the variational
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tions ®y,. These coefficients should be chosen to maxi-
mize the transport coefficients. The values of the vari-
able coefficients will depend on the shape of the quasi-
particle scattering amplitudes; thus, one is in the posi-
tion of having to determine both the detailed solution
of the transport equation and the quasiparticle scatter-
ing amplitude from experiment. It is our feeling that
there is little to be gained from this calculation for the
particular case of the dilute He-He* solutions at the

formulation by using higher Legendre polynomials

present time, especially in view of the consistency with
Py(k-v/kv) with variable coefficients in the trial func-

experiment of the simpler calculation presented here.

Erratum

Alignment of the H,+* Molecular Ion by Selective Photodissociation. II. Experiments on the Radio-
Frequency Spectrum, C. B. RicuarpsoN, K. B. JEFFERTS, AND H. G. DEEMELT [Phys. Rev. 165, 80
(1968)]. In the first paragraph the third sentence should read : ““Interesting small effects such as unknown
electron-proton interactions, radiative corrections, centrifugal stretching, vibrational effects, rotational
mixing of excited states, and electron slippage should be revealed.” The sentence including Eq. (1)
should read: ‘“The proper field is derived from a potential of the form

&= o cosQil (2°—37%) /20" ] 1)

resulting from the application of a cosine emf of frequency @ between a hyperbolic electrode of
the form 72=222+47,2 and a pair of the form 72=2(22—2y?).”” The proper expression for the well depth is
eD,=e¢w./V2Q. Equation (11) should read:

31,8, =I-S—[2/(2K—1)(2K+3)] Xs; $1:S;(K:K;+K,;K;— 6;;K*).
Equation (12) should read:
61,,S,=[2I1,S,+I-St+I+S—]—[4I.S.(3K.?—K?) — (ItS—+I-St)(3K,2—K?)
+3(I,S~+I-S.)(K.Kt*+K*K,)+3(I,St+ ItS,) (K. K—+KK,)
+3I+StK-K—+3I-S"K+K+]/(2K—1)(2K+3).
The following paragraph was omitted: “ACKNOWLEDGMENTS: We are indebted to Philip Ekstrom

for his help with the design of the digital processing equipment, to Jacob Jonson for the glassblowing
on several ion-storage tubes, and to Klaus Zieher for proofreading parts of the manuscript.”



