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Ferrai-Liquid Transport CoefKcients of Dilute Solutions of He' in He'f
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A slightly modiicd form of the elective interaction between Hci quasiparticlcs proposed by Sardeen,
3aym, and Pines, used with variational solutions of the transport equation, yields results in satisfactory a-
greement with recent measurements of the spin di6usion and thermal-conductivity coeKcients of two dilute
solutions of Hes in He' at very low temperatures.

INTRODUCTION

ECENT measurements in the Fermi-liquid regime

of the thermal conductivity of dilute solutions of
He' in Hc4 disagree considerably with the values calcu-

lstcd froHl thc cQcctive Hc quaslpal tlclc lntclactlon of
IIlardeen, Baym, and Pines. ' This interaction is deter-
mined from measurements' of the spin diffusion coeK-
cicnt in. the solutions. It is the purpose of this article to
call into question the accuracy of the famlbar expres-
sions'' used to relate the transport cocScients of a
Fermi liquid to the quasiparticle interaction, and to
suggest that agreement between theory and experiment

can be substantially improved by using more precise
solutions of the transport equation in determining the
elective interaction.

The determinations of thc thermal conductivity x and

dlffuslon cocSclcnt D ln tcrQls of Rn cGcctlve interac-

tion, as in R,efs. 1 and 2, are based on the theoretical ex-

pressions given by Abrikosov and Khalatnikov' for ~

Rnd by Hones for D. These expressions are derived by
solving the linearizcd Soltzmann transport equation.

exactly, under the assumption that the excitation en-

ergies of the quasiparticles relevant to the transport are

small compared with the temperature. Thus, factors of
the form g(P) = 1+ (es—/j) s/(jrkT)s are aPProximated by
unity ln thc collision lntcgl Rl; 6& 18 the cnclgy of R quasl-

particie of momentum p, /j the fermion chemical poten-

tial, T the temperature, and k Boltzmann's constant.
The errors introduced by this approximation can be

examined by using the resulting Abrikosov-Khalatnikov

and Hone solutions for the noncquilibrium quasiparti. clc
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distr'lbutloQ functions Rs trial functions in R standard
varlatlonal calculation of K Rnd D. %c glvc this calcu"
lation in Scc. I. In Scc. II, the resulting variational
solutions are used in conjunction with the measure-
mcntsl' of ft: and D to examine the consistency of the,

Bardeen, Baym, and Pines (BBP) theory of dilute
He' —He4 solutions in. this new context.

The general procedure used here is given by Ziman';
ln particular wc foBow fairly closely R dcllvatlon glvcn

by Rice~ for ~ Rnd D in an interacting Fermi hquid, al-

though wc do not include Fermi-liquid effects, which are
generally' 5—10% in dilute solutions of He' in He4.

The two transport codBcicnts are given in terms of
the irreversible entropy production by~

1/x, ,= T'8/i' (1)

l/D, ,= r8/Pg. (a/. /ae. )), (2)

where 8 is the rate of entropy production, j, the energy

Aux, j, the Aux of quasiparticles of spin orientation 0,
and c//j /Bjs the rate of change of the chemical poten-
tl8l fo1 quaslpartKlcs of splQ ollcntRtlon 0' with lcspcct
to the number density of quasiparticles of the same spin.
Thc subscript var denotes thRt we Rrc 6nding varlR-

tional solutions. If wc write the quasiparticlc distribution

functlOQ as
fj,.=fs'+C j.fi ~ (J sfx')//jT', — (3)

where fj„ is the equihbrium distribution function, then

the energy and. quasiparticle Quxes are'

j.= (2jr) ' Q Avx(ex, —/j)4x fj„'(1—fg (j)/kT, (4)

j,= (jr) ~fdhvgkwfo(1 fs')/jT, , — ,

' J. M. Ziman, ///ssjrojjs (jjjd P/jT)rjajjs (Oxford University Press,
London, 1960},Chap. VII.

M. J. Rlces Phys. Rcv. 189~ 153 419|J)/r}.
8 For convenience, pre take 0 and V, the volume, equal to unity.
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Stk= 2(P2's)-t(2sr)-s dkdk'dk"dk"'

vk is the quasiparticle velocity (vk ——k/tts ) and ns is while, for spin diffusion,
the quasiparticle eQective mass. I"urthermore, the en-

tropy production may be written asg

S= (4kT') '(2sr) "Q dkdk'dk"dk"'
rr, tr'

X(Ckr+Ck' ' C'k"r C'k"'r') fkr fk'

X(1—f -'){1—f - "')Z - - -'"" (6)

where gk k ~ „.kk" ' is the intrinsic scattering rate for
the process

(k,o)+ (k', o') k (k",o)+ (k'",o') . (7)

gk kk tt»'"=9k-k- tt»"=(2)r)'
X

~

V(k"—1)—V(k"'—1)
~
s8(ek+ ...—e,-—.,-.)

x 8s(k+ k' —I "—1"'). (9)

In the latter case, a factor of -', should be included when
summing anal states in order to avoid double counting.

The solution of Hone for C», in the case of spin diGu-
slon ls

We do not allow for spin-Rip because within the context
of the BBP theory, which is all that is of interest to us
here, it cannot occur. In terms of V((t), the BBP eGec-
tive quasipar ticle interaction,

gk-k- «kk'» = (2~)') V(k"—I) (s
Xb(ek+ ekI —ek- ek-—.)i)'(4+k' —k"—k"') (8)

X~s[(k—k' —k"+k"') vjs8(ok+ok —ek —ek. )

X8s{k+kd—k"—k"')
~

V(h"—P) (
sfkofk o

X(1-fk-')(1- fk-') . (13)

In Eq. (12), we have made use of the symmetry of the
scattering rate with respect to initial and Anal states to
write the factor q(Ck +Ck —C'k, —Ck )' as Ck,
X (@kd+C k'i' @'k'"r @'k"'r')

We now resolve the integration so as to obtain the
lead term in T at lour temperatures. Separating angle
and energy integration in the usual way, "we are able
to write

S.= [t)'p) '(ns*) 4/96rr"td'j sin8d8d(p

X(sin'(-', d)/Los(-', d))S'(d, r)f d d d "ds'"( —'p)

X[(e—e')+cosv)(e"' —e")gf(c)f(e')(1—f(e"))

X(1 f{e"—'))8(e+ e' e" —e'")—(14)
and

Sr)——[r)sP t s(sn*) 4/96m' j sin8d8d(t)(sins(s 8)/cos('s8))

X (1—cos(t)) Wt t(8, &p) dede'de"de"'i)(e+ e' —e"—e'")

C)kt=k v; 4kt= —k v, (10)

while that of Abrikosov and Khalatnikov for thermal where
conduction is

Xf(e)f(s')0 —f(e"))(1—f("'"), (15)

f( )= {exp[&(e—p)3+1} ', (16)
Ck.——(ek—p)k v/p, .

Here v is some arbitrary velocity vector in the direction
of the temperature or magnetization gradient. A factor
of p,

' has been included in Eq. (11) for dimensional
convenience; over-aQ constant factors in C», are
irrelevant.

Inserting Eqs. (8)—(11) into (6), we find that for
thermal conduction,

Sd(krk') '(2 ) 'f ,d=kdk 'dk"dk"'-

X ([ekk+ ek, k' —ek. irkk—ek»ik"'j V) (ek—td)(k V)

x 8(ek+ ek~ ek« —ek« ~)8 (k+k —k —k )

X(i V(k"—k) ('+-'s
[
V(k"—k) —V(k"'—k) [s)

Xfk'f. '(1—fk-')(1 —f,-'), (12)

' J. M. Zin)an, Electrons and Phonons (Oxford University Press,
London, 1960), pp. 277 and 282.

p) is the Fermi momentum, 8 is the angle between k
and k', and q is the angle by which the plane containing
the momenta k" and k"' is rotated relative to that con-
taining k and k', also,

W(8, q)) = sr{ [
V(k"—k)

~

'+-',
)
V(k"—k) —V(k"'—k) I s}

=sr{
~
V(2p) sin(ks8) sin(-,'y)) ~s

+-',
~
V(2pt sin(s8) sin(st()o))

—V(2ps sin(-,'8) cos(-',&p))
~
'}, (17)

while

Wt t(8, (P) = 2sr
~
V(2P) sin(ks8) sin( ks ()e))

~

s. {18)

The energy integration may now be completed; in Eq.
(14), the coefficient of cosso integrates to zero, leaving

dede'de"de"'(» —tt) (e—e')f(e)f(e')(1—f(e"))

X(1—f(e"'))8(e+e'—e"—e'")= (8sr4/15)(kT)'. (19)"E.g., D. Pines and P. Nozieres, The Theory of Qearrtum Liquids
(W. A. Benjamin, Xnc., Nevr York, 1966), Vol. X, p. 60.
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Similarly,

(f(8,v))=—(4 ) dv sin8d8 f(8,v). (23)

Equations (4) and (5) for the energy and particle cur-
rents are much more easily evaluated:

j = (4n'pm*)-' dk k(ep —p)'(k v)fj,'(1—fj,')/kT

=pp'v(kT/p)( ,'kT)- (24)

dade'de"de'" f(e)f(e')(1—f(e"))(1—f(e"'))

Xb(e+ e' —e" e—'")= vr-'(kT)' .(20)

Thus we Gnally find

8.= (45 s'p') %'T'v'py'(vs*)4

X (W(8, q ) sin'(-'8)/c»(-'8)) (21)
and

8o= (36m 4)-zk2Tusnp 3(~s)4

X W'(8, v)(1—«»v')»n'(k8)/«»(28)) (22)
where

tion, although it really is of no importance to the even-
tual results.

If the expressions (10) and (11) happened to be exact
solutions of the transport equation, then we wouM have
found, instead of Eq. (28), D„„=Dz and x „=a& z.
The deviation from this equality is in some sense a mea-
sure of the accuracy of the usual solutions. Because
D „and x are derived from a variational principle,
they are, on the face of it, at least as accurate, if not
more so, than the usual solutions. It should also be noted
that the variational solutions place lower bounds on the
exact transport coeKcients (for a given scattering am-
plitude), since they are based on the principle of maxi-
mizing the entropy production. On the other hand, the
usual solutions overestimate the transport coe@cients,
since they are derived by effectively neglecting some of
the scattering.

The difference between D „and D~ is relatively small.
However, we see that ~~ K could be more than a factor
of two greater than the exact ~. The reason is that in
thermal conductivity the quantity being transported is
essentially ~~—p so that particles far from the Fermi
surface play an important role, and (e„—p)' cannot
generally be assumed to be (((~kT)'. A similar calcula-
tion for the viscosity q yields

=3/var 4/A —K j (29)

jt= —jq=

(gemara*)

' dk k(k v) fag(1 —fj,')/kT

=p j 'v/6s'. (25)

the coeKcient of proportionality is the same as for the
spin diffusion coeKcient because the momentum and
particle Quxes involve, to lowest order, the same powers
of t.~

—p, .

Dvgg= 4X

X , (27)
(m*) 'k'T'QVt q (8,q ) sin'(-,'8) (1—cosy )/cos(-,'8) )

or, aside from corrections involving Fermi-liquid effects,

Dvar= gDH (28a)

x...= (5/12)xg K.

In these equations, s&——p&/m* and the subscripts H
and A-K denote the solutions of Hone and of Abrikosov
and Khalatnikov, respectively.

Actually, the only Fermi-liquid correction is a factor
1+F0 in the spin diffusion coeKcient. The Landau pa-
rameter Iio measures the exchange correction to the
spin susceptibility and is less than one-tenth in dilute
He'-He4 solutions. ~ We have included this correction in
Eq. (2'7) for use in the calculations of the following sec-

Combining Eqs. (21), (22), (24), and (25) in Eqs. (1)
and (2), we find for the variational transport coeKcients,

5s'~ 'Vg

(26)
9 JrN*T(VV(8, q ) sin'(-,'8)/cos(-,'8) )

(5/12)

(3/4)

5
zpgp=-rcggp —0 56zpp, p y

9

where f(g~p is the prediction based on the BBP interac-
tion and the Abrikosov-Khalatnikov formula for ~. Now
the recent measurement of Abel et ul. ' gives

&~a~(1 3'%%uo) =0 &1~»p(1 3%)

~. ,t,(5.0%)=0.46zssp(5. 0%) (32)

II. APPLICATION TO DILUTE SOLUTIONS
OF He' IN He4

Turning to the dilute solutions of He' in He4, let us
suppose, for the moment, that the variational results
D „and ~ „are accurate. Then the BBP effective in-
teraction V»p(k), constructed to 6t the spin diffusion
coeflicients at 1.3 and 5% He concentration using Dn,
will no longer reproduce the data; rather, since D „,as
well as x „,scale inversely as the square of the interac-
tion, one must replace the BBP interaction by

(30)

to 6t the spin diffusion data. The prediction for the
thermal conductivity using V~ in the variational solu-
tion is then
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Fxo. 1, Effective interaction V{k),as
de6ned in Eq. (33) of the text, plotted
in units of Vssp(0)

~

=0.075m4r'/~4,
and compared vnth Vsap(k).

—02

o

Vs= —0.064trs4s'/tr 4, (34)

with A&4 the He4 atomic Inass and s and N4 the 6rst-
sound velocity and number density of pure He' at 7=0.
The interaction (33) is shown in Fig. 1; Vnnp(k) is in-
cluded for comparison. The magnitude of V(k) is gen-
erally smaller than that of Vnnp(k), largely as a result
of the factor —,

' in Eq. (28a). We note that V(k) begins
to Qatten OG at high k, an alteration in qualitative
agreement with the work of Campbell. "As can be seeri

"The possibility of nonmonotonic behavior of V(k) was allorved
for."L.J. Campbell, Phys. Rev. Letters 19, 156 (1N'/).

in the Fermi-liquid regime; comparing with Eq. (31) we
see that the corrections suggested by the variational
solutions greatly improve the consistency of the BBP
theory with experiment.

Instead of determining V(k) from the experimental
D and then using this result to predict a, one could use
all the measurements of D and x to obtain a more de6ni-
tive form for V(k). This was tried by Abel ef al. ; it is
noteworthy, though, that they were unable to construct
a reasonable form for V(k) that would give, via the
formulas DH and x+ K, good quantitative 6ts to the
measured D and x for 1.3 and. Nj~ solutions. We have
carried out a similar search" for a V(k) by machine,
using both the usual formulas DH and xg K and the
variational formulas for D and ~. We 6nd that it is im-
possible to improve materially on the results of Ref. 1
with any reasonably slowly varying V(k) when using
the former set of formulas. With the variational formu-
las, however, we were able to do considerably better;
one of our best results is a power-series 6t:

V(k) = VsL1 —1.15y—4.16y'+6.21y'—2.32y'j, (33)

where y = (k/2ks)', ks ls the Fermi momentum of a 5.0%
solution, ks/k=0. 318 A—', and

in Table I, the interaction V(k) gives generally a 10%
6t to the experiments, which is within the published ex-
perimental uncertainty, and a substantial improvement
over the best 6ts one can obtain using the Hone and
Abrikosov-Khalatnikov solutions for the transport co-
eKcients. The Landau coeScients calculated from this
new V(k) are not markedly different from those calcu-
lated from I/gyp.

It is signi6cant that no physically reasonable form for
the effective interaction could be chosen to give an exact
6t to the transport data. Beyond experimental uncer-
tainty, this must be attributed to the inherent inac-
curacy of the variational solutions for the transport
coeKcients, combined with the errors entailed in the
approximation of the exact scattering amplitude by a
simple velocity- and concentration-independent eGec-
tive interaction. The relative magnitude of the velocity
and concentration dependence of the scattering ampli-
tudes should be on the order of the concentration, and
hence could produce corrections on the order of 10% in
the transport coefficients. These corrections are small,
however, compared with the improvements made by
using the variational solutions to the transport equa-
tion instead of the usual solutions.

In summary, we wish to emphasize that the generally
accepted solutions to the transport equation in the
Landau Fermi-liquid theory may contain considerable
inaccuracies, and that the present situation provides the

TanLE L Values of sT (erg/sec cm 'K) and DT' Pcm'('K)'/sec)
for 1 5 and 5.0% He' concentrations as calculated from the effec-
tive interaction V(k) in Eq. (7), an from experiment. '

AT(1.3'P&) ~T{5.0'P&) DT2(1.3j) DT2{5.0%)
Experiment 11 24 17.2XIO 6 90X10 6

Calculated 10 26 18.6&10 6 82X10 6

a See Refs. I and 3.
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6rst experimental test of these inaccuracies. Within the
context of the variational calculation, and within recog-
nized theoretical limitations, the use of an effective in-
teraction, as proposed by BBP, is consistent with recent
measurements of the thermal conductivity and spin
diffusion coeS.cients of dilute solutions of He' in He4.
At the same time, improved solutions to the transport
equation are evidently desirable in general. It is
straightforward to arrive at these within the variational
formulation by using higher Legendre polynomials
P~(k v/kv) with variable coefficients in the trial func-

tions C~,. These coeKcients should be chosen to maxi-
mize the transport coefficients. The values of the vari-
able coeScients will depend on the shape of the quasi-
particle scattering amplitudes; thus, one is in the posi-
tion of having to determine both the detailed solution
of the transport equation and the quasiparticle scatter-
ing amplitude from experiment. It is our feeling that
there is little to be gained from this calculation for the
particular case of the dilute He'-He4 solutions at the
present time, especially in view of the consistency with
experiment of the simpler calculation presented here.

. erratum

Alignment of the H2+ Molecular Ion by Selective Photodissociation. II. Exyeriments on the Radio-
Frequency Syectrum, C. B. RrcHARDsoN, K. B. JEFFERTs, AND H. G. DEHMELT LPhys. Rev. 165, 80
(1968)].In the first paragraph the third sentence should read: "Interesting small effects such as unknown
electron-proton interactions, radiative corrections, centrifugal stretching, vibrational effects, rotational
mixing of excited states, and electron slippage should be revealed. " The sentence including Eq. (1)
should read: "The proper field is derived from a potential of the form

g =$0 cos QPL (s' ——,'r')/so'] (1)

resulting from the application of a cosine emf of frequency 0 between a hyperbolic electrode of
the form r'=2s'+ro' and a pair of the form r'=2(s' —sa')." The proper expression for the well depth is
eD, =ego&a, /&20. Equation (11) should read:

3I;S,.=I S—L2/(2K —1)(2K+3)] Qg ,'I;S; (K;K;—+K;K; 8;;K') . —

Equation (12) should read:

6I.S, = 52I,S,+I S++I+S ] 54I,S,(3K ' —K'—) —(I+S +I S+) (3K,' —K')
+3(I,S +I S,) (K,K++-K+K-,) +3(I,S++ I+S,) (K,K-+K-K,)

+3I+S+K K +3I S K+K+]/(2K 1) (2K+3). —

The following paragraph was omitted: "ACKNOWLEDGMENTS: We are indebted to Philip Ekstrom
for his help with the design of the digital processing equipment, to Jacob Jonson for the glassblowing
on several ion-storage tubes, and to Klaus Zieher for proofreading parts of the manuscript. "


