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An improved nonrelativistic calculation, based on the quantum Lenard-Salescu transport equation, is
performed for the thermal and electrical conductivity of a plasma of highly degenerate, weakly coupled
electrons and nondegenerate, weakly coupled ions. Dynamic shielding in the random-phase approximation
is treated correctly, and both electron-ion (ei) and electron-electron (ee) collisions are included in the ther-
mal conductivity. The argument that ee collisions are negligible, because the Pauli exclusion principle
limits their effect to (k T/B~) less than that of ef collisions, is refuted in the case of the thermal conductivity.
For temperatures of about 10 'K and densities of 10" to 10' electrons/cc, appropriate to red-giant stellar
cores, ee collisions reduce the thermal conductivity by 2S to 50%. However, ee collisions are insignificant
in terrestrial solids. The thermal conductivity a is given by 1/a=1/a. ;+1/a„, where a„and ic,.are con-
ductivities determined by ef and ee collisions. s cc Ta/Lln (1/X;) +C„g,where h; «1 is the ion weak-coupling
parameter, and the correction C involves dynamic shielding. If X «1 is the electron weak-coupling
parameter, and y—=4kEs/kT&)1, then s„ccrc'g'i'T ', instead of the usual logarithmic form. If y«1, then
s„~

Tsa'i'/flu�(1/y)+C«j,

with the temperature dependence contrary to Fermi-liquid theory.

1. INTRODUCTION: I ENARD-SALESCU
EQUATION

HIS paper presents an improved nonrelativistic
calculation, based on the quantum Lenard-

Balescu (LB) equation, ' ' of electrical conductivity,
thermoelectric coeKcient, and especially thermal con-
ductivity of a plasma of degenerate electrons and non-
degenerate ions. The new effects discussed prove sig-
ni6cant for the high-temperature, high-density plasma
of stellar interiors, but not for metals and semiconduc-
tors at terrestrial temperatures.

Electrons and ions are each characterized by a
"plasma" or weak-coupling parameter, essentially the
ratio of average potential energy to average kinetic en-

ergy. For highly degenerate electrons with mass ns,

number density e, and Fermi energy and momentum
E~ and P|p, we defme the electron plasma parameter h

as hs=—mes/s hps,

so that )t is related to the familiar parameter r, by
P =3 '"x '"r,. The electrons are also characterized by
the degeneracy parameter n=—Es/h T.For nondegenerate
ions with mass M, charge Ze, and number density
ss;=I/Z, we analogously de6ne the plasma parameter
as

h,s= (9w)-I/sos. 1/senses/hI' —sogs/8/2

The quantum-mechanical LB equation for electrons
xs' '

c)f, Bf, Bf.
+vt' +vl' =4ws d ps' +eeet(Et+Es Et Es ){fe(y& )f&(ys )L1 s(2wh) fe(p&)j

Bt BX1 8V1

XLi——s'(2~h)'f. (ps)3—f.(pt)f.(ys) L1—k(2s h) sf.(yt') jL1—s(2~h)'f. (ys') j&+~ ' rf'Ps&'&~-

X8(Et+Es—Et'—Es'){f,(yt') f,(ps')(1—s(2wh) sf,(yt)j—f,(pt) f;(ys) L1—s (2sh)'f. (yt') j), (1.1)

where f,(x,p, f) and f;(x,p, f) are the electron and ion dis-
tribution functions, normalized to

The momenta of the two colliding particles before and
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i Pss(P/h, AE/h) )
' (1.2)

i R. Balescu, Phys. Fluids 4, 94 (1960).
~ R. Guernsey, Phys. Rev. 127, 1446 (1962).
3 R. Salescu, Statistical Mechanics of Charged I'articles (Inter-

science Publishers, Ltd. , London, 1963).
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after collision are y1, y2, y1', y~', respectively, and the
momentum transfer is P=—y1'—y1= p2—yg'. The reduced
mass has been set equal to m in the electron-ion (es)
collision term, and to —',fN in the electron-electron (ee)
collision term. Although electrons may have any degree
of degeneracy in Kq. (1.1), the ions have been assumed
nondegenerate, so that 1—s'(2s.h)sf; —& 1.

The cross section r„ for ei collisions is given by

4m'e4Z'
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while the ee collision cross section is p„= ps;,+0, , where

nz'e'

i Pss(P/h, hE/h) i
' (1.3)

0'ex =
P'(ys —yt —P)'i e(P/h, hE/h) s(i ys —pt —P i/h, (Es—Et—LIE)/h) (

are the cross sections fox direct and exchange scattering,
respectively. AE=—Ej'—E&=E&—E2' is the energy trans-
fer, and e(k,o&) is the random-phase-approximation
(RPA) dielectric function, given by

4xe'
«(k,o&)=1— P Z '

$2 a~e, j

f.& s&(y—-', hk) —f.& s&(y+-', hk)
X esp, (15)

hp& hk y/N—s +47'&

where f, ,
;&'p& are the equilibrium distribution functions.

The dielectric function is conveniently written in the
two forms

—=1+),sq—'L(q, V)=—1+)&;sq 'L'(q, U), (1.6)

where q= P/2ps is a dim—ensionless momentum transfer,
while V= hE/Per and—U= (hE/P)(M—/2kT)'" are di-
mensionless wave velocities normalized to the typical
electron and ion speeds, v p and 8;, respectively. The erst
form of ~ is appropriate when electron shielding is
dominant, the second when ion shielding dominates. I.
has real and imaginary parts I., and L,, and is a sum of
the electron contribution U') and the ion contribution
I (')

If the electrons are highly degenerate, the Sommerfeld
expansion can be used to evaluate I-&' as a series of
powers of 0. '. The lowest-order, zero-temperature
(Lindhard) result is4

1 1—(q—V)' 1+q—V
L,&'&(q V) =-+- ln

2 8q 1—q+V

1—(q+ V)' 1+q+V
ln — , (1.7)

8g 1—q
—V

L;&'(q, V) = ss4r V, V&2—
q=~[i—(q

—V)s7/gq, 1—q&V&1+q (i.g)
=0,

'
1+q&V

In the static, long-wavelength limit, L&'&(0,0)= 1, giving
Fermi-Thomas shielding. For nondegenerate ions, 1.&"

cannot in general be evaluated in closed form, but the
long-wavelength limit

Ck Xe
L'*'&(0,V) = -spar "'oZ (1.9)

x—U+ib
4 J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.

Medd. 28, 8 (1954).

has been computed numerically by Fried and Conte. '
The static limit L&'&(0,0)= ss&r represents Debye shield-
ing. L„&'&(O,V) becomes negative at U=0.9, reaches a
minimum at V=1.5, and for U&2 is approximated by
the 6rst term of an asymptotic series,

L,&'& (0,V) —& —n/3 U'= —rN/M V'. (1.10)

(b)

V'&4&s/Ma,

t&s/Mn& V'& Vp',

P 2~ P'2

(1.11a)

(1.11b)

(1.11c)

where Vp, the second zero of L„(O,V) on the real axis, is
given approximately by

Vp= (t&sZ/3M) '". (1.12)
~ 3.D. Fried and S. D. Conte, The P/usmc Dispersioe Function

(Academic Press Inc., New York, 1961).
'H. W. Wyld and D. Pines, Phys. Rev. 127, 1851 (1962).
VL. D. Landau, Zh. Eksperim, i Teor. Fiz. 30, 1058 (1956);

52, 59 (1957) LEnghsh transis. : Soviet Phys.—JETP 5, 920
(1957); 5, 101 (1957)g.

'A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys.
22, 329 (1959).

The derivation of the quantum LB equation assumes
(a) weak coupling, i.e., X, h;«1, and (b) Born approxi-
mation, i.e., ),ss«r„, where )&ss=—h/p, is the electron
thermal wavelength, r..=—e'/E, is the classical distance
of closest approach, and p. and Z. are the mean momen-
tum and kinetic energy per electron. The Born approxi-
mation is always justi6ed in a highly degenerate plasma.
The LB equation is interpreted' simply as a Boltzmann
equation for two-quasiparticle co1lisions, with the cross
section given by Born approximation for the dynanzicclly
shielded Coulomb interaction. All the many-body corre-
lations lie in the dielectric function. Since the gas of
quasiparticles is dilute and weakly interacting, the usual
comp1ications of Fermi-liquid theory, ~' multi-quasi-
particle collisions and quasiparticle interaction energy,
can be neglected.

The nature of the LB equation will be clari6ed by a
few comments on the shielding of various types of colli-
sions. Note that q~&1 in all scattering events. Only
collisions with q&&1 are signi6cantly shielded; as a result
we shall show that, to lowest order in Xs and Xrs, L(q, V)
can always be replaced by L(0,V). In se collisions, V &~1,
while in ei collisions, where hE&~2ps4&;&&kT is small be-
cause of the large ei mass ratio, one 6nds V&&1.

Shielding is qualitatively quite diGerent in each of the
three ranges of V,
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In region (a) one finds essentially static ion shielding
(which dominates static electron shielding because of
the large kinetic energy Er of the degenerate electrons).
In region (b), L„&o is negative, and in general dominates
I„&'. Consequently, the ion plasma resonance occurs,
with dlspcrslon relRtlon

o)'—to;s{1—3Us/aZ},

where &o;= (4rrg;Z'cs/M)'" is the ion plasma frequency.
Resonant scattering by exchange of a plasma oscBlation
is dominant in this regime. In region (c), where I.,"o is
negative but small {because heavy iona cannot partic-
ipate in high-frequency phenomena), electron shielding
Is dominant. Although clcctlon shielding Is gcnclaBy
dyna, mic, the electron plasma resonance occurs for V& j.,
which is of no importance in the LB equation, Static
electron shlcMIng Is a qURlltatlvcly rcRsonRMc Rpploxl"
IIlatloII fol' V%1.

Since V is small in ei collisions, the dominant shielding
is by iona (although it is necessary to include the elec
tron contribution to L;, i.e., to damping). Electron-
electron scattering occurs principally in region (c),
vrhere shielding is primarily hy electrons, but there is
also R SIQRB contrlbutloQ froI11 thc Ion plasma lcsoQRQce
in region (b).

The transport theory of stellar interiors was originally
developed by Marshak, ' Mestel, 's and Lee" (MML),
using an ordinary two-body Soltzrnann equation for ei
scattering~ vGth Born Rpproxlmatlon:, for thc sws&$84&4

Coulomb potential. In order to eliminate the long-r ange
Coulomb divergence, MML arbitrarily cut oB the po-
telltlal at the Illearl 111'tel'Ionic distance (ss'NI) .Tlleu'

result for thermal conductivity x took the form

The logarithm of the ratio of cutoG distance to the mian
electron wavelength is characteristic of quantum-
xQcchanlcal plasma tl'Rnsport cocfBCIcnts.

Spitzer "" I RndshoG '4 Rnd others subsequently
showed that when )t;&(1, the appropriate cutoff (shield-

ing} distance is the ionic Debye length D;= (kT/4rrN;
XZ'c')'Is, rather than the much smaller rr; '". With
the argument of the logarithm thus altered, thermal
conductivity takes the form

It ~ T/pln(1/)I;)+C„|.
!

Using thc Kubo relations rather than R klnctlc equa-
tion, Hubbard, " has recently done a comprehensive
study of transport theory of a degenerate electron gas,
valid for ion coupling of any strength (but assuming

' R. E. Marshak, Ann. ¹ Y. Aced. Sci. 41 49 (1941}."L.Mestel, Proc. Cambridge Phil. Soc. 4E, 331 (1950)."T.D. Lee, Astrophys. J. Ill, 625 (1950).
u R. S. Cohen, P. Routly and L. Spjtzer Phys. Rev. 80, g30

(1950).
» L. Spitser and R. Harm, Phys. Rev. 89, O'V (1953}."R. Lsndsho8, Phys Rev. 76,.904 (1949);82, 442 (1951)."W. B.Hubbard, Astrophys. J. 146, 858 |1966).

weakly coupled electrons). He has verified that the
MML theory is approximately correct for strongly
coupled ions (X;»1) and has calculated numerically the
transition to the Spitzer form as ions become weakly
coupled.

All of thcsc authors RssulTlcd static shiclding3 pI"c-

cluding calculation of the subdominant correction C„,
which depends upon dynamic effects. Ke shall calculate
C„ in this papcI.

I anger, '6 in a series of papers directed toeboard terres-
trial metals, has developed the transport theory of R de-
gcncratc electron gas sub]cct 'to scattcrlng by dllutc
impurities, including electron-electron correlations to
RH orders, at zero temperature. However, he as well as
the previous authors, neglected ee scattering as a mecha-
nism for thermal resistance, since heuristic reasoning in-

dicates that the Pauli exclusion principle drastically
restricts thc phase space fol' 88 colbslons) reducing thc
probabihty of es collisions by order rr ' (and entirely
preventing cc collisions at absolute zero temperature).
Ke shaH sce that these arguments are not entirely cor-
rect, and that under conditions prevalent in red giant
steHar cores, ee collisions can reduce therxnal conduc-

tivity by 25 to 50%. It is also of interest that the con-

tribution of ee coBisions, for suQiciently great degen-

eracy' takes Rn anomklous3 Qonlogarlthxnlc forID. Thclc
Isq h0%cvcr3 no slgQIGCRnt correction to thc clcctrlcal
conductivity due to ee colbsions, because ee coBisions
conserve electrical current.

IQ this section wc shall RntlclpRtc thc prlnclpRl rc"
suits of the paper by means of a simple analysis of the
contribution of typical coHisions to thermal resistivity

(the reciprocal of thermal conductivity). In particular,
we wish to explain (a) the unexpected significance of

cs collisions, (b) the unusual form of the ee contribution

to tllel'Inal conductlvlty {nonlogarMlmlc )l dependence

for y=—40)&&j., and proportionality to T' for y&&i, in-

stead of I ' as predicted by the Abrikosov-&&Rlatnikovs

Fermi-llquld theol'y), and (c) the negllglbly slllall con-

tllbutlon of both direct 88 scattering w'1th lalgc xnomen-

tum transfer P~pj and exchange ce scattering. We

shall see that the CGccts of the Pauli exclusion principle

are somewhat more complex in a plasma. , where inter-

actions are predominantly weak and long range, than

in a molecular gas. Throughout this section, @re usc the

static shielding form of the cross sections.
The Pauli principle requires that an electron with

momentum pr—ps can collide only with another elec-

tron who~e momenta before and; after collision, ps and

ps', both lie on the thermally "smeared-out" Fermi sur-

face, ie., ps(1-a ')&ps, ps'&pal{1+a '}. Since the

ratio of the momentum transfer I' to the thermal width

"J.S. Langer Phys. Rev. 120, 714 (1960); 124, 99/ (1961)l
124, 1003 (1961); 127, 5 (1962); 128, 110 (1962).
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(o) (b)

FIG. i. The shaded area is the thermal width of the Fermi sur-
face, of order p~n '. An electron has momenta y1 before and p1'
after collision; P is the collisional momentum transfer. (a) Type-I
collision, I'&&pgn '. (b) Type-II collision, E~& p~o. !.

pm ' of the Fermi surface is a crucial parameter, we
distinguish between type-I collisions with E)&psn and
type-II collisions with E&pzn (see Fig. 1). Figure
1(b) indicates that in a type-II collision, the Pauli
principle demands only that p2 lie in the Fermi surface
(which then implies that pt' and ps' also lie in the Fermi
surface). Consequently, a fraction of order n ' of all
possible type-II collisions are permitted by the Pauli
principle. On the other hand, for type-I collisions, the
requirements that p2 and y2' lie in the Fermi surface are
independent, so that only a fraction of order n s(P/P s) '
of all possible collisions are permitted.

In a gas of strongly interacting molecules, typical col-
lisions are type I with I' ps, so that the Pauli principle
restricts the phase space by order a '. But in a plasma,
the dominant collisions are direct scatterings with
P ps' If y((l, t.hese collisions are type II, so that the
Pauli principle restricts the phase space by only a factor
e '. In the absence of degeneracy, stronger collisions,
with I' ps, would contribute to the subdominant term
/smaller by order 1/ln(1/X) j. Since the probability of
such type-I collisions is reduced by order 0. ', one 6nds
that only P&psn ' contributes to the subdominant
term, to lowest order in 0.-', i.e., the upper limit of inte-
grations over I' effectively lies at psn ', rather than at
p p.

For y))1, the dominant collisions are type I, so that
the exclusion principle reduces the collision probability
by a factor n 9 '. Since the probabiIity of stronger col-
lisions with P ps is further reduced by order X, it
turns out that the contribution of these collisions is
smaller by order Xs, rather than merely 1/ln(1/X), and
is again negligible.

Note that the exclusion principle imposes no restric-
tions on ei collisions, since energy transfer is much less
than kT.

The signi6cance of ee collisions in thermal resistance
can be understood as follows. Collisions can reduce heat
flow in either of two ways: (1) deflection of colliding
electrons, or (2) transfer of energy from the faster to the
slower particle. In the case of ei collisions in a plasma,
both mechanisms are rather ineBective. Since the domi-
nant scattering is small angle, elastic deQection of elec-
trons occurs slowIy, while the large ie mass ratio essen-

tially prevents energy transfer. Similarly, in a tson-

degeeerate plasma, ee scattering is predominantly small
angle, and thus also b,E«kT; again, neither mechanism
is eKcient. It turns out that ee and ei collisions are of
comparable importance in a nondegenerate plasma.

In the case of ee collisions in a sufhciently degenerate
plasma, hE is small compared. to the electron kinetic
energy Ep, but is typically of order kT. Since the dis-
tribution function varies on the scale of kT, energy re-
distribution by ee collisions becomes an important
mechanism for thermal resistance over a signi6cant
range of high temperatures and densities. For even
greater degeneracy, the Pauli principle restrictions on
phase space choke o6 ee collisions.

Ke now proceed to calculate, in several typical colli-
sions, the component bQ' of energy flux change 5(}
parallel to VT. We anticipate Sec. 3 by noting that in
the presence of heat Qux with no particle Aux, to lowest
order in n ' the electron distribution function takes the
form

f.(x,p, i)=2(2~&) sLf (p') —f (p')/+(p')p
rVTA(ps)/tNT j,

p

t P /2p,t-——
Rb

Pf p

(0)

Fro. 2. Two equally probable scattering events. The tempera-
ture gradient is vertical ia each case. (a) Eiastic scattering of an
electron o8 a stationary ion. Momenta before and after colision
are yIO and p1o', respectively, and P is the momentum transfer.
Pits —PJo'=Pz(i+a ') ~. (b) Elastic scattering of a hole og an ion.
The momentum transfer I' is the same, but the momenta of the
hole before and after collision are pqy= p1f,'= py(1 —n ~)~'~.

(b)

where f and f+ are the Fermi functions de6ned in Eqs.
(3.2), and A(Ps) is an even function of P' —Pss. Thus,
for directions where p VT&0, the anisotropic part of
the distribution consists of equal numbers of particles,
with p'= pss+(op) s, and holes, with p'= ps s—(bp) s& or
vice versa if y V'T&0.

The dynamics of ei collisions is quite simple, since the
electron can be regarded as scattering elastically o6
a axed force center. In Fig. 2, two typical, equally
probable scattering events are shown, one involving an
electron with momentum pq, =ps(1+n ')'", the other
a hole with momentum p» ——ps (1—n ') '".P, typically
of order ),p&, is the same in each case.

The loss in parallel energy Qux resulting from the elec-
tron scattering of Fig. 2(a) is AQ, '= —&spt, /4ms, while
in the hole scattering of Fig. 2(b), AQs'=+Espts/4ms.



MARTIN LAMPE

known that ei collision integrals can be put in the form

dI' E3
I„~ ~in(1/Xg) .

(P2+pp2$. 2)2
(2.4)

Pi+6= P1+ Pa

Fxo. 3. An electron-electron collision. The moxnenta of the bvo
electrons before coBision are y» and yq. The plane containing the
momenta after collision, y1' and y2', has been rotated about y&+ye
Qntil it coHlcides vHth the plane of yi and yQ.

Thus the net energy Bux change in the two collisions is

AQ, '= P2(p-l; p12)/42/2~ (P2/—2pI/2)a 'I/FE2. (2.1)

Wc liow consider 88 colllslons (sce Flg. 3).Till'oughollt
this section, we assume for simplicity that y~, y2, y~',

and y2' are all coplanar and that yl+y2=yl'+y2' 18

perpesChcNf/Ir to VT.The component u of yl perpendicu-
lar 'to yl+y2 18 taken 'to bc 'tllc same 111 each 88 colllsloll

considered in this section, as is yl+y2. 30th are of order

p/. In the regime y))1, three typical ee collisions are
defined by the following values of pl, p2, pl', »d p2"

Pl —Py(1+a—1)1/2 P2
—Pp(1 a—1)l/2

plo p2o p» (2 2R)

plb p25 pEy plb pE(1 a )
p22/ ——p/ (1+a ')'"; (2.2b)

pl =p~(1+ ')'" p2.=p~(1—a ')'"
Pl.'=Ps(1+2a ')'", P2.'=P/(1 —2a-')'". (2.2c)

Each of the collisions L(2.2R) Rnd (2.2b)j results ln

—d Q..'=a '(2l/2/2)(p/ 2/2~) order a-'I/2E2. (2.3)

Comparison with Eq. (2.1) reveals that AQ. ,' is larger
than AQ„.' by a factor (Pjpp) ', typically of order X '.
The large value of LQ..' is due to the signiacant energy
transfer DE~AT in collisions between highly degenerate
clcctx'ons.

Note that the collision (2.2c) would cancel the effect
of collls1011 (2.2R) lf tllc two cvcll'ts wclc cqllally pl'ob-

. Rblc. Howevcl', (2.2c) 18 forblddcI1 by tllc Pallll pllIlclplc,
since the 6nal momenta are far from the Fermi surface.

Note also that, in collisions (2.2a) and (2.2b), the en-

ergy flux Q is ahnost entirely perpendicular to V2', and

the changes in both the perpendicular component of Q
and the absolute value iQ( are very small, of order
e-'epEg. However, thermal resistance is due to the
much larger parallel component B,Q', of order a 'n/ EI .
This situation has not been clearly understood in the

PRst.
%c can now use these considerations to estimate the

relative xllagnitudcs of tlm contxibutlons to thermal x'c-

slstlvlty froH1 8$ and 88 coHlslons~ for ppp1. It Is %'cll

Since the contribution of a typical t,e collision to thermal
resistivity is greater than that of an ei collision with the
same value of P, by a factor of order p/2/P2, while

phase-spRcc consIdcx'RtIons Alake thc N collIsIon px'oba-

bility greater by order a2P/p/, the analogous ee form is"

PJ. QjP
I..~a 2p/2 0. 9 '

(P2+p 2g2) 2

(2.~)
a92ln(1/) )

The physical situation is quite diferent if y&&j.. The
dominant collisions with P PI ) are then type II, with
AZ~XEpggkT. Two typical 88 coHisions, RnRlogoUs to
(2.2a) and (2.2c), are defined by

pl —pg(1+a—1)1/2
p2

—p p(1 a—1)1/2

(2.6a)
pl '=pl (1—).)'/2 p2 '=p2 (1+X)'/2

ply p (i+a—1)l/2 p 2 p (1 a—1)1/2
(2.6b)

p12'= p12(1+&)'/2, p22'=p22(1 —&)'/2.

Because of Pauli-principle phase-space xestrIctlons, thc
probability xq of collision (2.6b) is slightly smaller than
the probability 2/ of collision (2.6a), i.e., (2r,—m2)/

aP/p/ t'whereas (2.2c), analogous to (2.6b) for

y))1, is essentially forbidden by the Pauli principle).
In colhsion (2.6a), EQ,' —(P/PI )I/I Er, while —EQq'

for (2.6b) differs from AQ,
' only by order P/p//. How-

ever, taking account of the two slightly di6erent proba-
bilities, we 6nd a net

AQ„' —(P/p/) 2aI/I&EI (2 7)

fol' tllc 'two colllslolls. C011lpRllllg Eqs. (2.1) Rlld (2.1),
we see that AQ„' is larger than /ItQ„/ by order a'. The
exclusion principle reduces the phase space for type-LI
88 colllslons by ordel 0. .ThUS, by comparison %'ith Kq. .

(2 4) 18

lnX;
a in(1/y) aI„, (2.8)

( p )2)2 lny

%'here we hRvc noted, In accordance with prevIous dIS

cussion, that type-I collisions with P))p//a 'should not
be included in the integral. Note that the contribution
of t!e collisions is larger than that of ei collisions by order

0;, directly contradicting Ulc Usual ovcrslmplidcd Rrgu-

Dlcnt from the PaulI prlncIplc.

'g Static shielding of ei collisions is predominantly by iong, but
only electrons can statically shield ga colbsions. Therefore X; ap-'

peaxs in I&,, vrhile X appears in I„.



f (p2; x, t) = (1+expnp /2222 —tl(x, t))/
kT(x t)7) ' (3 2a)

f=1 f (3.2b)

af /8(-p2/2ppl) = f —f+/-kT,

This discussion of the case y&&i&&0, can easily be
modided to apply to nondegenerate electrons, the only
signilcant change being that factors of n go over to order
unity. The contributions of ee and ei collisions are then
seen to be of the same order.

Finally we wish to discuss exchange ee scRtterlng.
The factor (I'2+Xgp. 2) 2 in the direct scattering cross
section is replaced by

where p is the chemical potential.
%e proceed in standard fashion to linearize in C and

separate terms in C linear in VT and E', where —sE'
e—E—VI'—/22 is the total force acting on an electron,

due to electric field E and pressure gradient VI'. We
6nd that

(I22+$2p 2)-1L(y y P)2+s(2p 27-1

na, (P2+) 2P 2)-lp -2

since (y2 —yl —P) ' is generally order p,2 when I' is small.
Thus, in the nondegenerate case, 4(x,p, t) = (p/pl) VTA(p2)/T

+(y.eE'/plkT)D(p2), (3.3)
dI' P I„

O(1) ~ (2 9) where A(p2) and D(p2) satisfy the linear integral equa-
, l-. (I +~ p. ) l (1/~)

However, when electrons are degenerate with y&&i, the
upper limit of integration is lowered by phase-space
considerations, so that

f f+&D 2/-2~ (5/3)&—.7/kT) y=&(PA), (3.4)

f-f+y= I(pD), (3.5)

and the collision integrals I, I„,and I„.are de6ned by

lez~ + ~n '~, (2.10)
Pp2(I'2+ll2P p 2) n' in(l/y)

&(pA)
—=&-(pA)+&-(pA), (3.6a)

which is thus negligible. Finally, for Aegenerate elec- 1 (pA) ges „s(g h)='fAsps A'pr'e„
trons with y&&i,

Xb(&1+&2 R' &2—')fl f—2 fl'+f2'+
n 2)(, ' X2I.„(2.11)

p2+ g2p 2

which is again negligible. Therefore, exchange scattering
is always insignificant in a highly degenerate electron
gas, because phase-space considerations suppress strong
collisions with I' p p.

ln this section we review the Uhlenbeck-Uehling-
Chapman-Enskog solution' " of the quantum statis-
tical Soltzmann equation, establishing notation and in-
troducing approximations based on the neglect of higher
orders in (pp2/M)'".

Since transport by ions is negligible compared with
the light, highly degenerate electrons, ions may be as-
sumed to be in local equilibrium, i.e.,

f (x y t) =22 (2grÃkT) 2)2f'(p' x t)

where f' is the local Boltzmann distribution:

f'(p', x,t) = expL —p2/2MkT(x, t)7.
The electrons are assumed to be close to local Fermi

equilibrium

f,(x,p,t)=2(2 A)-'Lf-(p'; x,t) f f+C(x,y—,t)7-, (3.1)
'9 S. Chapman and T. G. Covrling, The Ma/hemakcal Theory of

Eol-Uniform Gases {Cambridge University Press, London, 1961)."E. A. Ueh1ing and G. E. UhIenbeck, Phys. Rev. 43, 552
(1933);E. A. Uehling, ibid. 46, 917 (1934).

XLylAl+p2A2 —yl'Al —p2 A2 7, (3.6b)

J=s2S11'E'+eS12'"t7T/T, (3.8a)

Q= —eS21'F—S22'VT/T —(5/3)(J/e)Z, . (3.8b)

The S;; and 5; are related by

~11 ~11

812=S12'+(5/3)8811',
S22 S22 + (10/3)ES12 +L(5/3)@ 7 Sll ~

By the Onsager relation, 5~2——82' and SJ~'= S~~'. Elec-
trical conductivity (at constant temperature) is
o=e'5», while thermal conductivity ~, de6ned by

I.;(pA) n;(g yghT) asses=—'f A'p A'P

X&%1+~2—R' —~2')fl fl'+f2'

XLylA1 —pl'A 1'7. (3.6c)

The transport coeScients 5;; are often de6ned by

J=eSllfeE+TV(tA/T)7+sS12VT/T, (3.7a)

Q = S21/eE+ TV(tg/T)—7—S22V T/T, (3.7b)

where J and Q are electrical and thermal current, re-
spectively. However, we shall find. it more convenient
to use the alternative deanition
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TABLE I. The subdominant correction C„ to the electron-ion
collision integral, as a function of aZ and A/Z. The dependence on
A/Z is seen to be very slight. H shielding is assumed static,

A/Z=1

0;346
0.222
0.1M'

0.0853
0.0662
0.0551
0.0497
0.0360
0.0280
0.0250
0.0232
0.0221

0.346
0.221
0.136
0.0845
0,0653
0.0552
0.0489
0.0353
0.0274
0.0244
0.022 "tt'

0.0216

df(P2)=Q aP (p')
0

Q= —)1V'T with 7=0, is

(511522 ~12 )/T~ll (511~22 512 )/T511 (3 9)

The primed transport coeKcients have the advantage
that convective heat Qux —(5/3)EJ/s is separated
out; consequently, S~~' vanishes at high degeneracy,
while S~~ does not.

De6ning the bracket relations

{X(y)Y(y))={X(p)»(p))-+{X(y),Y(y))- (3.1O )

{X(p),Y(y) },.(.;)= fY(y),X(p))„(„)

2(2 d) m—= fd pr'(-'. ;.)(r').(.8..1. 0b),

one can shove that

511'——12 fyD, yD)/kT, (3.11)

512'=-2,{yjl,yD}, (3.12)

1(= ark' {yA,yA) —{yA,yD}2/ fyD, yD) j. (3.13)

The equations for A and D are solved by polynomial
expansion. Let

where P; (p') is a polynomial of order j in p', and aj and
(t; are unknown coeKcients. Equations (3.4) and (3.5)
then lead to the following equations for the coefBcients
cg and l~.

g (rj(rjk=rrk& Z (tj(rjk=t)k'
j'=0

(3.17)

Approximate solutions are found by truncating these
equations:

Z (rp(rjk=rrkp Z (Ej(rjk= hk.

If the polynomials I'; are chosen properly, one expects
the solutions ay&"', dI, ~") of the truncated equations to
converge quickly to the exact a~ and d~ as e —+ ~, This
truncation procedure is also shown by Uhlenbeck and
Uehling20 to be the result of a variational principle.

In the case of Boltzmann statistics, the Sonine poly-
nomials used by Chapman and Cowling'9 are most con-
venient, since they have both suitable orthogonality
relations and a useful generating function. The subse-

quent algebra is then simpli6ed by the fact that BI,=O
fox' 0/0 and 0!}s=0 fox' kj 1. Fox' Fex'Hli statistics
Sonine polynomials are no longer appropriate, but we

can ensure that 5~=0 for &&0 and O,g,
——0 for k&1, by

de6ning the I'I, such that each I'I„k~& j., is orthogonal
to Ps—=1, and each Pk, k~&2, is orthogonal to PP2/2rl
—(5/3)E, j/kT, whe~e two functions X(p') and F(ps)
are orthogonal if

&'pf (P ')f'(p')p'&(p')1'(p')=o.

To complete the de6nition of the polynomials, we re-

quire that for j&k~&2, I'; be orthogonal to I'y. H we

define

t= (Ps/2pps Er )/—kT )P2/—2rps (S/3—)E.7/kT, —

and use the Sommerfeld expansion to evaluate the
orthogonality integrals for high electron degeneracy, we

then find, to lowest order" in 0.-',

D(P') =Z ~ »(P'), .

ca= (pd, pre) =2(2 d) 'm '(d—r) 'fd'pp'f f+

X )ps/2222 —(5/3)E.)Pk(ps), (3.14)

4—= fpD, yPk)=2(22rk) spps '

I"j,=t,
P2 ——P—~~+',

Ps=t' (7/5)rrst p—
() =82r(22rh) em kTpss

dr() =42rs(2rrir) sr)2 'kTP psn ',
rrr ——(8/3)2r 2(2rrk)-srps —'k TPps.

(3.19)

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

X ~' ' +P~ ', 3.15 Solving Eq. (3.18), we find, as in Chapman and

Cowling, 22 the following determinantal expressions for

(rjk= Gjkdi+(rjked= {pPjppPk) p

o k-=fyPj, yPk) *,

~»-= {pPp;pP.)-,

(3.16a)

(3.16h)

(3.16c)

~~ Small corrections of order a ~ in these quantities appear in the
transport codBcients only in order n ~.

"S.Chapman and T. G. Coddling, The 3I/Aherrregca/ Theory of
Non VNiforppd Gases (Cambridg-e Un)versity Press, London, 1961),
Chap. 8.
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goQ o ~ yQ 0 0

O.oo.g0 ~ 0 {}
x= ~~A (3.25)

0

)ofay ~ yo 0

&o

the e-polynomial approximation to the transport
coeS.cients:

no

0 Og

~ 0

The Lorentzian approximation neglects terms of order
t) E /kT, which is of order (m/M)'" when both elec-
trons and ions are nondegenerate. For degenerate elec-
trons, l2E /IST~pp/p;)6(m/M)')2, but AE /kT is
still smaQ as long as ions are nondegenerate.

The Lorentzian approximation assumes much less
than the complete Lorentz model. %e do not neglect
either ee collisions or energy dependence in the cross
section (i.e., dynamic shielding). Since Ao);/tiE

X;&&1,dynamic effects, particularly resonant exchange
of an ion plasma oscillation during ei scattering, con-
tribute signihcantly to the subdominant term of the
expansion in X;. -

The Lorentzian approximation not only facilitates
the calculation of I„,but also simpli6es the structure of
the Chapman-Knskog solution for highly degenerate
electrons. The Lorentzian expression (3.28) will be
shown in Sec. 4 to be of the form constX(f f+A
+ordern '). Since Es is orthogonal to Po for k&~ 1, this
indicates that aos„ is order n ' Mo.reover, l„(pES)
=aol,„——0 by momentum conservation. Thus, to lowest
order" in n ', aoI, may be set equal to zero. Equations
(3.26) and (3.27) then reduce exactly to

fo0 ~ ~ s0 0
{PT)-1

0

000g0 0 0
)512

la' I

(3.27)

@ll

82g

o

~In

We now adopt part of the Lorentz model to obtain
a Lorentzian approximation for the ei collision integral.
Since M»m, it follows that p,&&p; and. 2)&&8;, so that
the maximum energy transfer in typical ei collisions is
of order

~E,=2p e;=6kT(p,/p;)«I T.
The functions fo, f, f+, A, and D all vary with energy
on the scale of kT. Thus ere approximate E&' by Ej in
f,'+, Ai', and D,', reducing Kq. (3.6c) for I„.to the
simplided form

K~1~ =pa12/a„= (64/27)~ (2~&)-
Xm-SJSSTSP po/a, i, (3 31a).

K l21 —Kill(1 —ai22/alia22) (3.31b)

K =K (alia22a88 . alla28 )/{a11a22ass+2a12a2sa81

alla28 a22aol aSSai'2 ) y (3 31c)

for truncation at one, tvro, or three polynomials,
respectively.

All of the physics Hes in the calculation of e;;. Equa-
tions (3.16) for a;; are conveniently rewritten as

tt ;; tt (2 tt) tttt 'ttyy„f tt. t=yp;(t) )(y-y,)-. ().32)

Ri'=x(&T) 't)o'/aoo=(64/3)yr'(22rt8)-

Xm-SkTPr8/aoo, (3.29)

S12'——xsb(KSS/aoo-— (64/3)yr4(2wA)-8

Xm 'kSTspj '/aoo (3 30)

i.e., electrical conductivity and. thermoelectric coe%-
cient, according to the Lorentzian approximation at
great degeneracy, are given exactly by the 6rst poly-
nomial and are completely independent of ee collisions.

The expression (3.25) for K reduces to

I.;(yA) = I ttt '(2ttytttT) 't'—f;ft+-tttf dtyt ft' 4. ELECTRON-ION COLLISIONS

In this section, we calculate I„({ypA) and afo„, given
de@ p~ . g, g g, g, g,~ g,~ 328 by Eqs. 3.28 and 3.32 . %e note that airst approxi-

mation is easily obtained by using the static dielectric
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Using Eqs. (4.5), (332), (3.19), (3.20),and (3.21), onc (3 3«) and (4 8)
has p/'k'T

„„.P) =~~~
t/Pe'ZDn(Z'/'/);) —C.;j

(4.13)
aoy a(——g„32——I('(2I(h) 'N-de'Z'hT

XDn(Z'"/l() —C,I] (4.7)

ala„——(4608/1 75)s'(28.A) 'I;e4Z'h T
XLln(ZI/'/~ )—C„j. (4.9)

The logarithm terms in Eqs. (4.11)-(4.13) have been
given by Hubbard. '~ However, since his work is limited

all.;=(32/3) yr'(2y) h}-'I;e'Z'hT to static shieMing, he could not correctly calculate C„..
X t'ln(ZI/3/X )—C j (4.8) Inclusion of dynamic shielding effects reduces C by

0.2 to 0.5, thus reducing the conductivities by about 10
to 30%%uo.

Note also that, since P; is orthogonal to P/„

ay.;=0 for j/k. (4.10)

Accord1ng to Eqs. (3.29) (3.30) Rlld (4.I) llslllg
tt;=I/Z, we have

ppe
~1X—

4~ mme4ZDn(ZI/I/X;) —C.;j
yr PI (hT)'

4 Ise'Zt'ln(Z'/'/X;) —C.,j

(4.11)

(4.12}

RIll the one-po1ynoHQal result for therIQal conductivity,
including ei but not ee collisions, is, according to Eqs.

In order to calculate the collision integral I„ofEq.
(3.6b), wc shall tl'Rllsfol'Ill to morc suitable val'lables of
integration, energies E~', E~', and E~, normalized mo-
Illclltlllri tI'Rllsfcl' q, slid angle 8 bctwccll pl Rnd pl+pl
(see Fig. 3).

Since pl+p& ——pl'+pl', the bases of the two triangles
Pl, P2, (PI+PI) Rlld Pl, Pg y (Pl +PI ) colncldc. Let ((y bc
the angle between the planes of the two triangles.
Figure 3 shows the plane of yg', y2' rotated by angle q
about (pl+pl), so that ail the vectors are coplanar. In
a highly degenerate gas, all four p's are close to p), thus
the vector h de6ned in Fig. 3 is a small quantity of order
p/pa y whose colllpollcnts h„slid hp Rrc of orders p/pG

Rnd p/pc p I'cspcctlvcly.
It can be shown exactly that

I..( d)=1y6~(2~6) yp(pi/pd)f dpfd dy'.,'dE, ' .. /;/;/, '+/, '+$(p, ' ')-'I'+(p, ' ') 'I—']-—
X{pPA (%)+L{pP—It')"'(pi'—I')'"—I'jA(EI) —p pl()+sspls —N(N+h, )(1—cos() )—sh'jA (EI')

+LN(N+h, ) cose -(pl' —I')"'(ps'-I')'"+h, (pl'-I')"'jA(EI') f, (5.1)

where I=—Pl sin8 (see Fig. 3),

PIPS PIQ
hg=-

(p 2 Nm)l. /2+(p S Nl)1/l

h, = —I+fN' —h.'—2(ply —I')"'h,

A=PI(EI) =t. Equation (5.1) then becomes

(6.2) P, (y&) = 16m(y~y) yp'e'(6T)4(pdy, 4)f-dx dy

Xf (t)f (x+y t)-f+(x)-f+(y)M—(x,y,t), (5.7a)

and the monmntum transfer is given by

E'= 2N(N+h, )(1—cose))+h'. {5.4)

M(x,y, t) = (t x) dq'— —
8HL

d8 sin'8(sin'8 —q")-"'

g =slQH sing p y (5 6)

insert the cross section 0'&8 for direct 88 scattering, Eqs.
(1.3) and (1.6), and specialize to the irst polynomial,

We drop higher order in a ', i.e., we set pl, pl, pl'
and p&' all equal to p), and I=p/ sin8. We use the di-
mensionless variables

t= (EI—F.&)/hT, *=—(EI'—E,)/hT, —
(5.5)y= (El" EI )/hT, — —

X tq'+&'1(qy&) ( '+(~-y) dq'q'8 d8 sin8
6 Sm g

X (sin'8 —q")-'"
f q'+X'L(q, V) f-'. (5.7b)

The integrals over x and y have been aBowed to run
from —~ to ~; this introduces an error only of
order 8 ~.

According to Eqs. (5.4) and (5.6),

q'= q'2(i+h, /PIp sin8)+h'/4P/p'.
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where

e/4a

y&&s,

~ (2/15)(4 /s)r, q«s.

dq(1 —s'/16a'q') (q'+X') '

(5.16a)

(5.16b)

(5.16c)

Since thc ionic paI't I; ' of I; is DcgligB)lc IQ J, it is
evident that if we use the approximation (1.10), L(V)
is independent of a. Thus J, depends primarily on y,
slightly on A/Z (through I.„t"),but not on e. We again
consider 6rst the two limiting cases y« i and yp+j. ,
@&here analytic methods are applicable.

For y&&1, the physical situation is much like that of
a nondegenerate plasma. We break up the integration
over s in Eq. (5.21) into the two ranges s'& y, where we
use (5.18), and s'&y, where

J.,-=(2/15)Dn(1/q)+C. ,), q&&1

C..—= (23/15) —(15/8) d V Vr(1—V2)

I
~'+y'V'L,

l
'=r '(1+order y).

The two different limiting forms (5.16b) and (5.16c)
reflect the fact I discussed in Sec. 2, and in connection Neglecting higher order in y, Eq. (5.21) then becomes
with Eq. (5.8)) that when y&)i the dominant collisions
are type I, vrith q&X, but when y«j. they are type II
wj.th g'+ 4$G

Thc integral

J,t,,~n-'/15'', y&)1; (5.19)

neglecting order y, wc 6nd

J.s,t,=(2/15) I ln(1/y)+31/30j, y(&1. (5.20)

For the complete range of y, J,t t has been calculated
numerically and tabulated in Table G. %e see that
(5.20) is an excellent approximation when y(1, but
that (5.19) is quantitatively accurate only for very large
values of y.

Returning to the evaluation of J with the correct dy-
namic shielding, we shall distinguish between the non-
resonant region V& Vo, vrhere there is no ion plasma
oscillation, and the resonant region V~& Vo, by letting

J=J...+J~o,

)& (tan—'(y/s)+3(s/y)'f tan '(y/s)-y/sg} (5.17)

can be performed analytically in each of the two limits
y&)1 and y(&1, using (5.16b) and (5.16c), and for
s2 ~& 7&&i, using the approximation

e'(e' —1) '=s '(1+order~ts'), s(1. (5.18)

Neglecting order y-', vrc 6nd

XDn(L, '+I.P)+2(L,/1.;) cot '(L„/1.~)j= 1.30. (5.23)

EGects of dynamic shielding 6rst appear in the sub-
dominant term C„,which di6'ers slightly from the static
shielding value 31/30. To understand this, note that for
y((1, Eqs. (5.21c) and (5.21d) are roughly of the form

Jn, ~ ds s'Is'+y'l. l-' dq q'

so that dynamic-shielding effects appear only in the
argument of a logarithm. This form is typical for plasma
colbsion integrals, except for the small upper limit 0, '
on q, due to the exclusion principle (see Sec. 2).

When y&&1, similar manipulations indicate that the
static shielding result, Eq. (5.19), is correct'4 to order
y ', because the exclusion principle essentially prevents
energy transfer (i.e., V((1 is the dominant range of
integration). A crude mathematical form of J„„analo-
gous to Eq. (5.24), ls

(5.25)

In the intermediate region y I, J„,takes roughly the
forIQ

J„,= dV B, (5.21b)
ds s.Ir'+) tL, I-'-(X II.I).-a

(5.21c) where 0&I&3.S&nce L appears as a multIphcat~ve fac-
tor rather than in the argument of a logarithm,
dynamic-electron-shielding CGects are not negligible and
cannot be separated out. It is therefore necessary to

H —=V'(1—V') ds s's'(e' —1)-'

s~ ~ t'/~I. V ~. 5.21&&I +v ( )I ( d) '4 Small, nonresonant e6'ects of i' dynamic shielding occur for
egl n Wh~ h turns values of y (gp to $00) ne~er alter the thermal conductivity by

V—Vo. These effects increase vrith y, but for physically signiacant

out to be far more important. more than about l%%uo.
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Tmx,z II. The nonresonant ee collision integral, as a function of
y. The exact integral J is given for 2/8=1, 2. J,~q is the value
obtained with the approximation of static shielding. J„„pis the
appropriate asymptotic ex ression for J:for y) 1, J ~=v5/
13v3; for p ~&1, J~,mp

——(2 13)I ln(1h)+ 1.3Oj.
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Numerical results for this integral are given in Table III,
as a function of oZ, A/Z, for y=0. Since y'V'~ L, ~(&1,
the dependence of (5.26) on y is negligible (less than 3%
for y~& 50).

The following approximations permit qualitative
analytic evaluation of (5.26). The asymptotic forms

(1.10) and (1.12), and the approximation (5.18), are
employed. The integration is restricted to the region of
weakly damped ion plasma waves, very roughly dered
by

4'„/eA & V'(m~Z /BA,

where m,~ is the ratio of electron to proton mass. In this
region L,/L, (&—1, so that cot '(L„/L;)—s. We then
6nd

J, =-s, ttr, o(Z/A)Lln( —,',nZ) —1j. (5.26b)

FIG. 4. The reduction in thermal conductivity due to ee colli-
sions is given by Sz=s/r. ;. Curves of spec—i6ed values of Sr are
plotted in the temperature-density plane for (a) hydrogen and (b)
helium plasmas. The dashed portions of the curves, where the ex-
treme degeneracy assumption is suspect, are probably not physi-
cally realistic. It is believed that a correct treatment of partial de-
generacy will show that by always decreases with temperature and
increases with density.

~o

Jres=
2 9

dV Vs(1 Vs)~sYsL eyv)Ly)r/s

perform the integrations numerically. The numerical

results are given in Table II. In this calculation, the
exact expression for Lt'&(0, Y) has been used, but L;tr'

has been neglected and the asymptotic forms (1.10)
and (1.12) have been used. for L, to and Vs. Inaccuracies
due to these approximations in ion shielding are very
small.

We now consider the integral J...over the range of V
where scattering ls do1Mnated by the Ion plasma osc11"

lation. The contribution to the double integral (5.21c)
and (5.21d) from this resonance at s'= —y'V'L„ is"

This order-of-magnitude estimate of J, is indepen-
dent of y and is much smaller than J, (because
tN, 1s/1836), for y up to 50. At larger values of y,
the assumptions of nondegenerate and weakly coupled
ions begin to fail.

The one-polynomial thermal conductivity 1(~'&, in-

cluding both ei and ee collisions, is given by

1/ai'& = (1/a i'l)+

(108rle'/s'peak'2')

X(J,+J...), (5.27)

1000
500
200
100
50
20
10

2.07X10 4

1.55 X10-4
9.09X10 5

4.95X10 II

1.86X10--~

1.91X10 6

3.56X10 7

1.02X10 4

7.62X10 6

4.43X10-5
2.36X10 ~

8,32X10 9

7 04X10
1.27X10 7

: TAaxz III. The resonant part of the ee collision integral, J~. is
given as a function of nZ, for A/Z = 1, 2, and y =0.The dependence
of Jres on p 1s negbglble.

X (e&v ~ ~~ ~'"—1)—'(L /L ) cot—'(L /L )

"The contribution from nonresonant ee scattering in

(5.26.)

the region

0 ~& V& Vo is quite negligible. Making the approximations used to
derive Eq. (5.28),we may estimate this contribution as (3'"/22)
X(rs,~Z/A)'~'Lsr ln(3A)/tN, +y') —rrsj.
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gt21= pl, &l

~ ~"= ~ ~'~ (1—a»'/a»a33) .
(5.28)

The quantities in Eq. (5.28) that have not already been
calculated are a~3., and a33...These calculations straight-

where ~„, J „and J„, are given by Eqs. (4.13) and
(5.21), and numerical values are given in Tables I—III.
The quantity br z/——~„ indicates the relative reduction
in thermal conductivity due to inclusion of ee collisions.
In Fig. 4, values of 8& are plotted for hydrogen and
helium plasmas, over the region of the temperature-
density plane where electrons are degnerate and non-
relativistic and ions are weakly coupled. In general, ee

collisions reduce ~ by about 25 to 50% over a wide range
of temperatures of about 10' K and densities up to 10'
electrons/cm', appropriate to red-giant stellar cores.
The dashed portions of the curves, where the assump-
tion of extreme degeneracy may be suspect, are not be-
lieved to be physically realistic. A complete study of the
partially degenerate regime, now in progress, is expected
to show that Bz always decreases with temperature and
increases with density.

It is well known" that for a nondegenerate plasma,
the one-polynomial approximation to transport coeK-
cients is incorrect by a factor of order 2, but that the
two-polynomial results are accurate to order 1%. In
the case of a highly degenerate electron gas, using the
Lorentzian approximation for ei collisions, we have seen
that a;;.;=0 for i&j,to lowest order" in 0. ', and that
consequently one polynomial gives exact results for
S~~' and 5~2', to lowest order in n 2. Furthermore,
a,,„=0 to lowest order" in n ', if i+j is odd, since
I„(yP;) is odd or even in t according to the parity ofj.
Thus, to lowest order in o, ', the two- and three-
polynomial expressions for thermal conductivity, Eqs.
(3.31b) and (3.31c), reduce to

forwardly follow that of a»„(quite laboriously in the
case of aq3„). The results are

aqs ——2(27rh) 's'm'(kT)'e'ps ' dV V'(1—V')

ds s'(s' —-'m')e'(e' —1) '

X
~

$'yy'V'L
~

'(5—.29)

1

ass..=ssvr'(2mh) 'm'(hT)'e4Pp ~ dV V'

X ds ssee(ee 1) '~ s'+y'V'L)

X$( 31 s+5m's'+52m. 4)

—V'(25s4 —5s's' —12' 4)j. (5.30)

It is not surprising that, upon evaluating these ex-
pressions numerically or, in limiting cases, analytically,
we 6nd the correction (5.28) to be less than 1%. The
one-polynomial approximation is extremely accurate for
degenerate electrons because the usual two-polynomial
correction vanishes to lowest order in u '.
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