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An improved nonrelativistic calculation, based on the quantum Lenard-Balescu transport equation, is
performed for the thermal and electrical conductivity of a plasma of highly degenerate, weakly coupled
electrons and nondegenerate, weakly coupled ions. Dynamic shielding in the random-phase approximation
is treated correctly, and both electron-ion (ez) and electron-electron (ee) collisions are included in the ther-
mal conductivity. The argument that ee collisions are negligible, because the Pauli exclusion principle
limits their effect to (¢7/Er)?less than that of ¢z collisions, is refuted in the case of the thermal conductivity.
For temperatures of about 108°K and densities of 102 to 10% electrons/cc, appropriate to red-giant stellar
cores, ee collisions reduce the thermal conductivity by 25 to 509%. However, ee collisions are insignificant
in terrestrial solids. The thermal conductivity « is given by 1/k=1/ke-+1/kes, Where k.; and .. are con-
ductivities determined by ez and ee collisions. ke o< T7/[In (1/A;) 4-Ce: ], where A\2<1 is the ion weak-coupling
parameter, and the correction C.; involves dynamic shielding. If N2« is the electron weak-coupling
parameter, and y=4\Er/kT>>1, then k., «Nn?/8T-1, instead of the usual logarithmic form. If y<1, then

Kkeo < T212/8/[In(1/7) +Co0], with the temperature dependence contrary to Fermi-liquid theory.

1. INTRODUCTION : LENARD-BALESCU
EQUATION

HIS paper presents an improved nonrelativistic
calculation, based on the quantum Lenard-
Balescu (LB) equation,™™3 of electrical conductivity,
thermoelectric coefficient, and especially thermal con-
ductivity of a plasma of degenerate electrons and non-
degenerate ions. The new effects discussed prove sig-
nificant for the high-temperature, high-density plasma
of stellar interiors, but not for metals and semiconduc-
tors at terrestrial temperatures.
Electrons and ions are each characterized by a
“plasma” or weak-coupling parameter, essentially the
ratio of average potential energy to average kinetic en-
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ergy. For highly degenerate electrons with mass s,
number density #, and Fermi energy and momentum
Er and pr, we define the electron plasma parameter A
as Ne=me?/nhpr,

so that A is related to the familiar parameter r, by
A\2=3~1/33=5/3,  The electrons are also characterized by
the degeneracy parameter a= Er/kT.For nondegenerate
ions with mass M, charge Ze, and number density
n;=n/Z, we analogously define the plasma parameter

as A= (97)~V3n1 37222/ kT =20, 75/3)\2,

The quantum-mechanical LB equation for electrons
ist—3
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where f,(x,p,f) and fi(x,p,) are the electron and ion dis-
tribution functions, normalized to

/d3? fe,i(xxp)t) = ”a,l‘(xjt) .

The momenta of the two colliding particles before and
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after collision are pi, ps, P/, P/, respectively, and the
momentum transfer is P=p,’— p1=p2— p-’. The reduced
mass has been set equal to 7 in the electron-ion (e7)
collision term, and to i in the electron-electron (ee)
collision term. Although electrons may have any degree
of degeneracy in Eq. (1.1), the ions have been assumed
nondegenerate, so that 1—3(2wk)%f; — 1.
The cross section o,; for ei collisions is given by

A
= ’
| P*e(P/h,AE/ D) |
1 R. Balescu, Phys. Fluids 4, 94 (1960).
2 R. Guernsey, Phys. Rev. 127, 1446 (1962).

3 R. Balescu, Statistical Mechanics of Charged Particles (Inter-
science Publishers, Ltd., London, 1963).
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while the ee collision cross section is e.= oair+0ex, Where
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m2et
= (1.3)
| P2(P/1,AE/h)|?
and
m2et
(14)

" P(pr—p1— P)2| (P /I AE/ B | 01— P| /1 Es— Ex— AE)/B)]

are the cross sections for direct and exchange scattering,
respectively. AE= E,"— E,= E;— E' is the energy trans-
fer, and e(kw) is the random-phase-approximation
(RPA) dielectric function, given by
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e(k,w)=

(eq) __.% — ,,(3‘1) % k
/ S (p—37k)— f. (p—l-h)’ (5)

fuwo— k- p/mat-18

where f.,:©® are the equilibrium distribution functions.
The dielectric function is conveniently written in the
two forms

e=14+N¢L(g,V)=1+Ng2L'(g,U),  (1.6)

where g=P/2pr is a dimensionless momentum transfer,
while V=AE/Pvr and U= (AE/P)(M/2kT)'’? are di-
mensionless wave velocities normalized to the typical
electron and ion speeds, vr and 7;, respectively. The first
form of e is appropriate when electron shielding is
dominant, the second when ion shielding dominates. L
has real and imaginary parts L, and L;, and is a sum of
the electron contribution L( and the ion contribution
L®,

If the electrons are highly degenerate, the Sommerfeld
expansion can be used to evaluate L(® as a series of
powers of o2 The lowest-order, zero-temperature
(Lindhard) result is*

1 1—(g—V)?2 |149—V
L,(q,V)=—+ @ ) In 1 ‘
2 8¢ 1—g¢+V
1= (V) |1+g+V
PamiCa W s , (w.7)
8g I—q—V

Li®(q,V)=4xV,
—7r[1 (g—V)*1/8q, 1 q2V<1+q (1.8)

In the static, long-wavelength limit, L((0,0) =1, giving
Fermi-Thomas shielding. For nondegenerate ions, L
cannot in general be evaluated in closed form, but the
long-wavelength limit

LO0,V)=3r"1%Z

® dx xe=*
0 X—U+18

*J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat. Fys.
Medd. 28, 8 (1954)

(1.9)

has been computed numerically by Fried and Conte.’
The static limit L®(0,0)=%a represents Debye shield-
ing. L.9(0,V) becomes negative at U=0.9, reaches a
minimum at U=1.5, and for U>2 is approximated by
the first term of an asymptotic series,

L9(0,V) = —a/3U=—m/MV?.

The derivation of the quantum LB equation assumes
(a) weak coupling, i.e., A\, \i<K1, and (b) Born approxi-
mation, i.e., An&re, Where Aw=7%/p, is the electron
thermal wavelength, r.=¢2/E, is the classical distance
of closest approach, and §. and E, are the mean momen-
tum and kinetic energy per electron. The Born approxi-
mation is always justified in a highly degenerate plasma.
The LB equation is interpreted® simply as a Boltzmann
equation for two-quasiparticle collisions, with the cross
section given by Born approximation for the dynamsically
shielded Coulomb interaction. All the many-body corre-
lations lie in the dielectric function. Since the gas of
quasiparticles is dilute and weakly interacting, the usual
complications of Fermi-liquid theory,”® multi-quasi-
particle collisions and quasiparticle interaction energy,
can be neglected.

The nature of the LB equation will be clarified by a
few comments on the shielding of various types of colli-
sions. Note that ¢<1 in all scattering events. Only
collisions with ¢«1 are significantly shielded; as a result
we shall show that, to lowest order in A? and A%, L(q,V)
can always be replaced by L(0,V). In ee collisions, V<1,
while in e: collisions, where AES 2p ¢5;<<ET is small be-
cause of the large e mass ratio, one finds V1.

Shielding is qualitatively quite different in each of the
three ranges of V,

(1.10)

(a) Vi<m/Ma, (1.11a)
(b) m/Ma<V2<V¢, (1.11b)
(c) Vo< V2, (1.11¢)

where V, the second zero of L,(0,V) on the real axis, is
given approximately by

Vo=(mZ/3M)"2. (1.12)

8 B. D. Fried and S. D. Conte, The Plasma Dispersion Function
(Academic Press Inc., New York 1961).

“H W. Wyld and D. Pines, Phys Rev. 127, 1851 (1962).

7L. D. Landau, Zh. Eksperim. i Teor. Fiz, 30, 1058 (1956)
32, 59 (1957) [Enghsh transls Soviet Phys. -——JETP 920
(1957), 5, 101 (1957)].

Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys.

22 329 (1959)
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In region (a) one finds essentially static ion shielding
(which dominates static electron shielding because of
the large kinetic energy Er of the degenerate electrons).
In region (b), L, is negative, and in general dominates
L., Consequently, the ion plasma resonance occurs,
with dispersion relation

w02(1—-3U%/aZ),

where w;= (4rn:2%?%/M )2 is the ion plasma frequency.
Resonant scattering by exchange of a plasma oscillation
is dominant in this regime. In region (c), where L,® is
negative but small (because heavy ions cannot partic-
ipate in high-frequency phenomena), electron shielding
is dominant. Although electron shielding is generally
dynamic, the electron plasma resonance occurs for V>>1,
which is of no importance in the LB equation. Static
electron shielding is a qualitatively reasonable approxi-
mation for V'<1.

Since V is small in es collisions, the dominant shielding
is by ions (although it is necessary to include the elec-
tron contribution to L;, ie., to damping). Electron-
electron scattering occurs principally in region (c),
where shielding is primarily by electrons, but there is
also a small contribution from the ion plasma resonance
in region (b).

The transport theory of stellar interiors was originally
developed by Marshak,® Mestel,’® and Lee!* (MML),
using an ordinary two-body Boltzmann equation for e:
scattering, with Born approximation: for the unshielded
Coulomb potential. In order to eliminate the long-range
Coulomb divergence, MML arbitrarily cut off the po-
tential at the mean interionic distance (§mwn;)~*/%. Their
result for thermal conductivity « took the form

ke T/In[2pp/H(4mn)¥]=3T/In(18xZ173).

The logarithm of the ratio of cutoff distance to the mean
electron wavelength is characteristic of quantum-
mechanical plasma transport coefficients.

Spitzer,'21# Landshoff,’ and others subsequently
showed that when \;<1, the appropriate cutoff (shield-
ing) distance is the ionic Debye length D;= (kT /4wn;
X Z%?)1/2, rather than the much smaller #;"*/%. With
the argument of the logarithm thus altered, thermal
conductivity takes the form

xe T/[n(1/N)+Coi].

Using the Kubo relations rather than a kinetic equa-

tion, Hubbard® has recently done a comprehensive
study of transport theory of a degenerate electron gas,
valid for ion coupling of any strength (but assuming

9 R. E. Marshak, Ann. N. Y. Acad. Sci. 41, 49 (1941).
10T, Mestel, Proc. Cambridfe Phil. Soc. 46, 331 (1950).
U T, D. Lee, Astrophys. J. 111, 625 (1950).
a ;25 (1)3 S. Cohen, P. Routly, and L. Spitzer, Phys. Rev. 80, 230
13T, Spitzer and R. Hirm, Phys. Rev. 89, 977 (1953).
14 R, Landshoff, Phys. Rev. 76, 904 (1949); 82, 442 (1951).
1 W, B. Hubbard, Astrophys. J. 146, 858 (1966).
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weakly coupled electrons). He has verified that the
MML theory is approximately correct for strongly
coupled ions (A\>>1) and has calculated numerically the
transition to the Spitzer form as ions become weakly
coupled.

All of these authors assumed static shielding, pre-
cluding calculation of the subdominant correction Ce;,
which depends upon dynamic effects. We shall calculate
C.; in this paper.

Langer, in a series of papers directed toward terres-
trial metals, has developed the transport theory of-a de-
generate electron gas subject to scattering by dilute
impurities, including electron-electron correlations to
all orders, at zero temperature. However, he as well as
the previous authors, neglected ee scattering as a mecha-
nism for thermal resistance, since heuristic reasoning in-
dicates that the Pauli exclusion principle drastically
restricts the phase space for ee collisions, reducing the
probability of ee collisions by order o2 (and entirely
preventing ee collisions at absolute zero temperature).
We shall see that these arguments are not entirely cor-
rect, and that under conditions prevalent in red giant
stellar cores, ee collisions can reduce thermal conduc-
tivity by 25 to 50%. It is also of interest that the con-
tribution of ee collisions, for sufficiently great degen-
eracy, takes an anomalous, nonlogarithmic form. There
is, however, no significant correction to the electrical
conductivity due to ee collisions, because ee collisions
conserve electrical current.

2. PHYSICAL BASIS OF TRANSPORT IN A
DEGENERATE PLASMA

In this section we shall anticipate the principal re-
sults of the paper by means of a simple analysis of the
contribution of typical collisions to thermal resistivity
(the reciprocal of thermal conductivity). In particular,
we wish to explain (a) the unexpected significance of
ee collisions, (b) the unusual form of the ee contribution
to thermal conductivity (nonlogarithmic N dependence
for y=402>>1, and proportionality to T2 for y<1, in-
stead of T-1as predicted by the Abrikosov-Khalatnikov®
Fermi-liquid theory), and (c) the negligibly small con-
tribution of both direct e¢ scattering with large momen-
tum transfer P~pr and exchange ee scattering. We
shall see that the effects of the Pauli exclusion principle
are somewhat more complex in a plasma, where inter-
actions are predominantly weak and long range, than
in a molecular gas. Throughout this section, we use the
static shielding form of the cross sections.

"The Pauli principle requires that an electron with
momentum p;=pr can collide only with another elec-
tron whose momenta before and after collision, 2 and
4, both lie on the thermally “smeared-out” Fermi sur-
face, i.e., prl—a )< pe, po'Spr(1+a7?). Since the
ratio of the momentum transfer P to the thermal width

167, S, Langer, Phys. Rev. 120, 714 (1960); 124, 997 (1961);
124, 1003 (1961); 127, 5 (1962); 128, 110 (1962).
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(b)

Fic. 1. The shaded area is the thermal width of the Fermi sur-
face, of order pra~. An electron has momenta p; before and py’
after collision; P is the collisional momentum transfer. (a) Type-I
collision, P>>prat. (b) Type-II collision, P prat.

prot of the Fermi surface is a crucial parameter, we
distinguish between type-I collisions with P>>pra~! and
type-II collisions with PSpro! (see Fig. 1). Figure
1(b) indicates that in a type-II collision, the Pauli
principle demands only that p; lie in the Fermi surface
(which then implies that p;’ and p.’ also lie in the Fermi
surface). Consequently, a fraction of order a! of all
possible type-II collisions are permitted by the Pauli
principle. On the other hand, for type-I collisions, the
requirements that p, and py’ lie in the Fermi surface are
independent, so that only a fraction of order «~2(P/pr)!
of all possible collisions are permitted.

In a gas of strongly interacting molecules, typical col-
lisions are type I with P~ pp, so that the Pauli principle
restricts the phase space by order &2 But in a plasma,
the dominant collisions are direct scatterings with
P~ pp\. If vK1, these collisions are type II, so that the
Pauli principle restricts the phase space by only a factor
o~ 1 In the absence of degeneracy, stronger collisions,
with P~ pp, would contribute to the subdominant term
[smaller by order 1/In(1/\)]. Since the probability of
such type-I collisions is reduced by order o2, one finds
that only PZpra? contributes to the subdominant
term, to lowest order in o, i.e., the upper limit of inte-
grations over P effectively lies at pra~!, rather than at
28

For v>>1, the dominant collisions are type I, so that
the exclusion principle reduces the collision probability
by a factor a2\~ Since the probability of stronger col-
lisions with P~pp is further reduced by order }, it
turns out that the contribution of these collisions is
smaller by order A% rather than merely 1/In(1/)), and
is again negligible.

Note that the exclusion principle imposes no restric-
tions on s collisions, since energy transfer is much less
than &T.

The significance of ee collisions in thermal resistance
can be understood as follows. Collisions can reduce heat
flow in either of two ways: (1) deflection of colliding
electrons, or (2) transfer of energy from the faster to the
slower particle. In the case of e: collisions in a plasma,
both mechanisms are rather ineffective. Since the domi-
nant scattering is small angle, elastic deflection of elec-
trons occurs slowly, while the large ie mass ratio_essen-
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tially prevents energy transfer. Similarly, in a non-
degenerate plasma, ee scattering is predominantly small
angle, and thus also AEKET; again, neither mechanism
is efficient. It turns out that ee and ei collisions are of
comparable importance in a nondegenerate plasma.

In the case of ee collisions in a sufficiently degenerate
plasma, AE is small compared to the electron kinetic
energy Ep, but is typically of order k7. Since the dis-
tribution function varies on the scale of 27, energy re-
distribution by ee collisions becomes an important
mechanism for thermal resistance over a significant
range of high temperatures and densities. For even
greater degeneracy, the Pauli principle restrictions on
phase space choke off ¢ee collisions.

We now proceed to calculate, in several typical colli-
sions, the component AQ’ of energy flux change AQ
parallel to VT'. We anticipate Sec. 3 by noting that in
the presence of heat flux with no particle flux, to lowest
order in o2 the electron distribution function takes the
form

fe(x,p,) =2Qah)y [ f~(p*)— f~ ") f+(?)p
VT4 (Pz)/mT] ’

where f~ and f* are the Fermi functions defined in Egs.
(3.2), and A(p?) is an even function of p2— py? Thus,
for directions where p-VI'>0, the anisotropic part of
the distribution consists of equal numbers of particles,
with p2=pp?+(8p)? and holes, with p>=pp?— (5p)? or
vice versa if p-VT<O0.

The dynamics of e collisions is quite simple, since the
electron can be regarded as scattering elastically off
a fixed force center. In Fig. 2, two typical, equally
probable scattering events are shown, one involving an
electron with momentum pi,= pr(1+4ao~1)!/2 the other
a hole with momentum p15=pr(1—a~Y)'2 P, typically
of order M\ipr, is the same in each case.

The loss in parallel energy flux resulting from the elec-
tron scattering of Fig. 2(a) is AQ,'= — P2p1,/4m?, while
in the hole scattering of Fig. 2(b), AQy =+ P2p1p/4m?>.

2
P/me

f

(a) (b)

Fi16. 2. Two equally probable scattering events. The tempera-
ture gradient is vertical in each case. (a) Elastic scattering of an
electron off a stationary ion. Momenta before and after collision
are pia and pio/, respectively, and P is the momentum transfer.
P10=p1a’ = pr(1-4a~1)1/2, (b) Elastic scattering of a hole off an ion.
The momentum transfer P is the same, but the momenta of the
hole before and after collision are p1p=p1p'=pr(l—a~1)1/2,
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P+P=P*P2

F16. 3. An electron-electron collision. The momenta of the two
electrons before collision are p; and p.. The plane containing the
momenta after collision, py’ and p.’, has been rotated about p:-+p2
until it coincides with the plane of p; and pa.

Thus the net energy flux change in the two collisions is
AQei' = — P¥(p1a— p1v)/4m*=2— (P?/2pp")a " wpEr. (2.1)

We now consider ee collisions (see Fig. 3). Throughout
this section, we assume for simplicity that pi, pe, p1
and p.’ are all coplanar and that pi+p.=p/+p. is
perpendicular to VT. The component u of p; perpendicu-
lar to pi+p- is taken to be the same in each ee collision
considered in this section, as is p1+p2. Both are of order
pr. In the regime >>1, three typical ee collisions are
defined by the following values of p1, p2, p1’, and p2":

pra=pr(1+a™)2  pa=pr(l—a~)'7
Pla,=Pﬁa,=PF; (2'23)

puv=pu=>pr, p1v'=pr(l—a )2
po'=pr(1+a);

pre=pr(1+a )2,  poe=pr(1—a 1),
1 =pr(14+2a~D)12  po/=pp(1—2a71)1/2, (2.2¢)

Each of the collisions [(2.2a) and (2.2b)] results in
— AQ.o' =0 (u/m)(pr?/2m)~order ¢ wpEp. (2.3)

(2.2b)

Comparison with Eq. (2.1) reveals that AQ,.’ is larger
than AQ.;’ by a factor (P/pr)~? typically of order X2
The large value of AQ.,’ is due to the significant energy
transfer AE~ET in collisions between highly degenerate
electrons.

Note that the collision (2.2c) would cancel the effect
of collision (2.2a) if the two events were equally prob-
able. However, (2.2c) is forbidden by the Pauli principle,
since the final momenta are far from the Fermi surface.

Note also that, in collisions (2.2a) and (2.2b), the en-
ergy flux Q is almost entirely perpendicular to VT, and
the changes in both the perpendicular component of Q
and the absolute value |Q]| are very small, of order
o~ pEp. However, thermal resistance is due to the
much larger parallel component AQ’, of order o~ "vpEr.
This situation has not been clearly understood in the
past.”

We can now use these considerations to estimate the
relative magnitudes of the contributions to thermal re-
sistivity from ei and ee collisions, for y>>1. It is well

17 See the last paper of Ref. 16.
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known that ez collision integrals can be put in the form

»F  JP P3
Iei'x[ ———~1In(1/\;).
o (PH-pr\D)?

Since the contribution of a typical ee collision to thermal
resistivity is greater than that of an ei collision with the
same value of P, by a factor of order pr?/P? while
phase-space considerations make the e: collision proba-
bility greater by order a?P/pr, the analogous ee form is'®

PF aP
Toeex a.—2PF‘3'/‘ —_—— a2\
° (P2+?F2A2) 2

a3 In(1/\)

(24)

(2.5)

The physical situation is quite different if y<<1. The
dominant collisions with P~ pr are then type II, with
AE~MNEp<EkT. Two typical ee collisions, analogous to
(2.2a) and (2.2c), are defined by

pra=pr(1+a™)'?2,  pra=pr(l—a™)'?,

2.6
pra= (=, gl pra(tne,

and

pro=pr(l+e™)'?  pop=pr(l—a™)!?,
P’ = (1N, oy =par(1—N)12.

Because of Pauli-principle phase-space restrictions, the
probability 75 of collision (2.6b) is slightly smaller than
the probability =, of collision (2.6a), ie., (wa—ms)/
we~aP/pr [whereas (2.2c), analogous to (2.6b) for
v>>1, is essentially forbidden by the Pauli principle].
In collision (2.6a), AQ.)'~— (P/pr)vrEr, while —AQs
for (2.6b) differs from AQ,’ only by order P/pr. How-
ever, taking account of the two slightly different proba-
bilities, we find a net

AQol'~—(P/pr)avrEr 2.7

for the two collisions. Comparing Egs. (2.7) and (2.1),
we see that AQ, is larger than AQ. by order a® The
exclusion principle reduces the phase space for type-I1
ee collisions by order ¢~*. Thus, by comparison with Eq..
(24),

(2.6b)

pral  JP Py In(t/3)~al In\; 28)
I ————n~a In(l/y)~al e, (2.
/;1 (P2H-pr22)? Iny

where we have noted, in accordance with previous dis-
cussion, that type-I collisions with P>>pra™! should not
be included in the integral. Note that the contribution
of ee collisions is larger than that of ei collisions by order
a, directly contradicting the usual oversimplified argu-
ment from the Pauli principle.

18 Static shielding of es collisions is predominantly by ions, but
only electrons can statically shield ee collisions. Therefore A; ap-
pears in I, while X appears in e
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This discussion of the case y<<1<a can easily be
modified to apply to nondegenerate electrons, the only
significant change being that factors of a go over to order
unity. The contributions of ee and ei collisions are then
seen to be of the same order.

Finally, we wish to discuss exchange ee scattering.
The factor (P2+N2p.2)~2 in the direct scattering cross
section is replaced by

(PN [(pe— pr— P) >+ N2
~ (P2+)\21362)—1§e.‘2 )

since (pa— p1— P)? is generally order p,2 when P is small.
Thus, in the nondegenerate case,

4P P L.,
T / — o)~
o PHPNG) In(1/2)

However, when electrons are degenerate with y<1, the
upper limit of integration is lowered by phase-space
considerations, so that

pral dP P3 T,
Iuoca/ ~ , (2.10)
0 PprH(P*-Npr?) o? In(1/7)

which is thus negligible. Finally, for degenerate elec-
trons with v>>1,

(2.9)

-_1’\'

»F 4P
Loz pro? / A I~
o PP-A%ppl

which is again negligible. Therefore, exchange scattering
is always insignificant in a highly degenerate electron
gas, because phase-space considerations suppress strong
collisions with P~ pp.

(2.11)

3. CHAPMAN-ENSKOG SOLUTION

In this section we review the Uhlenbeck-Uehling-
Chapman-Enskog solution!*? of the quantum statis-
tical Boltzmann equation, establishing notation and in-
troducing approximations based on the neglect of higher
orders in (m/M)/2

Since transport by ions is negligible compared with
the light, highly degenerate electrons, ions may be as-
sumed to be in local equilibrium, i.e.,

fix,p,0) =n;2rM kT2 (% x,0)
where f0is the local Boltzmann distribution:
Jo(p%; x,0)=exp[— p*/2M kT (x,1) ].

The electrons are assumed to be close to local Fermi
equilibrium;

foxp,0)=2Qat) =L f~(p* x,)— f~fre(xp,)], (.1)

19 S. Chapman and T. G. Cowling, Tkhe Mathematical Theory of

Non-Uniform Gases (Cambridge University Press, London, 1961).
2 E. A. Uehling and G. E. Uhlenbeck, Phys. Rev. 43, 552
(1933); E. A. Uehling, ibid. 46, 917 (1934).
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18 x)={1+expL(p*/2m—u(x,1))/
RT)1,
fr=t=17,
0f~/0(p/2m)=— ~f*/kT,

where p is the chemical potential.

We proceed in standard fashion to linearize in ® and
separate terms in & linear in VT and E’, where —eE’
=—¢E—VP/n is the total force acting on an electron,
due to electric field E and pressure gradient VP. We
find that

®(x,p,0)=(p/m)-VTA(p*)/T
+(p-eE'/mkT)D(p?), (3.3)

where A (p?%) and D(p?) satisfy the linear integral equa-

tions
FH0p*/2m—(5/3)E.)/kTYp=1(p4), (3.4)
ffro=1(D), (3.5)

and the collision integrals I, L., and I,; are defined by

(3.2a)
(3.2b)

I(pA)EI“(pA)-I-Ie;(pA), (3.6&)
Le(pA)=8m2(2xh)3 / d*ps d¥poee
X8(Er+Ey— Ey— EY) frfe fi' Hfo/+
X[mAdi+peds—p'A/—p45"], (3.6b)
Li(pA)=n:2x MET) =3/ 2m2 / @3Pod®P g
X8(Ey+Ey— EY — EY) fr fP'tf2°
X [plA 1— p{A 1'] . (3 .6C)

The transport coefficients S;; are often defined by
J=eSu[eE+TV(u/T)]+eS1eVT/T, (3.72)
Q=—SuleE+TV(u/T)]—SVT/T, (3.7b)

where J and Q are electrical and thermal current, re-
spectively. However, we shall find it more convenient
to use the alternative definition

J=¢e251/E'+eS1,'VT/T, (3.8a)
=—eSu'B'—S%'VT/T—(5/3)(J/e)E.. (3.8b)
The S;; and S, are related by
S11= Slll y
S12= 512"+ (5/3)E.Sv’,
Sae= S35+ (10/3)E S1o'+[(5/3)E.JSv’.

By the Onsager relation, S12=.Ss: and S12'=S2’. Elec-
trical conductivity (at constant temperature) is
o=¢2511, while thermal conductivity «, defined by
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TasLe I. The subdominant correction Cei to the electron-ion
collision integral, as a function of «Z and 4 /Z. The dependence on
A/Z is seen to be very slight. If shielding is assumed static,

=72

oZ A/Z=1 A/Z=2
5 0.346 0.346
10 0.222 0.221
20 0.137 0.136
40 0.0853 0.0845
60 0.0662 0.0653
80 0.0561 0.0552
100 0.0497 0.0489
200 0.0360 0.0353
400 0.0280 0.0274
600 0.0250 0.0244
800 0.0232 0.0227
1000 0.0221 0.0216

Q=—«VT with J=0, is
k= (S11"S2s’—S1'0)/TS11' = (S11S22— S122)/TS11.  (3.9)

The primed transport coefficients have the advantage
that convective heat flux —(5/3)E.J/e is separated
out; consequently, S’ vanishes at high degeneracy,
while Sy2 does not. :

Defining the bracket relations

{X(p),Y(0)}={X(0),Y(D)} s+ {X(0),Y(D)} ce, (3.102)
{X(0),Y(D)} eeen= {Y(0),X(p)} eecens

52(271'}1)—31”“2/dst‘Iee(”')(Y) , (3.10b)

one can show that

Su'=3{pD,pD}/kT, (3.11)
Sl2,=%{pA:pD} ) (3'12)
x=%k[{pA,p4}—{p4,pD}*/{pD,pD}]. (3.13)

The equations for 4 and D are solved by polynomial
expansion. Let

A(PY) =:2 &P,
D(p2)=§ LGP,
o= (DA, PPy =22 h) =k T) " f dpprfr+

X[pY/2m—(5/3)EIP:(3?), (3.14)
0= {pD,pPk} = 2(27rh)”3m_2

X / Epp*f~ftPx(p?), (3.15)

(3.16a)
(3.16b)
(3.16¢)

5= Qjkeit jnee= {PP;,PPr},
Qjkei™ {ij,pPk}e:’,
Qrkee™ {ij,PPk}ee,
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where P;(p?) is a polynomial of order j in 2, and @; and
d; are unknown coefficients. Equations (3.4) and (3.5)
then lead to the following equations for the coefficients
a; and d;:

X aiap=oy,
=0

> diajr=20g.. 3.17)
7=0

Approximate solutions are found by truncating these

equations:

n

n
Z QjA55= Ok, Z djdjk=8k.

7=0 =0

(3.18)

If the polynomials P; are chosen properly, one expects
the solutions ax™, dx™ of the truncated equations to
converge quickly to the exact a and dy as #— . This
truncation procedure is also shown by Uhlenbeck and
Uehling? to be the result of a variational principle.

In the case of Boltzmann statistics, the Sonine poly-
nomials used by Chapman and Cowling!® are most con-
venient, since they have both suitable orthogonality
relations and a useful generating function. The subse-
quent algebra is then simplified by the fact that 6,=0
for k#0, and ar=0 for k>%1. For Fermi statistics,
Sonine polynomials are no longer appropriate, but we
can ensure that 8;=0 for k5£0 and ez=0 for 2>1, by
defining the Pj such that each Py, k21, is orthogonal
to Po=1, and each Py, k22, is orthogonal to [p*/2m
—(5/3)E.]/kT, where two functions X (p?) and ¥ (p?
are orthogonal if

/ Fpf~(0") fH(p")p*X (") Y (°)=0.

To complete the definition of the polynomials, we re-
quire that for j>%2>2, P; be orthogonal to Py. If we
define

t=(p*/2m— Ey)/kT=[p*/2m— (5/3)E.]/%T,

and use the Sommerfeld expansion to-evaluate the
orthogonality integrals for high electron degeneracy, we
then find, to lowest order? in o™,

Pi=t, (3.19)
Py=12—1x2, (3.20)
Py=0—(1/5)r%, (3.21)
So=8 (2l m—kTp s, (3.22)
ao=4n3 (2l kTpria~t, (3.23)
ar=(8/3)m(2rdt)y " m— kTP b (3.24)

Solving Eq. (3.18), we find, as in Chapman and
Cowling,?? the following determinantal expressions for

21 Small corrections of order &1 in these quantities appear in the
transport coefficients only in order o2 ‘

22§, Chapman and T. G. Cowling, The M athematical Theory of
Non-Uniform Gases (Cambridge University Press, London, 1961),
Chap. 8.
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the n-polynomial approximation to the transport
coefficients:

50 Q)
0 ay
(129} : 0
0 0
60 00 O
[s7Ye5] 0' . 0 0 0
k=1%k , (3.25)
do
[ 2%] 0
0
800--:0 0
do
aij
0
600---0 O
Su'=3¢7) ' ——-, (3.26)
[ais]
do
aij 0
0
apa10:---0 0
Sy =fF——, (3.27)
‘aﬁl
where
a1 Gi2cc*  Qin
la;| = |
a;n Qnn

We now adopt part of the Lorentz model to obtain
a Lorentzian approximation for the e collision integral.
Since M>m, it follows that $.&p; and 5.>%;, so that
the maximum energy transfer in typical e collisions is
of order
AEnex=2pB;=6kT(p./p:)<KkT.

The functions f°, f~, f+, 4, and D all vary with energy
on the scale of 2T. Thus we approximate E;’ by E; in
fi'"t, AY, and DY/, reducing Eq. (3.6c) for I; to the
simplified form

Igi(pA) = -%¢M—2(27FMkT)_3/2f1—f1+A 1/d3p2 fzo

X / d3P Pooi(P,ps)s(Er+Es—Ey—Ey). (3.28)
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The Lorentzian approximation neglects terms of order
AEax/kT, which is of order (m/M)'/2 when both elec-
trons and ions are nondegenerate. For degenerate elec-
trons, AEmax/kT~ pr/D:> 6(m/M )12, but AEmex/kT is
still small as long as ions are nondegenerate.

The Lorentzian approximation assumes much less
than the complete Lorentz model. We do not neglect
either ee collisions or energy dependence in the cross
section (i.e., dynamic shielding). Since #w;/AEmax
~\;K1; dynamic effects, particularly resonant exchange
of an ion plasma oscillation during ei scattering, con-
tribute significantly to the subdominant term of the
expansion in \;.

The Lorentzian approximation not only facilitates
the calculation of I.;, but also simplifies the structure of
the Chapman-Enskog solution for highly degenerate
electrons. The Lorentzian expression (3.28) will be
shown in Sec. 4 to be of the form constX(f~f+4
-+ordera™?). Since Pj is orthogonal to P, for 22> 1, this
indicates that aoke; is order o~!. Moreover, L..(pPo)
= @oree=0 by momentum conservation. Thus, to lowest
order? in a~l, g, may be set equal to zero. Equations
(3.26) and (3.27) then reduce exactly to

Su' = %(kT)—‘lsoz/aM: (64/3)7‘-2(277;‘)—6

X m‘szpF“/aoo y (329)
S12"=%$80c0/@00= (64/ 3)#4(21rh)““
Xm“‘k3T3pp4/aog , (330)

i.e., electrical conductivity and thermoelectric coeffi-

cient, according to the Lorentzian approximation at

great degeneracy, are given exactly by the first poly-

nomial and are completely independent of ee collisions.
The expression (3.25) for  reduces to

k1 =3k0ay2/ay, = (64/27) 7820 %) 6
Xm~2k3T?pp8/a11, (3.31a)

K[2]=K[1](1—'(1122/a111122)~1, (331b)
kB =k [1(@11090055— 01105%) / (011020033 2012023031
— 011095 — Q220312 — 033012%) ,  (3.31¢)
for truncation at one, two, or three polynomials,
respectively.
All of the physics lies in the calculation of ¢;;. Equa-
tions (3.16) for a,; are conveniently rewritten as

0

aij= 81r(21rh)“3m"1kTpp/ dt pP()-I(pP;). (3.32)

—00

4. ELECTRON-ION COLLISIONS

In this section, we calculate I;(p4) and ajie, given
by Egs. (3.28) and (3.32). We note that a first approxi-
mation is easily obtained by using the static dielectric
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function in the cross section. We then have

Lsstatio(pA) = 8me*Z s fi frtda
X / @py (pr—p1)8(p12— pr' D[ P2+ (2ppNiZ1/%)2 ]2

drnme*Z2(py/ p1®) fim fitAq
X[In(Z33/x;)—%+order A2]. (4.1)

Even with dynamic shielding, the calculation of I;
is fairly simple because of the Lorentzian approxima-
tion. Performing exactly the integration over p, in Eq.
(3.28) yields

LipA)=nMm*(2zMET)™*f1 fi+4:

M /prP P2 P2\?
g )]
2P%RT\ m  2m 2M

P
X / d3Ps.i(P)— expl:—
P

By symmetry, only the projection p;-P/p1=2P2/2p; of
P on p; contributes to this integral. Thus, in spherical
coordinates for P about pi,

Li(pA) =mnMm=22eMkET)~*(p1/p:?) fi~ fit 41

X / dPP? / dy singoe(Py) exp[— (pr1P cosyy/m
(] []

+ P/ 2m+PY2M)M/2P%T], (4.2)

where ¢ is the angle between P and p;. Noting that

AE=(2p:P cosy+P?)/2m,
U=(M/2rkT)V2(2p, cosy+P)/2m,
B=p1(M /2kT)12/m=(aM /m)*2,
we have

Iu'(pA)=r"znfm“(m/ms)fffﬁfl1{ /

—B

B
av

]
aUu

2p1—2mvU
Xe“m[ dP P3¢, (P,U)+
0 —00
2p1—2mviU
Xe U? / dP P3¢ .{(P,U )} . (4.3)

—2p—2mvU

We use Eq. (1.2) for 0., replacing L'(¢,U) by L'(0,U).
Since L'(q,U)=2L'(0,U)+order ¢? for ¢<1, and shielding
is significant only for g&\K1, this results only in ne-
glect of order A2 The integration over P in Eq. (4.3)
can then be done exactly, yielding

Li(pA)=4x'2mn.Z%*(pr/ p1°) fi" frtAs

X (A T+ I+ 144-15), (4.4a)
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B
L=In(Z/%/5,) f iU e, (4.4b)
-B
1 B
Iy=- f AU &0
1) 5
[(1— B1U)4-N2Z-415L, TN AZ—L /2
Xln[ ], (4.4c¢)
L2

1 B L
I3= ——/ aUu e"U’
2)-8 [y
(1— BU)-\2Z25L,
)\522_2/3|L,"]

X [tam—1

’

L,
—tan~l—— (4.44)
P2{Rk

1 0B
I4=~[ au ¢ U?
4/

L= B0y N2 0L T AZA0L 2
n[[(l-f—B—lU)2+)\;ZZ—Z/3L,’]2+A,-“Z”“**L."z]’( 9

’

1 B L
Iy=—- f au ¢ U*
2) |L{|

_(A=BO Az,
X[tan ( )\‘22‘2/3'Li,] )

_ an S BTUS AL LY 4.4f
an N2Z-23| LY | :I (4.41)

Although Egs. (4.4a)—(4.4f) seem very complicated,
we can now make obvious approximations that reduce
I; to very simple form. Since aM/m>10% both e~U*
and ¢"U°L,’/| L{| are utterly negligible for U2>aM /m.
Neglecting this region of integration, as well as terms of
order ;% in I, and I, we can rewrite L.; as

Li=4mn.me*Z* fi~fitA1(p1/ p1°)

X[In(Z3/\)—C.i], (4.5)
where
C"‘:"_w/ dU &'} In(L,+ L%
(]
+(L//L{) cot™Y(L,//L{)]. (4.6)

The subdominant term C.; depends on the two pa-
rameters aZ and A/Z, where A is the ionic weight, but
the dependence on 4/Z is very slight (about 29%) over
the physically significant range 1< /4Z< 2. Numerical
results for C,; are given in Table I. Note that the domi-
nant (logarithmic) term of L. is given correctly by the
static shielding result (4.1), but that C.; is not.
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Using Eqgs. (4.5), (3.32), (3.19), (3.20) ,and (3.21), one
has

Q0= Ap0ei= 321r2(21rh)“3n,~e4Z2kT ’
X[n(Z13/\)—Cei],

Qr1ei= (32/3)m4(2nh) *n e Z2kT
X[In(Z3/A)—Ce], (4.8)

A336:= (4608 / 1 75)7['8(21X'h)—'31’1;.'64z kT

(4.7

X[In(Z3/\)—Ce]. (4.9)
Note also that, since P; is orthogonal to Py,
ajke,~=0 for j;ék. (410)

According to Egs. (3.29), (3.30) and (4.7), using
ni=n/Z, we have

3
Syl =— pr , @11
41 m2*Z[In(Z13/\;)— Cei]
kT)?
T pr(kT) 12)

" 4 me*Z[In(ZV3/\)—C.:] ’

and the one-polynomial result for thermal conductivity,
including e: but not ee collisions, is, according to Egs.
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(3.31a) and (4.8),

kol = L

P k2T
m2e*Z[In(Z13/\)—C.i]

The logarithm terms in Egs. (4.11)~(4.13) have been
given by Hubbard.'® However, since his work is limited
to static shielding, he could not correctly calculate C.;.
Inclusion of dynamic shielding effects reduces Co; by
0.2 to 0.5, thus reducing the conductivities by about 10

to 30%.
5. ELECTRON-ELECTRON COLLISIONS

In order to calculate the collision integral L., of Eq.
(3.6b), we shall transform to more suitable variables of
integration, energies E,’, E,, and E,, normalized mo-
mentum transfer ¢, and angle 6 between p; and pi+pe
(see Fig. 3).

Since pi+p.=p1'+p.’, the bases of the two triangles
P1, P2, (P1+p2) and py/, po/, (pi"+p.’) coincide. Let ¢ be
the angle between the planes of the two triangles.
Figure 3 shows the plane of p)’, p;’ rotated by angle ¢
about (pi+p2), so that all the vectors are coplanar. In
a highly degenerate gas, all four ’s are close to pr; thus
the vector h defined in Fig. 3 is a small quantity of order
prat, whose components %, and k, are of orders pra—?
and pra~l, respectively.

It can be shown exactly that

(4.13)

27
L(pAd)=167Q2n k)~ m(py/ps*) / de / du dEYAEY oo fi~ o~ [ f (12— 02) V2 (pa?— 2)~1/2]
[}

X{pPA(B)+[(prP =) *(ps*—u) 2~ u2JA(Ex) ~ [ pr*+- 3 po*— u(u+-h,) (1— cose) — 34214 (Ey)
+uluthe) cose—(pr*—u?) 2 (pa—~u?) 12+ hu(pr2~u)V]A(Er)},  (5.1)

where %= p, sinf (see Fig. 3),

P12— P12

he= ) (5.2)
(pri— )12 (pa— )3
hr=—u+[1?—h2—2(p>—u?)\%,
—p=p P12, (5.3)
and the momentum transfer is given by
P2=2u(u+h,)(1—cosp)+h?. (5.4)

We drop higher order in o7, i.e., we set p1, ps, p1’
and p.’ all equal to pr, and u=pr sind. We use the di-
mensionless variables

t=(E,—Ep)/kT, x=(E,/— EF)/kT,
y=(E,—Ep)/kT,

¢'=siné sinl o,

(5.5)

(5.6)

insert the cross section ., for direct e scattering, Egs.
(1.3) and (1.6), and specialize to the first polynomial,

A=P,(E;,)=t. Equation (5.1) then becomes
Lu(pt) = 167 (2 )~ (ET) (1 /pr) [ dv dy

X O f(at+y—=0) @) frmM @y, (5.7a)

where

1 /2
M(xyt)=(—x) / dq' / df sin®@(sin?f—¢'%)~1/2
[ sin~lg’

1 /2
X | ML (G, V) [ (5—3) [ dg'g® f 46 sind
0 sin"lg’

X (sin¥—g'2) 12| g+ N2L(g, V) |2, (5.7b)

The integrals over % and y have been allowed to run
from —o to oo ; this introduces an error only of
order e~

According to Egs. (5.4) and (5.6),

¢*=q"*(1+h,/pr sing)+72/4p5*. (5.8a)
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Since k,/pr and (k/pr)? are both of order a2, Abri-
kosov and Khalatnikov® identify ¢ with ¢’ in their
general Fermi-liquid theory. But for a plasma, the
dominant contribution to Eq. (5.7) comes from small-
angle scattering with ¢’<¢<A<1. For such scattering,
the crucial denominator |¢g2+A2L|% in Eq. (5.7b) is
approximately |h2/4pp*+N2L|2. Thus the term h2/4p p?
may be dropped from ¢? only if h/2pr<], ie., a7 1K
or ¥>>1, which is a much stronger requirement than the
degeneracy condition «>>1. In view of the discussion of
Sec. 2, we see that the Abrikosov-Khalatnikov calcula-
tion assumes that the dominant collisions are type I,
which is true for a plasma only if 4>>1. If we make no
assumptions about the magnitude of v, but drop terms
of higher order in o2 in Egs. (5.8a), (5.2), and (5.3),
we find

x—1

2
4o cos¢9> )

g2g9'2+( (5.8b)

Because of the complicated form of L(g,V), it is neces-
sary to make further approximations to perform the in-
tegrals of Eq. (5.7b). Since, according to Sec. 2, only small
values of ¢’ contribute significantly to I, one finds that
the second integral of Eq. (5.7b) is smaller by order A2 or
a~%, whichever is larger, and will thus be neglected. The
factor sin® ensures that there is very little contribution
to the first integral of (5.7b) from small values of 6. One
can see from Fig. 3 that this occurs because, when =<0,
the two colliding particles have initially almost equal
momenta, in magnitude and direction. We therefore
make the complementary small approximations of set-
ting the lower limit of integration over 8 in Eq. (5.7b)
to zero and replacing (sin?0—¢’?)1/2 by sinf. It is then
easy to replace ¢’ by ¢ as a variable of integration, to
obtain?®

/2
M= (t—x)/ df sin?
o

! dg q
X
,/m/:m cost |q2HA2L(g, V)| 2(q2—s5%/1602 cos?)1/2
' dg(1—s%/16a%g?)

—_—, (5.9
toi/ta |g*+N2L(g,V)|? )

=ir(t—x)

where s=x—1.
If we use the identity

F O f~+y—0) f ) fr)=f O f @)
XLf~@+ (e =D~ ILf~0)— f~@+y+9] (5.10)

to perform the integration over y exactly, Egs. (5.7a)

28 The small spurious region of integration with ¢>1, 624 has
been neglected. This region, whose contribution to the integral is
order A%, arises from the failure of (5.8b) near §=14m.
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and (5.9) become

Loo(p) = — 4n*Q2uht)~mPe (R T)*f~(1) f+(t) (01/ P #*)

X / ) ds s (eH+1)"14(e*—1)71]

-0

1

X f dg[1— (s/4ag)*]| ML V)|, (5.11)
18l /4a

When we use (5.11) in (3.32) and perform the integra-
tion over ¢ exactly, we have

@ree= 3213 (2w h) Sm2e* (R T)*p 1 / ds s'e*(e*—1)2
0
1

X / dq (1—5%*/16a2¢®) | g®>+N2L(q,V)| 2. (5.12)
8/da

Double integrals similar to Eq. (5.12) frequently
occur in plasma transport theory. Usually L(g,V) is an
insensitive fuction of small ¢, and one approximates
L(g,V) by L(0,V). For degenerate electrons L.(q,V) de-
pends logarithmically on ¢ near V=1, ¢=0; however,
the contribution of this region where L, is sensitive to
¢ is smaller than the remaining integral by order
A2 In\ or o2, whichever is smaller, and is thus negligible.
Hence it is consistent to approximate L(g,V) by L(0,V),
even for degenerate electrons.

Equation (5.12) can now be rewritten as

Q1100=256(2n ) Swime4p 5T, (5.13)
where

1 00 e
J= f av V(1—v?) / ds s"
o 0 (6'—1)2

1
X..________
|5ty V2L(V) |

(5.14a)

0 8

= (404)"”/ ds 34_.2__
0 (es_ 1)2

1 —52/16a22
/ M_) (5.14b)

s |PANLT)|2

When electron shielding is dominant, Eq. (5.14a)
clearly depends only on the single parameter 7.

Since analytic evaluation of J is complicated and is
only possible in limiting cases, we first calculate J with
static (electron) shielding, i.e., using L(0,0)=1, so that

Tstat= (4a)—'"/w ds s'e*(e*—1)"2D(s), (5.15)
°
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where
1

Pw= [ aali=s/16
s/4a

= 3\*{tan~(v/s)+3(s/v)*

X[tan~*(y/s)— (v/9)+0(1+s*/v*) (5.162)
¥>5, (5.16b)
— (2/15)(4at/5)3, vLs. (5.16¢c)

The two different limiting forms (5.16b) and (5.16c)
reflect the fact [discussed in Sec. 2, and in connection
with Eq. (5.8)] that when 4>>1 the dominant collisions
are type I, with ¢\, but when y<1 they are type IT
with ¢21sa™L

The integral

- %7‘")‘_3;

ds s%e*(e*—1)"2

Jstnt=ili')'—3/

0
X{tan™(y/s)+3(s/v)*[tan~ (v/s)—v/s]} (5.17)

can be performed analytically in each of the two limits
¥>1 and y<1, using (5.16b) and (5.16c), and for
s2{ <1, using the approximation

ed(e*—1)2s2(1+orderys?), s<1i. (5.18)
Neglecting order 4™, we find
Jstat=2m%/15y3, v>>1; (5.19
neglecting order v, we find
Jat=2(2/15)[In(1/)+31/30], v<1. (5.20)

For the complete range of v, Juat has been calculated
numerically and tabulated in Table II. We see that
(5.20) is an excellent approximation when y<1, but
that (5.19) is quantitatively accurate only for very large
values of v.

Returning to the evaluation of J with the correct dy-
namic shielding, we shall distinguish between the non-
resonant region V>V, where there is no ion plasma
oscillation, and the resonant region V' V,, by letting

J=]res+an, (5.21&)
where
Vo
J,es=/ av H, (5.21b)
[]
1
Jnr=/ dV H, (5.21¢)
o0 Vo
H=V(1—-V? | ds sbe*(e*—1)2

’ X |ty VALV 2. (5.21d)

We consider first the nonresonant region, which turns
out to be far more important.
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Since the ionic part L;? of L, is negligible in J., it is
evident that if we use the approximation (1.10), L(V)
is independent of a. Thus Jy: depends primarily on v,
slightly on A/Z (through L,®), but not on a. We again
consider first the two limiting cases y<<1 and ¥>>1,
where analytic methods are applicable.

For v«1, the physical situation is much like that of
a nondegenerate plasma. We break up the integration
over s in Eq. (5.21) into the two ranges s?<+, where we
use (5.18), and s2>+, where

| s24y2V2L|~2s~4(1+order 7).
Neglecting higher order in v, Eq. (5.21) then becomes

Jn=2(2/15)[In(1/7)+Ces], v<1  (5.22)
where

C=(23/15)— (15/8) f v V2 (1—7?)

X[In(L24L2)+2(L,/Ls) cot=(L,/L:)]=1.30. (5.23)

Effects of dynamic shielding first appear in the sub-
dominant term C,,, which differs slightly from the static
shielding value 31/30. To understand this, note that for
v<1, Egs. (5.21c) and (5.21d) are roughly of the form

1 a1
Jare / ds s8|s?v2L |2~ / dq ¢3
0 0

X|@+NL|=2~—=In(y|L]), (5.24)

so that dynamic-shielding effects appear only in the
argument of a logarithm. This form is typical for plasma
collision integrals, except for the small upper limit o
on g, due to the exclusion principle (see Sec. 2).

When 9>>1, similar manipulations indicate that the
static shielding result, Eq. (5.19), is correct?* to order
v, because the exclusion principle essentially prevents
energy transfer (ie., V<1 is the dominant range of
integration). A crude mathematical form of J,, analo-
gous to Eq. (5.24), is

1

/ ds |s2-N2L |2~ X3, (5.25)
0

In the intermediate region y~1, J,, takes roughly the
form

/1 ds s*|s2-N2L |2~ (\|L|)~3,

where 0<7<3. Since L appears as a multiplicative fac-
tor rather than in the argument of a logarithm,
dynamic-electron-shielding effects are not negligible and
cannot be separated out. It is therefore necessary to

* Small, nonresonant effects of 0 dynamic shielding occur for
V=2V, These effects increase with v, but for physically significant
values of v (up to 100) never alter the thermal conductivity by
more than about 1.
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F1G. 4. The reduction in thermal conductivity due to ee colli-
sions is given by dr=«/ke. Curves of specified values of ér are
plotted in the temperature-density plane for (a) hydrogen and (b)
helium plasmas. The dashed portions of the curves, where the ex-
treme degeneracy assumption is suspect, are probably not physi-
cally realistic. It is believed that a correct treatment of partial de-
generacy will show that &7 always decreases with temperature and
increases with density.

perform the integrations numerically. The numerical
results are given in Table II. In this calculation, the
exact expression for L((0,V) has been used, but L;®
has been neglected and the asymptotic forms (1.10)
and (1.12) have been used for L, and V. Inaccuracies
due to these approximations in ion shielding are very
small.

We now consider the integral Jres over the range of V
where scattering is dominated by the ion plasma oscil-
lation. The contribution to the double integral (5.21c)
and (5.21d) from this resonance at s*=—v2V?2L, is*

Vo
J,.,,=1 f AV V(1= Viy2V2L,erV Lt
2Je

X (e?V1Ert2—1)~%(L,/L;) cot™'(L,/Ls). (5.26a)

25 The contribution from nonresonant ee scattering in the region
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Tazie II. The nonresonant ee collision integral, as a function of
7. The exact integral Ju is given for 4/Z=1, 2. Jeat is the value
obtained with the approximation of static shielding. Jasymp is the
appropriate asymptotic expression for Ju : for ¥>1, Jasymp=7%/
15v3; for v< 1, Jasymp=(2/15)[In(1/v)+1.30].

Y Juld/Z=1) Ju(4/Z=2) Jstat Jasymp
100 1911076 1.85X1075 1.81X1075 2.04X107®
80 3.54X107% 3.47X1075 3.43X107% 3.98X10°®
60 7.83X1078  7.72X1075  7.73X107% 9.45X107®
40 2.36X10™*  2.34X10™* 2.37X10™* 3.19X10™*
20 143X1073  1.42X1073 1.43X10™ 2.55X107%
10 7.21X107%  7.20X1073  6.97X107* 2.04X107*
5 2.76X107%  2.76X10"2 2.51X10"* 1.63X107!

2 9.55X10~2 9.55X1072 8.32X1072

1 1.73X1071  1.73X107*  1.53X107! 1.73X107*
08 20 X107* 20 X107! 1.78X10°! 2.03X107!
0.6 24 X10' 24 X107! 213X107t 241X107!
04 3.0 X107t 3.0 X101 2.62X107! 2.96X107*

Numerical results for this integral are given in Table III,
as a function of aZ, A/Z, for y=0. Since y*V?| L,| K1,
the dependence of (5.26) on v is negligible (less than 3%,
for v<50).

The following approximations permit qualitative
analytic evaluation of (5.26). The asymptotic forms
(1.10) and (1.12), and the approximation (5.18), are
employed. The integration is restricted to the region of
weakly damped ion plasma waves, very roughly defined
by

ey /A <V2<mepZ /34 ,

where . is the ratio of electron to proton mass. In this
region L,/L;&—1, so that cot™'(L,/L;)=w. We then
find
e~ tmep(Z/A)In(FaZ)—1].  (5.26b)

This order-of-magnitude estimate of Je is indepen-
dent of 4 and is much smaller than J,. (because
mep=1/1836), for v up to 50. At larger values of v,
the assumptions of nondegenerate and weakly coupled
ions begin to fail.

The one-polynomial thermal conductivity «[!, in-
cluding both ei and ee collisions, is given by

1/k10 = (1 /kes )+ (108me/p pk3T?)
X Tt Tres), (5.27)

TasLE IIL The resonant part of the ee collision integral, Jres is
given as a function of aZ, for 4 /Z=1, 2, and y=0. The dependence
of Jres On 7 is negligible.

oZ 4/z=1 4/Z=2
1000 2.07X10"4 1.02X10~¢
500 1.55X 104 7.62X1078
200 9.09X 10 4.43X1078
100 4.95X107 2.36X10°5
50 1.86X10~5 8.32X107
20 1.91X10-¢ 7.04X1077
10 3.56X107 127X107

0< V<V, is quite negligible. Making the approximations used to
derive Eq. (5.28) ,we may estimate this contribution as (3'/3/27)
X e/ AV LR 10 (BA) meplr®)— 25
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where ke, Jor, and Jyes are given by Egs. (4.13) and
(5.21), and numerical values are given in Tables I-III.
The quantity dr=«/k.; indicates the relative reduction
in thermal conductivity due to inclusion of ee collisions.
In Fig. 4, values of ér are plotted for hydrogen and
helium plasmas, over the region of the temperature-
density plane where electrons are degnerate and non-
relativistic and ions are weakly coupled. In general, ee
collisions reduce k by about 25 to 509, over a wide range
of temperatures of about 10%°K and densities up to 1030
electrons/cm?, appropriate to red-giant stellar cores.
The dashed portions of the curves, where the assump-
tion of extreme degeneracy may be suspect, are not be-
lieved to be physically realistic. A complete study of the
partially degenerate regime, now in progress, is expected
to show that 67 always decreases with temperature and
increases with density.

It is well known! that for a nondegenerate plasma,
the one-polynomial approximation to transport coeffi-
cients is incorrect by a factor of order 2, but that the
two-polynomial results are accurate to order 19,. In
the case of a highly degenerate electron gas, using the
Lorentzian approximation for es collisions, we have seen
that @;.;=0 for 75 j ,to lowest order? in o1, and that
consequently one polynomial gives exact results for
S’ and Si2/, to lowest order in o2 Furthermore,
@ijee=0 to lowest order?! in o, if 447 is odd, since
L..(pP;) is odd or even in ¢ according to the parity of j.
Thus, to lowest order in o2, the two- and three-
polynomial expressions for thermal conductivity, Egs.
(3.31b) and (3.31c), reduce to

k2=l

5.28
kB =k(1—a13%/a11033) . 29

The quantities in Eq. (5.28) that have not already been
calculated are @13, and @s3c.. These calculations straight-
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forwardly follow that of ai1.. (quite laboriously in the
case of @3zec). The results are

1

a1y =22m )~ mS (R T) ek p s~ [ v V(=1

0
o0

Xf ds s5(s2— &n%)e*(e*—1)2
0

X |s2+y2V2L|~2, (5.29)
@33ce= 232 h) S mS(RT)%e*pr" / 1 av v
0
Xfw ds s%*(e*—1)72| s2-y2V3L |2
0
X [(31s*4-57224-527)
— V2(255i—5r2s2—1209)]. (5.30)

It is not surprising that, upon evaluating these ex-
pressions numerically or, in limiting cases, analytically,
we find the correction (5.28) to be less than 19,. The
one-polynomial approximation is extremely accurate for
degenerate electrons because the usual two-polynomial
correction vanishes to lowest order in o2
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