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The electron drift velocity is usually obtained on the assumptions that: (i) the velocity variation due
to the electric field is small compared to the thermal velocity, and (ii) the inelastic collision rate is negli-
gible with respect to the elastic collision rate. By introducing the distribution function fo(co) of the veloci-
ties ¢o immediately after a collision (“initial” distribution function), we develop a new theory which obviates
the above assumptions and is therefore particularly suitable in the case of high values of the ratio between
the electric field and the gas pressure. The drift velocity is obtained by two successive steps. First we obtain
a rigorous expression for the drift velocity w(co) of electrons having initial velocity co. By expanding this
expression to first order under assumption (i) only, the usual expression for w(co) is found again, and its
validity is therefore extended even to the case of inelastic collisions, since assumption (i) has not been
used. In order to obtain the drift velocity W, the expression for w(c;) must be averaged over the initial
distribution function fo(co). The initial velocity distribution, not being affected by the electric field, is
isotropic when the differential collision cross section is isotropic. Therefore, the resulting integral equa-
tion for fo(co), though rigorous, has the same simplicity as the usual first-order expansion of the Boltzmann
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equation.

1. INTRODUCTION

N the presence of a constant and uniform electric

field E, the velocity distribution function of the
electrons in a gas may be represented by F(c,3), where
¢ is the magnitude of the velocity and & is the angle
between ¢ and E, the dependence of F on the spatial
coordinates being neglected. Consequently, the drift
velocity W is given by

W= / / ¢ cosdF (c9)dcdd . 1)
0 0

However, the function F(c,#) of the two variables ¢
and ¢ has never been deduced, since Boltzmann’s
integrodifferential equation is practically intractable
in the case of a function of two variables. Therefore, all
authors expand F(c,#) in spherical harmonics! (Legendre
functions) of cos#=c,/c, or in some other way? in
order to have for the unknown a function f(c) of only
one variable (the magnitude of the velocity). With the
exception of Wannier? (who, however, assumed that the
collisions were only elastic, since he considered ions),
all authors'?# have retained only the zero- and first-
order terms of the expansion. This is equivalent to the
following two simplifying assumptions, corresponding

1 G. Hertz, Z. Physik 32, 298 (1925); M. J. Druyvensteyn,
Physica 10, 69 (1930); J. A. Smit, sbid. 3, 543 (1936); H.
Margenau, Phys. Rev. 69, 508 (1946); T. Holstein, ibid. 70, 367
(1946) ; D. Barbiere, sbid. 84, 653 (1951); W. P. Allis, in Hendbuch
der Physik, edited by S. Fliigge (Springer-Verlag, Berlin, 1956),
Vol. 21, p. 413; N. P. Carleton and L. R. Megill, Phys. Rev.
126, 2089 (1962).

2 C. Maroli, Nuovo Cimento 41, 208 (1966); P. Caldirola,
0. De Barbieri, and C. Maroli, ibid. 42, 266 (1960).

3 G. H. Wannier, Bell System Tech. J. 32, 211 (1953).

4 See, for example, A, E. D. Heylen and T. J. Lewis, Proc. Roy.
Soc. (London) 271, 531 (1963). These authors have calculated the
distribution function f(c) for He, Ne, and Ar, taking into account
inelastic collisions and subtracting the inelastic collision cross
sections from the total cross section in order to calculate the mean
free path to be introduced into Eq. (4).
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to a small anisotropy of F(c,d): (i) The velocity varia-
tions Acg between two successive collisions, due to the
accelerating field E, are small with respect to the
thermal velocity ¢, i.e., Acg<<c; (ii) the inelastic colli-
sion frequency »in is small with respect to the elastic
collision frequency ve, i.e., vin&vel.

Using the distribution function f(c) of the velocity
magnitude, the expression for the drift velocity W is
given by

W= / () f(e)dc, @)

where w(c) is an approximate drift velocity of mono-
energetic electrons. Notice that w(c) exhibits the
dependence of W on characteristic parameters, and may
be approximated by W if one deals with mean values,
as in Compton’s theory.? We are particularly interested
in a complete expression for w(c) and will first examine
the various “theories”® developed for deducing w(c),
since we have not found a completely satisfactory
critical review of this subject in the literature. Moreover,
some fundamental concepts, clarified in the following
examination, will be used in the next section. The
various theories leading to an expression for w(c) may
be classified as belonging to one of two different types:
(a) theories deducing w(c) from the first-order expan-

5 J. M. Benade and K. T. Compton, Phys. Rev. 11, 184 (1910);
K. T. Compton, zbid. 22, 333 (1923); K. T. Compton and I.
Langmuir, Rev. Mod. Phys. 2, 219 (1930).

6 See, for example, L. B. Loeb, Basic Processes of Gaseous
Electronics (University of California Press, Berkeley, 1955),
Chaps. 1 and 3; L. G. H. Huxley and R. W. Crompton, in Atomic
and Molecular Processes, edited by D. R. Bates (Academic Press
Inc., New York, 1962), p. 335; A. von Engel, Ionized Gases
(Clarendon Press, Oxford, England, 1965), 2nd ed., Chap. IV,
Sec. 2, p. 122; W. P. Allis (Ref. 1). These authors consider only
the case of constant mean free path and elastic collisions (Compton
theory of Ref. 5) and the final viewpoint of the theories here
classified as belonging to type (a). For the theories belonging to
type (b) see the original papers (they are not critical reviews)
quoted in Refs. 11-13.
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sion of F(c,#); (b) theories deducing w(c) from the
study of a generic electron motion.

Both types retain the simplifying assumption (i).
The theories of type (a) also use assumption (ii), and
therefore give an expression for w(c) in which only the
elastic collision cross section is introduced.4 All theories
(b) make use of a further assumption, namely: (iii)
The mean free path A is independent of the thermal
velocity c.

The theories of type (a) make use of the Lorentz
treatment’ of electric conduction in metals. This
treatment, by use of assumptions (i), (i), and (iii),

leads to
w(c)= (2a/3)\¢c, (3)

where a=¢eE/m is the acceleration of an electron (or
ion) of charge ¢ and mass #, and subjected to an electric
field E. Morse, Allis, and Lamar® generalized Lorentz’s
method by including the case of a collision-cross-section
dependence on ¢. They implicitly arrived at the usual
formula which was explicitly given for the first time by
Davidson® and reads

w(c)=%a(z§+f§)

¢ dc

a d(c)

_:3_6; dc

©)

Recently Huxley and Crompton® have deduced Eq. (4)
by a slightly different procedure.

Group (b) includes Drude’s theory,! the first theory
of Langevin," and Townsend’s theory.” Drude’s theory,
besides retaining assumptions (i) and (iii), does not
consider the distribution of the free paths given by

dn 1 s
P(s)ds=——=~ exp(——)ds, (5)
noA A

where dn is the number of electrons colliding between
s and s-ds. This distribution must be taken into
account in the theories of type (b), which consider
the motion of a generic electron between two successive
collisions, and therefore with a generic path s. Moreover,
Drude’s theory is not correct because it assumes, as a
mean velocity vector, the expression

W=3c/n, ©)

"H. Lorentz, Theory of Electrons (B. G. Tuebner, Leipzig,
1916), p. 267; H. Lorentz, Proc. Amst. 7, 438 (1905); 7, 585
(1905) ; 7, 684 (1905) ; P. Debye, Ann. Phys. (Paris) 33, 441 (1910).

8P. M. Morse, W. P. Allis, and E. S. Lamar, Phys. Rev. 48,
412 (1935).

?P. M. Davidson, Proc. Phys. Soc. (London) 67, 159 (1954);
see also the footnotes of J. A. Smit (Ref. 1).

W L. G. H. Huxley and R. W. Crompton, Australian J. Phys. 10,
%11{8 f(169)57) ; 13, 587 (1960); 13, 718 (1960). See also D. R. Bates

ef. 6).

1P, Drude, Ann. Phys. (Paris) 1, 566 (1900); 3, 369 (1900);
7, 687 (1902); E. Rieche, Physik Z. 10, 508 (1909).

12P, Langevin, Ann. Chem. Phys. 28, 435 (1903); J. S. E.
’(I:‘Ewns(ind, Electrons in Gases (Hutchinson’s, London, 1947),
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18 J. S. E. Townsend, Phil. Mag. 22,1 45 (1936) ; see also Ref. 7.

ELECTRON DRIFT VELOCITY

2817

taken over a set of particles with equal density for every
direction in velocity space. This is incorrect, since the
particles which follow different orientations with
respect to the accelerating field have different times of
flight. The correct expression is

W= (ék Slc/zn:k tk)=21f,k cktk/z::k te, )

where the sum is extended through the history of a
single particle; that is, over the successive paths s
between collisions. In this case the various velocity
vectors must be weighted with the corresponding times
of flight, . The w(c) evaluated by Eq. (7) leads to the
Lorentz expression (3).

Because of the error mentioned above, Drudet
obtained

w(c)= (a/2)\/c. ®)

The same error is included in the first theory of
Langevin,? who assumed, for the mean displacement
sg in the direction of E, the expression corresponding to
Eq. (8), in the case of a generic path s, i.e.,

sg= (30)P= (30)5/¢*, ©9)

which is equivalent to w(c)s/c with w(c) given by
Eq. (8). Then Langevin® averaged over the distribution
of free paths given by Eq. (5) and, multiplying by the
mean collision frequency ¢/ (he assumed A= const and
AcgKc), he obtained

w(c)=a\/c. (10)

Notice that expressions (9) and (10) are correct only for
paths perpendicular to E. On the other hand, if we
consider a set of successive paths along E (half of them
parallel to E, and the others antiparallel) and with A
independent of ¢, the mean displacement vector § and
the contribution to the drift velocity would be zero.
The fact that flights of different orientations contribute
differently to w(c) has been taken into account in
Townsend’s theory® even though use is still made of
assumptions (i) and (iii).

To conclude this review, we may say that Eq. (4)
obtained by theories of type (a) is the most complete
formula so far deduced under assumptions (i) and (ii)."
The simplifying assumption (i) implies a lower limit on

4 Notice also, that Wannier (see Ref. 3), who integrated
Boltzmann’s equation and therefore used Eq. (2), considered high
fields, but only for ions, for which inelastic collisions are negligible
even in the case of the high fields considered by Wannier. Con-
sequently, assumption (i) has been retained by Wannier, who
maintained even assumption (i). In particular, for ion masses
much larger than molecule masses, Wannier (see Ref. 3) approx-
imated the distribution function of the magnitudes of ion velocity
by a Dirac delta function centered at a velocity ¢ of the same order
as the drift velocity w, so that the assumption c~w>Acg is well
satisfied. Only in the case of ion masses of the same order as
molecular masses did Wannier (see Ref. 14) dispense with assump-
tion (i). Yet in this case, he did not seek a theoretical expression,
but used the “almost empirical” Monte Carlo method (see Sec.
II D of Ref. 3).
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¢, and therefore Eq. (4) is not reliable for low-energy
electrons. Assumption (ii) implies that only the mean
free path corresponding to the elastic collision cross
section? has to be introduced into Eq. (4).

In Sec. 2 we remove assumptions (i), (ii), and (iii)
by a method which may be thought of as a generaliza-
tion of Townsend’s theory.!® Consequently an expression
of w(c) more complete than Eq. (4) will be found.

2. DEDUCTION OF w(c) WHEN e¢/(c,d)
IS ISOTROPIC

In this section we shall consider the case of isotropic
differential collision cross sections a(c,8). Our method
consists of the calculation of the average path length
S(co) along the field direction and the average time of
flight T'(co) between two successive collisions, for
electrons having the same initial velocity magnitude
co. It results in a drift velocity for monoenergetic

electrons
w(co)=S(co)/ T (co), (11)

where S(co) and T'(co) have been obtained as an average
over all the initial angles ¢y and all the possible flight
times #, as shown generally in Eq. (7).

The above procedure is possible if the number dn of
the electrons scattered into the solid angle dQ. with
initial velocity ¢, is independent of &, that is, when
a(c,®) is isotropic. Let us clarify this fact, together with
the other fact that, in order to obtain the drift velocity
W, we must average w(co) given by Eq. (11) over the
distribution function of the velocity magnitudes
immediately after collisions. This “strange” distribution
function is a particular case of a more general one here
called a “partial” distribution function, defined as
follows. Let us “photograph” (at any instant) the
position and the velocities of all electrons and consider
the electrons which are, at the instant considered, in a
shell between 7 and r-+dr from the previous centers of
scattering. The distribution function of these particular
electrons is here called the partial distribution function
F.(c,®). It is related to the usual “total” distribution
function F(c,¥) by the relationship

[ i Fo(c)dr=F(c9). (12)

0

The most interesting and the only practically useful
partial function is the one corresponding to =0, here
called the “initial” distribution function and represented
by Fo(co,80). Instead of the other partial distribution
functions defined by Eq. (12), we use in the following
a normalized initial distribution function, i.e.,

/ / Fo (60,190)(160(100: 1.
0 0

The advantage of using Fo(co,%) is that, in the case of

(13)
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the isotropic cross section ¢(c,®), the initial distribution
function is isotropic because it is not affected by the
electric field. Consequently, it may be split into the
following product :

Fo(co,0) = folco)ILo(@), (14)

where fo(co) is the initial distribution function of the
velocity magnitudes and II(%) is the initial angular
distribution function. The splitting given by Eq. (14)
is possible not only under assumption (i) of Sec. 1, as
is true for the usual F(c,®), but in the general case,
even in the presence of very high electric fields. More-
over [always when o(c,#) is isotropic], the initial
angular distribution function is known completely,
since it is isotropic, i.e.,

Ho(i’o) =% Sinﬂo . (15)

Notice that, under assumption (i), the “average”
angular distribution function defined as

()= / " P (16)

is almost isotropic, but it is just the residual small
degree of anisotropy which is responsible for W. By
contrast, because of the very high ratio between
molecular masses and electron mass, ITo(dy) is practically
isotropic when ¢ (¢,d) is isotropic, even when the partial
angular distribution function immediately before colli-
sions is completely anisotropic, as it is for high fields.!®
In this case the very small degree of anisotropy of
II,(8) may be neglected, since W is of the same order
as ¢. Generally, when o(c,#) is isotropic, the degree of
anisotropy of IIo(do) is much lower than one of the
average angular distribution function II(¢#) defined by
Eq. (16).

Let us give a mathematical form to the above
concepts. After a time of flight ¢, the velocity of an
electron having initial velocity ¢y and subjected to an
acceleration ¢=eFE/m is given by

c(co,30,t) =[ (co coso+at)2+c? sin¥¥ JV2, (17)

where & is the angle between ¢y and E. The projection
sg of the displacements s of the same electron in the
direction of E is given by

SE (Co,‘(’o,t) =col C0500+’%at2 . (18)

The distribution of the free paths s is somewhat
different from the usual Eq. (5), which is valid only for
Aindependent of ¢. With the same notation as in Eq. (5),
but with A(c), we may now calculate the distribution
function P (co,d,s) for the free paths. This is defined by

16 In such a case, the electrons that are scattered at large angles
immediately after collisions rapidly deviate because of the applied
field, so that, after a very short time following a collision, the
angular distribution becomes very narrow.
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the relationship
P(co,30,5)ds=—dn/n,. (19)

As in Eq. (5), —dn is the number of electrons colliding
between s and s-+ds, and 7, the initial number of
electrons. On the other hand, it can easily be seen that

the elementary number —d# of collisions is given by
—dn=mnds/\ c(co,%0,5)]. (20)
Integrating Eq. (20), we have
n="m, exp(—-/8~———di—) . (21)
o Ac(cod0,8)]

Hence, by substituting Eq. (21) into the right-hand side
of Eq. (20), and the result into Eq. (19), we obtain

A[cl(s)] Xp("/ x[j(iﬂ) @

Instead of considering the distribution function
P(co,80,5) of the free paths, it is convenient to change

P (60,00,5) =
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the variables and introduce the distribution function Q
of the times of flight, since sg and ¢ are very simple
functions of ¢, &y, and ¢ [see Egs. (17) and (18)7], but
not of ¢y, &, and s. The new function Q is defined by

P(Go,’(’o,s)ds= Q (60,!90,!)(1!: “dﬂ/ﬂ .
We get

Q(Co,t?o,f)=;\%)‘exp(— [ t

cdt
x[ca)J)
i[5 @

Weighting the displacement sg given by Eq. (18) over
the distribution of the times of flight given by Eq. (23)
and over the angular distribution function of the
initial directions given by Eq. (15), we obtain the total
displacement S(co) in the direction of the electric field
of the electrons having initial velocity co. Weighting in
the same way the times of flight ¢, we obtain the total
time of flight T'(co) of the same electrons. Then, by
means of Egs. (11), (15), (17), (18), and (23) we get

T 00 t
/ sindoddo | (cof costo+3at?)d/dt {exp( — / [(co cosdo+a7)2+co? sinZdg JH2dr/ )\(T))} dt
0 0

0

(24)

‘w(Co) =

/; ) sindoddo / - t1(d/dt) {exp(-— /; t [ (co cosdot-ar)2+-co? sin%e ]V2dr/ 2 (T))} di

0

Equation (24) is the required expression and is valid
without any simplifying assumption. In order to
calculate the drift velocity W we must average w(co)
given by Eq. (24) over the initial distribution function
Jo(co) of the velocity magnitudes:

W=/:° W(Go)fo(co)dC(). (25)

Note that, whereas Eq. (2) is valid under the simplifying
assumptions (i) and (ii) of Sec. 1, Eq. (25) is valid
without retention of these assumptions.

For a better understanding of this theory, let us
present it in a slightly different form. Instead of
considering an instantaneous “‘photograph” of electron
velocities, let us examine the history of a generic
electron. The distribution of the successive velocities
taken by this electron (and in particular the distribution
of the initial speeds) is equal to that obtained by a
photograph, since an almost stationary situation for
electrons is considered, i.e., an “almost” Lorentz gas
with a stationary mean molecular energy, lower than
the stationary electron energy. In other words, we
assume ergodicity, which is usually accepted in this

case (see for example Sec. IT D of Ref. 3), and which
simply means that there are no privileged electrons.
Consequently, if the successive initial speeds [i.e.,
fo(co)] and their angular distribution [which is isotropic
and is given by Eq. (15)] are known, the displacement
of the electron considered can be easily calculated, both
its trajectories (the motion is uniformly accelerated
and therefore the trajectories are parabolas) and the
length distribution of the parabolic arcs [given by
Eq. (13)]being known. In the same way we calculate the
total time of flight of the paths considered. Everything
concerning the trajectories of the electrons having initial
speed ¢, is taken into account by w(c) given by Eq.
(24). The initial speeds of the successive paths are
taken into account by fo(co). Hence Eq. (25) gives the
mean displacement per unit time of the electron con-
sidered, i.e., drift velocity.

By this second picture one can immediately see that
the initial speeds do not form a zero-measure set, since
there is an initial speed for any path. Obviously, the
initial speeds must be taken at a distance from the last
center of scattering (molecule) just beyond the sphere
of interaction between electron and molecule. The
smallest value of the applied external field E that
perturbs appreciably the electron motion inside the
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interaction sphere is the upper limit for our theory.
Fortunately, the maximum values of E and of the
characteristic ratio E/p (p being the gas pressure) are
far beyond the E/p values pertaining to the physics of
the gaseous state, even extended up to E/p~1000
V cm™ Torr™.

Leaving to Sec. 5 the formulation of the equation
governing the initial distribution function fo(co), in
Secs. 3 and 4 some consequences of the exact expression
(24) are considered.

G. CAVALLERI AND G.
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3. APPLICATION OF THE GENERAL FORMULA
IN THE CASE OF CONSTANT
FLIGHT TIMES

Since usually the mean value of ¢/) is finite, we have

! { ¢ cdr }
texpy— [

o A7)
Taking Eq. (26) into account, an integration by parts
of Eq. (24) with respect to £ gives

0

(26)

0

L3 0 t
/ sindoddo |  (co cosdo+at)exp I - f [ (co cosdotar)2+co? sinZ¥o |V2d+/\(7) l dt
0 0

0

w(co)=

27

L4 0 t
/ sindoddo / exp { - / [ (co costotar)?+co? sin%do |V 2dr/\(7) } dt
0 0

0

Two evident particular examples satisfying (26) are
given by N/c=const=7y and A=const. In the case of
N c=r,, the integration of Eq. (27) is very simple and
gives

/ sindoddo | (co cosdotab)exp(—1i/To)dt
0

0

w(co)=

/ sindoddo f exp(—1t/ro)dt
0 0

(28)

=aT0=0a—,
c

which is the same result obtained from Eq. (4) for
M c=const. Therefore, in this case, Eq. (4) is valid even
for very high fields, i.e., not only under assumptions (i)
and (ii). Note that the same result was found by
Langevin? [see Eq. (10)]. In fact Langevin®? used

Eq. (6), which is valid only when the time intervals
relative to different paths are equal, as occurs for
A\/c=const; in this case Eq. (7) reduces to Eq. (6).

4. FIRST-ORDER EXPANSION OF EQ. (24)
UNDER ASSUMPTION (i)

Let us retain the simplifying assumption (i) of Sec. 1,
but not assumptions (ii) and (iii). In our case assump-
tion (i) means
(29)
Therefore we may expand ¢ [given by Eq. (17)] and
M to first order with respect to the variable ¢, obtaining

c(co,P0,)>co}at cosd,
e (co,B0,t) J2No+at cosd (AN/dE) emcq (30)

where A\op=XA(co). Substituting Egs. (30) in Eq. (23) and
expanding Eq. (23) to first order, we obtain

atLo~e, V.

co+at cosd t (cotar cosd)dr co at coat ax
Q(coPof)>————e€xp { - [ z( +— cosd—— cosz9~—)
Notat cosdd\/dc o Aotar cosd(d\/dc) Mo Ao Ao? dc
¢co @acosd? Co AN B\ ¢ at? cos? co d\\ aicosd? co A\ Co
Xexp(-——t—- 12+—a cosd— —)z-——[l— (1——-——-—)+ (1——-—)] exp(——-—t). (31)
)\o 2)\0 )\02 dc 2 )\0 2)\0 )\o de Co )\o de >\0

By substituting Eq. (31) in Eq. (24) and taking into account Eq. (29) (i.e., @\o/ceKco, which implies

a®\¥/co®Kaho/co), we obtain after some calculations

T

sinddd Ao cosd+a(N\e?/co?) (1— cos?¥)+a cos?® (No/co) (AN/dc)]

= (3a) (2N c+dN/dc). (32)

w(co)>w(c)~

[ sinddd[ (No/co)— (1/¢co) (A\o/co)?a cosd(1— (co/No) (AN/dc))]

0
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This equation coincides with Eq. (4), but here it has
been found without using assumption (ii), whereas, so
far, all theories of type (a) (see Sec. 1) have deduced
Eq. (4) under that assumption. These theories were
therefore forced to take the mean free path A to be
introduced into Eq. (4) as that corresponding to only
the elastic collision cross section oer.

Some authors consider high fields (see, in particular,
Figs. 4-6 of Heylen and Lewis?) for which assumption
(i) is no longer valid. These authors? subtract the
inelastic cross section from the total collision cross
sections in order to have a value of X to introduce into
Eq. (4). By contrast, Eq. (27) has been deduced by
using the mean free path A\ corresponding to the total
collision cross section and the same cross section must be
used in Eq. (32) since this equation has been deduced
from Eq. (24) under assumption (i) only.

5. INITIAL DISTRIBUTION FUNCTION OF
THE VELOCITY MAGNITUDES

In order to complete the theory we must find the
expression for the initial distribution function fo(co)
not subject to assumptions (i) and (ii).

Let us consider a number dn, per unit volume of
particles having initial velocities with magnitudes
between ¢o and ¢o+dco, and directions within the solid
angle dQ=2r sindddo. When o (c,#) is isotropic, and be-
cause of Egs. (14) and (15), dn, is given by

dno =F 0 (Co ,00) dCod(’o = fo (C o) dCO% Sin‘ﬁod’l,o . (33)

The quantity dnyXQ(co,30,)dt, where the time-of-flight
distribution Q(co,30,t) is given by Eq. (23), represents
the fraction of the electrons considered that collide
between ¢ and t4-d¢ and that have a velocity ¢ given by
Eq. (17). Because of the collision, the velocity ¢ changes
to a new initial velocity co'. Let us denote by G(c— ¢¢’)
the scattering kernel, i.e., the probability density for
speed changing from ¢ to the new initial velocity ¢,’ upon
scattering. Then integrating dnoQ(co,30,f)diG(c — ¢o')
over ¢, %9, and ¢, we obtain

00 Ly 0 c
So(co) = / fo(co)dco / 1 sindoddy f G(c— co')-
0 0 0 A

Xexp(—- /0 t ;dr)dt. (34)

This equation is a Fredholm homogeneous integral
equation of the second kind in which the unknown is a
function fo(co) of only one variable. Therefore, the
difficulty of integration is of the same order as that
arising in integrating Boltzmann’s integrodifferential
equation, where the function F(c,#) of two variables is
expanded to first order, so as to have as unknown a
function f(c) of only one variable. Such a procedure
implies the simplifying assumptions (i) and (ii) of
Sec. 1, which are not retained in Eq. (34).
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We leave research on the solutions of Eq. (34) to
the future, giving here some specifications of the
scattering kernel G(c— ¢y).

In the case of inelastic collisions, G(c— ¢o) can be
expressed, taking into account the conservation of
energy, by Dirac’s delta functions

Z crin‘(C)&I:c— <Co’2+;2;e,~)m:|, (35)

Glc—co)=
T tot (6 i

where oin’(c) and e; are the cross section and the
excitation energy of the ith inelastic level, respectively,
and o1 (c) =0a1(0)+ 2 i oin(c), where oalc) is the
elastic cross section.

For E/p values (p being the gas pressure) higher than
the value for which the mean electron energy (as
calculated taking into account elastic collision only) is
greater than the lowest inelastic level, the effect of the
speed changes due to elastic collisions is negligible.!® In
this case it is sufficient to introduce Eq. (35) into (34),
and one integration is done immediately because of the
Dirac delta functions. Therefore our theory becomes
particularly fitted for high E/p values.

For intermediate E/p values, even in the case of
elastic collisions, it seems sufficient to approximate the
relevant scattering kernel Ga(c — ¢o') by a Dirac delta
function centered on the mean value'” of the velocities
which, because of collisions, transform into the new
initial velocity ¢/, i.e.,

m-+M
- (m2+M2) 1/2'/0

Gel (6 R 60’) _ Tel (C) 5[5

Ttot (C)

] (36)

where M is the mass of the molecules. Therefore, even
for intermediate E/p values we may immediately make
an integration by substituting the sum of Egs. (35) and
(36) in Eq. (34). Equation (36) seems acceptable
because, for electron energies corresponding to inter-
mediate E/p values, the velocity distribution function
is almost isotropic when o (c,9) is isotropic.

The degree of isotropy is still better at low and very
low E/p values, for which Eq. (34), together with Eq.
(36) only, may be used instead of Boltzmann’s equation.
However, at low E/p values the usual procedure'? may
be used. But whereas assumption (ii) is always verified
at low E/p values, assumption (i) is not verified for
electrons having very low initial velocities. This implies
a small error in the low-energy tail of f(c) calculated by
the usual procedure.}? A greater error in the calculation
of W by means of Eq. (2) comes from w(c), because the
usual expression (4) diverges for ¢ — 0. In this case we
suggest averaging the exact expression of w(cy), given
by Eq. (24), over f(c) calculated by the usual procedure.
Notice that in this case w(co) given by Eq. (24) is

16 This occurs for E/p>1-5 V cm™ Torr .
7 E. W. McDaniel, Collision Phenomena in Ionized Gases
(J. Wiley & Sons, Inc., New York, 1964), p. 19.
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almost equal to w(c) given by Eq. (4) (as shown in
Sec. 4), with the exception of the very low initial
velocities ¢, for which assumption (i) is not valid.

6. CASE OF ANISOTROPIC DIFFERENTIAL
COLLISION CROSS SECTION

In this case it is well known,'® in the so-called trans-
port approximation, that the Boltzmann equation
remains the same as in the case of an isotropic collision
cross section a(c,®), provided one substitutes for the
mean free path \ the “transport (or diffusion) mean
path” (or “mean free path for momentum transfer’”)
A4, defined by the relationship

1/0()) = Noa()=N / " o(68) (1—cosd)} sinddd

=No()[1—a(e)]=[1—a()1/Nc). (7)

In order to calculate w(c), the Ag given by Eq. (37)
may also be used. Yet, so far, only oe(c)=0i01—cin has
been introduced into Eq. (37) in order to obtain Mg
for use in Eq. (4). Moreover, the differential cross
section ¢in(c,¥) for inelastic collisions is usually con-
sidered as isotropic. When this condition is no longer
valid we may use the expression found by Altshuler,!®

ie.,
1
)\d(c)

=Nad(6)=N/1r o(c )

X{1—cos?[1— (c12/c)?]2}5 sinddd, (38)

where ¢ is the speed before the collision, and ¢1 is given
by the relationship

(39)

1 — —_
FMC12=€3—€1=€,

€1 and e; being the energy levels of two quantum states
and e the excitation energy of the inelastic level con-
sidered. Since

d=ci+a?, (40)

where ¢, is the initial velocity, we may put Eq. (38)

18 A, M. Weinberg and P. Wigner, The Physical Theory of
Neutron Chain Reactors (The University of Chicago Press,
Chicago, 1958), Chap. VIII, p. 196; K. U. Beckurts and K. Wirtz,
Neutron Physics (Springer-Verlag, Berlin, 1964), Part II, p. 95;
S. Glasstone and M. C. Edlung, The Elements of Nuclear Reactor
Theory (D. Van Nostrand Co., Inc., New York, 1952), Chap. V,
Sec. 5.20, p. 98; see also Ref. 19.

1 S, Altshuler, J. Geophys. Res. 68, 4707 (1963). Notice that
the speed denoted by » in Egs. (17) and (18) of Altshuler’s paper
must be changed into %/, since, in the remainder of the paper,
Altshuler has denoted by v’ the speed immediately before collisions.
The use of v instead of 2" in Egs. (15)-(18) is due to the following
change of variable: vdv=1v'dv’ [performed between Egs. (13) and
(14)]. The speed v (or v’) is then considered as an integration
variable. But when Altshuler exploited Qi2(») [in our notation
7in(€)], he should have replaced v by v’.
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into the form

> =N /; ) o (N1~ (co/c) cosd 5 sinddd

=No(©)[1—a(c)8(c)]. (41)

When ¢o/c does not depend on &, the quantity 8(c) is
simply given by B(c)=co/c. In this case we suggest
another argument in favor of Eq. (41) by generalizing
a procedure used by Huxley and Crompton® to find
Eq. (4).

We use the same notation as in Ref. 20 [where in-
elastic collisions were not considered ]. For an inelastic
encounter, the velocities  and R relative to the centroid
are deflected through the angle ¢ to have »’=8(c)r and
R’=8(c)R (instead of =7 and R'=R as occurs in an
elastic encounter). Consequently the mean value of #’
is 78(c)cosd=ra(c)B(c). The product o appears instead
of @, and hence the same product appears in Eq. (14)
of Ref. 20. This is acceptable, since we have proved in
Sec. 4 that Eq. (4) [which is equal to Eq. (15) of Ref.
197 is valid even when there are inelastic collisions.
Moreover it can be seen immediately that the use of
the mean free path A4 as given by Eq. (41) is correct
in the limiting case of a(c) — 1 and B(c) — 0. In fact,
the substitution of Eq. (37) in Eq. (4), when a(c) — 1
gives w(c) — «, whereas when 8(c)=0, the direction
of the emerging electron is of no concern in determining
w(c).

Finally, since the mean free path as given by Eq.
(37), which appears in Eq. (15) of Ref. 20, is the same
as the one used in Boltzmann’s equation, by similar
reasoning we suggest using the mean free path as given
by Eq. (41) in Egs. (24) and (34).

7. CONCLUSIONS

The method here presented consists essentially in
referring to the initial velocity co, since the correspond-
ing initial distribution function Fo(co,%), being un-
affected by the electric field, is isotropic when the
differential collision cross section o(c,#) is isotropic,
and therefore Fo(co,30) =% fo(co) sindo. This allows us to
exploit the knowledge of the integrated equation of
motion and the flight-time distribution, which is
easily obtained and is given by Eq. (23) of Sec. 2.
The drift velocity W is given by W= [’ w(co) fo(co)dco,
and this expression is not subjected to the simplifying
assumptions used by the previous theories, since we
have obtained w(co) directly and not by a first-order
perturbation method.

The quantity w(co) is the drift velocity of electrons
having initial velocity ¢y, and may be compared with
the corresponding approximate expression for w(c)

01, G. H. Huxley and R. W. Crompton, in Atomic and Molec-
ular Processes, edited by D. R. Bates (Academic Press Inc.,
New York, 1962), p. 342.
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obtained by the various theories mentioned in Sec. 1.
In the particular case of N/c=const, the “complete”
expression for w(co) calculated in Sec. 2, gives, as shown
in Sec. 3, the same result obtainable from Eq. (4) (which
is the most complete expression obtained by the other
theories) but without having to rely on simplifying
assumptions.

Therefore, in the particular case of N\/c=const, we
prove that Eq. (4) is valid not only for low fields but
also for high fields. In the general case (Sec. 4), the
expansion of w(co) to first order in time, together with
use only of the assumption that the speed variation
between two successive collisions is small with respect
to the thermal velocity, again gives Eq. (4). The
validity of this equation can therefore be extended even
to inelastic collisions by simply considering A as the
actual mean free path corresponding to the total
(elastic+inelastic) collision cross section. In Sec. 5 an

ELECTRON DRIFT VELOCITY

293

integral equation for the initial distribution function
fo(co) of the velocity magnitudes is given. This equation
has the same difficulty as Boltzmann’s equation, in
which an expansion to first order has been performed,
since we have as unknown a function fo(co) of a single
variable. The dependence on the variable ¢ has been
eliminated since the initial distribution function is
isotropic. In Sec. 6 the case of anisotropic o(c,d) is
considered. In the usual transport approximation, we
suggest using the mean free path for momentum transfer
given by Eq. (41), which also takes into account the
case of anisotropic inelastic collisions.
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A series expansion for the ground-state energy of a multispecies quantum fluid is obtained. This ex-
pansion is derived by assuming that the ground-state wave function for the fluid can be approximated by the
symmetrized ground-state wave function for a mixture of quantum ideal gases times a product of pair
functions. The lowest-order approximation to the energy is minimized with respect to variations in these
pair functions in order to obtain an approximation to the ground-state wave function for the system. In
principle, this variational procedure can be carried out to any desired order in the energy expansion, and
the machinery for doing so is explicitly exhibited. The results of this variation in the lowest order are
applied to a two-species system consisting of electrons and nuclei. The results are consistent at high densities.

I. INTRODUCTION

N recent years, a great deal of attention has been

given to the thermodynamic properties of the
quantum electron gas. A fair number of techniques
have been developed for the treatment of this problem.
Some of these are the perturbation expansion which
used the Green’s-function technique'™® and another
developed by Bohm and Pines? which uses the random-
phase approximation (RPA). These techniques give
good results at high densities. A variational method has
been developed by Gaskell,® who uses collective co-
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ordinates and the RPA, which is also good at high
densities. Hedin® has combined the RPA and the
Martin-Schwinger integral equation to obtain good
results in the intermediate density range. The lattice-
gas approach’® holds at low densities.

While attempts have been made to apply the Green’s-
function technique to systems composed of more than
one species of particle,® the results are very restricted.
A variational method for determining the ground-state
properties of multispecies quantum systems is presented
in this paper. The method developed here is similar to
that used by Gaskell® in his treatment of the quantum
electron gas. We assume that the ground-state wave
function can be approximated by

v=v eXP{“%O} )

$L, Hedin, Phys. Rev. 139, A796 (1965).
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