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As the first step in a theoretical study of the properties of liquid *He, we have calculated the binding energy
of the system by means of Brueckner theory. The method of Brueckner and Gammel is used to solve the
Bethe-Goldstone equation, calculate the reaction matrix or G matrix, and then get the two-body interaction
energy contribution. The Brueckner-Gammel method is studied in some detail. For simplicity we use the
approximation of an effective mass in a reference energy spectrum, which in principle should be fitted to
self-consistent single-particle energies. The intermediate-state potential energies are, however, chosen to be
equal to zero. Hence, the three-body energy contribution must be estimated by separate calculations. Various
two-body wave functions, Fourier transforms of wave functions, and G-matrix elements are calculated.
Also, the volume of the correlation hole, which gives the convergence parameter in the linked-cluster ex-
pansion, and an effective interaction, which is a representation of the G matrixin coordinate space, are cal-
culated, together with the binding energy for liquid 3He. The calculations are repeated for various input
parameters, i.e., for several values of the parameters which define the reference energy spectrum, and for
several values of the initial relative momentum of the two interacting particles. The total or c.m. momentum
is set equal to zero. The Brueckner-Gammel method is found to be a fairly rapid and convenient method
when the complete Green’s function in the Bethe-Goldstone equation is expressed in terms of a corresponding
reference-spectrum Green’s function,and the single-particle energies in the energy denominator in the Bethe-
Goldstone equation are replaced by a reference energy spectrum. Third-order and higher-order energy con-
tributions can probably be assumed to be built into this energy spectrum, or they may be estimated by sepa-
rate calculations. The binding energy for liquid 3He with only two-body terms included is found to be approxi-
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mately —3°K per particle, which is in general agreement with other calculations.

1. INTRODUCTION

HE simplest microscopic theory of liquid *He
would be that of an ideal Fermi gas, but this
obviously cannot be a good description of the real
liquid ®He. A pure Hartree-Fock theory is not useful
either, because the interatomic potential is strongly
repulsive at short distances, and two-body correlations
must be included to get finite results. A hard-sphere gas
has been studied in the low-density limit, but this work
is of only formal interest to us, since liquid *He cannot
be considered as a dilute system. The range of the forces
is not small compared to the average spacing between
the atoms, and we also need attraction to obtain binding
of the system. We must, in principle, sum an infinite
class of terms in the perturbation series to take into
account the strong interactions between $He atoms.
This can be done in a systematic way with diagram-
matic perturbation theory.

The first serious attempt to calculate the properties
of liquid *He at zero temperature from first principles
was made by Brueckner and Gammel (BG).! The physi-
cal basis of the Brueckner theory is that when two *He
atoms interact, they interact strongly, but at the same
time the liquid is sufficiently dilute that their inter-
action with other particles may be considered in an
average way. Brueckner and collaborators developed a
method to avoid the difficulties resulting from the strong
repulsion in the potential v». Starting from the linked

* Work supported in part by the U. S. Atomic Energy Com-
mission and the Higgins Scientific Trust Fund.
( 15K) A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1040
1958). i
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Rayleigh-Schrdédinger perturbation expansion for the
energy, a rearrangement is performed which replaces
the expansion in terms of the large matrix elements of
the potential by an expansion in reaction matrix ele-
ments. This reaction matrix, or G matrix, is obtained
by a solution of the two-body problem in the medium.

The multiple scattering theory of Brueckner is
formalized by Goldstone? in the language of second
quantization. The ground-state energy of the system is
obtained as the sum of a perturbation series in the two-
body interaction, where each term in the series is
represented by a linked diagram. Linked diagrams are
diagrams which cannot be separated into independent
parts without breaking at least one interaction line.
One hopes that the Goldstone series converges suffi-
ciently rapidly for practical calculations, but this is
not obvious because of the very strong short-range
repulsion in the potential. However, the wave function
is finite, and vanishes in this region. Then the G matrix
corresponding to multiple elementary collisions is
introduced, and the corresponding terms in the Gold-
stone expansion are the ladder diagrams, where a given
pair of particles outside the Fermi sea interact any
number of times with each other. The set of all such
diagrams can be summed, and replaced by a single
diagram in which the pair of particles interact by the G
matrix.

Brueckner and Gammel calculate the interaction
between two atoms, taking the rest of the medium into
account in two important ways. The Pauli exclusion
principle is included, which limits the number of states

2 J. Goldstone, Proc. Roy. Soc. (London) A239, 267 (1957).
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available for the interaction pair of atoms. Also, this
pair of particles moves in an average field or self-
consistent potential created by the neighbors. Effects
from three-body or higher-order clusters are neglected.
The motion of an atom is characterized by a momentum
quantum number, and the ordering of states is like the
ordering in a Fermi gas, but the atomic motion is
associated with very strong polarization effects among
the surrounding atoms, so the particles in the theory are
really quasiparticles, or atoms moving with their
polarization cloud. To include the exclusion principle
and modified energy spectrum effects, BG use a Green’s-
function method to evaluate the G-matrix propagator
in coordinate space. Their results are in reasonable
agreement with experimental results, and may suggest
that two-body correlations are the most important ones
in describing liquid ®He. But their calculated binding
energy is less than half the experimental value.

In the integral equation for the G matrix, single-
particle potentials expressed by diagonal elements of
the G matrix are included. This introduces a problem of
self-consistency. This single-particle energy spectrum
is assumed to have a gap at the Fermi surface. Single-
particle potentials representing the interaction with
particles in the Fermi sea should be calculated on the
energy shell. But when the medium is excited, scattering
of a pair of particles occurs off the energy shell, and the
single-particle potential for particles above the Fermi
level should be calculated with G-matrix elements off
the energy shell. In their nuclear-matter calculations,
BG? approximate this by an average excitation of the
order of magnitude of the Fermi energy, which is
probably a rather bad approximation. Furthermore,
they simply cut off the single-particle potential energy
spectrum in intermediate states at the point where it
goes through zero.? Although this gives results not too
different from ours, it is inconsistent with their stated
procedure, and it is clear that if they had retained the
potential energy after it became positive, they would
have obtained less binding energy. Perhaps the system
would not have been bound at all. It is therefore impor-
tant to redo their calculations in some consistent way.

The Brueckner method can be modified somewhat.
For nuclear matter, Bethe et al.5 have developed a
method to calculate a relatively simple reference reac-
tion matrix. The self-consistent smgle—partlcle spectrum
is represented by a quadratic expression, ie., an
effective-mass approximation with appropriate coeffi-
cients. The release of the energy denominator from the
loop of self-consistency through the G matrix and the
single-particle energies is a great advantage and a major
simplification in practical calculations. We will try to
use this idea also in our calculations.

( 3K, A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023
1958).
¢ K. A. Brueckner @rlvate communication).

5H. A, Bethe, B. H. Brandow, and A, G. Petschek, Phys Rev.
129, 225 (1963).
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There remains some question about the single-
particle energy spectrum for intermediate states. Bethe
has proposed to calculate the three-body energy as if it
were a self-energy correction to the two-body terms. One
can define the particle potential energies in such a way
that the three-body correlation energy is compensated
by the potential insert diagrams of the Goldstone theory.
The total energy is then given by the first-order two-
body interactions, by summation of two-body terms.
We will, however, in contrast to this method, choose
the intermediate-state potentials to be zero, i.e.,
assume just free propagation or plane waves for the
intermediate states, and then do separate calculations
for the three-body cluster energy.

2. BRUECKNER-GAMMEL METHOD

In the method of BG,!? the energy is calculated from
a reaction matrix similar to the transition matrix for
scattering in free space. This reaction matrix, or G
matrix, is defined by the integral equation

G=v—9(Q/e)G (2.1)

in operator form. Here v is the two-body potential,
which is assumed to be the same as in free space. The
Pauli exclusion operator Q prevents scattering into
occupied intermediate states, i.e.,

O(Eaky)=1 if kg>kp and k> kr,

. (2.2)
=( otherwise.

This is the exclusion-principle effect of the other par-
ticles in the medium on the two strongly interacting
particles.

The energy operator e includes potential and kinetic
energy, and can be written as

(2.3)

The single-particle energies e and e, are self-consistent
energies for particles moving in the Fermi sea, and ¢, and
€» are energies of virtual excitations above the Fermi
surface.

The energy of an unexcited atom is

e= €, €p— €m—€n.

e(kn)= T(kn)+ U(kn) ’ (2-4)
where T is the kinetic energy,
T(kn)=%h%.2/M , (2.5)

and M is the atomic mass.

It is a problem of particular importance and difficulty
to define the single-particle energies e. In the theory of
Brueckner, the single-particle potential U is given by
the diagonal elements of the G matrix by the relation

Ulkn) =3 [emkn|G|bmkn)— emkn|G|knkm)], (2.6)

with summation over all occupied states. The second
term in Eq. (2.6) comes from exchange of spin and mo-
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mentum coordinates. If we assume that G is a function
of only the magnitude of the total momentum P, we
can write a partial-wave expansion

(bmkn| Gl Embny=3 (2L+1)GL(P,fema)Pr(cos), (2.7)

where G, is a function of relative and c.m. momenta.
The properties of the liquid can then be determined
from the G matrix.

The total ground-state energy is

E=3 [T(ka)+5U(kn) 1. (2.8)

We introduce relative and c.m. coordinates by
defining
P=%(kl+k2) )

k=3(ki—ko),
R=3(r+r.),

I=Ir1—1rs.

(2.9)

Then P is the average momentum of the two particles,
and the c.m. momentum is equal to 2P.

For central forces only, the angular-momentum re-
duction of the G matrix is given by

<k’|le>=§(2L+1><k’IGL|k>PL(fe'-I%). (2.10)

Equation (2.4) for the energy of a particle moving on the
energy shell with momentum %, becomes

e(fn) = 10202/ M

+2X2XE[F X QL+ {mn|Grlkmn)

even L .

+3 EL (2LA1){kmn|GL|Ema)], (2.11)

with the sum over m taken over the Fermi sea. The first
factor of 2 in the interaction term comes from two spin
states per momentum state, the second factor of 2
comes from the exchange term. The factors % and £ give
the weights of the singlet-even and triplet-odd states.
We will later include all these factors in our definition
of the G matrix.

We now have an effective interaction between the
quasiparticles, given by the G matrix which is density-
dependent. If we neglect the exclusion principle and the
average field from the other atoms, we can write

(K'|G|k)= — (4w %2/ ME)
X{ }:L<2L+1>5L(k)PL(I?e'~/‘e)(1—P,)

even

+ ¥ QL+1DsR)PLE - E)(3+Po)}, (2.12)

odd L

where P, is the spin-exchange operator, and 8.(%) is the
scattering phase shift for relative momentum k.
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Equation (2.12) is probably a good approximation for
L>3, but for lower values of L, the many-body effects
are important and the exclusion principle must be
included. The potential is strong in the important region
and polarization effects occur.

If ko is the initial- and k is the intermediate-state
relative momentum of the two interacting atoms, then
the Pauli operator (2.2) is

Q=1 if |P+k|>kr and
=0 otherwise,

|P—k|> kg, (2.13)

and the energy denominator (2.3) is
e(k,ko,P) = e(P+Kk)+ e(P—k)— H(ko,P)
= (#*/M)(k*—ke*)+[U(P+k)+U(P—k)
—UP+ky)—UP—ky)]. (2.14)

The exclusion operator Q is approximated by its
average over angles of P, i.e.,

QP,k)=0 if R4 P2<Fkyp?,
=1 if k—P>kp,
= (P4 k2—kp?)/(2Pk) otherwise.

The single-particle potential (2.6) can be written as

8 phr—k)/2
v@== [ G or k<h)
T™Jo

4 GrR)2
+— / (1+
w2 J |kp—kl /2
or

8 (kr—k)/2
vE=- [ LT 43 T L)

even L

(2.15)

kp2—k2—4k’2)
4k

X&' |G|k )dk', (2.16)

(kp+k) /2 brt—h2—A4k'?
X (%' |G|k Ydk'+— k’2<1+—)
™ \kp~k| /2 4kk,

X[ Y +3 EL](ZL—I—l)(k’IGL[k')dk’. (2.17)

even L

For k> kyr the first integral vanishes.
The average binding energy per particle is then

Ep=(3/ks®) /. v kz[%jl; 2+%U(k)]dk. (2.18)

Further details of our calculations are given in Sec. 3.
But first, for purposes of comparison, we will explain
more about the original BG method.
The Fermi momentum, pr=#kyr, is related to the
density by
pr=43mN/Q)'7, (2.19)
where IV is the total number of particles in a large

volume Q. The normal density can then be determined
from the minimum of Eg, Eq. (2.18), as a function of
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the density
p=N/Q=1kz%/n2, (2.20)

which gives the number of states in the Fermi sea.

The single-particle energies show a dispersive effect
of the medium, which corresponds to a particle moving
in an effective potential arising from its interaction
with all other particles in the system. For hole states,
these single-particle energies should be calculated on
the energy shell, but for intermediate particle states
they should be calculated off the energy shell. We then
have an equation similar to Eq. (2.4) for the energy
of an excited particle, but with a single-particle po-
tential U(k) calculated from excited-state G-matrix
elements. In the BG calculations this is approximated
by introducing into the energy denominator (2.3) a
mean excitation energy or parameter A equal to the
excitation energy of the Fermi gas. The virtual energies,
defined in this way, then differ at the Fermi surface
by an energy gap, which ensures nonsingular G-matrix
elements. So, for propagation off the energy shell, BG
replace Eq. (2.14) by

G(k,ko,P) = E(k_(.)"l‘e(k_)-l—A"“H(ko,P) ’
k=B P QNB)PRQUPE).  (2.22)

They also replace the total momentum by a root-
mean-square value of P, taken over pairs of particles
in the Fermi sea, i.e.,

(P?y=3kp(ky— ko) [1+}ko Qs+ kokr)]
for kos kp ’

(2.21)
where

(2.23)
=0 otherwise.

The quantitative agreement with experiments of the
results of BG! for the binding energy is not quite satis-
factory. They get a binding energy of —0.96°K per
particle at a saturation distance of 2.60 A. This equilib-
rium spacing is not so far from the experimental value
of 2.43 A ¢ but the binding energy is less than 409, of the
experimental value of —2.5°K per particle.”

3. CALCULATION OF TWO-BODY TERMS

According to general scattering theory, the two-body
wave function is defined by

Gd=0v¥, (3.1)

where ® is the unperturbed free-particle wave function
and ¥ is the perturbed one. The distortion of the wave
function due to the potential is written as

{=3—-7, 3.2)
Due to the strongly repulsive core, the momentum

space matrix elements of the potential v are very large.

6 E. C. Kerr, Phys. Rev. 96, 551 (1954).

7S, G. Sydoriak and T. R. Roberts, Phys. Rev. 106, 175 (1957).

8T, R. Roberts, R. H. Sherman, and S. G. Sydoriak, J. Res.
Natl. Bur. Std. (U. S.) 68A, 567 (1964).
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The reaction matrix equation (2.1) is then reformulated
and converted into coordinate space by defining a wave
operator 2, which replaces the uncorrelated wave
function ® by the correlated wave function ¥, i.e.,

T=0%. (3.3)
Equation (3.1) is equivalent to the operator equation
G=1Q2, (3.4)

and its matrix element is
(2]G|2)=(2|0| ¥). (3.5)

Dividing Eq. (2.1) on the left by v and multiplying
from the right by ®, we get the Bethe-Goldstone
equation®

¥=&—(Q/e)v¥, (3.6)
and for the wave operator
Q=1—(Q/e)G. (3.7

The propagator Q/e is a rather complicated nonlocal
integral operator.
Equation (3.6) is written in coordinate space as

¥(r)=8(r)+ / T, )o() ¥ (@)d, (3.8)

where the radial Green’s function I'(r,t") is
expik(r—1’)
e(k)

and e(k) is the energy denominator (2.3).
The Bethe-Goldstone equation (3.8) is separated into
partial waves by introducing the expansion

d>(r)=2L:(‘2L+ 1)L (ko) Pr(Bo-#)
=3 2L+ 1)i"PL(c050)gL(kor) )
L (kor)

o

I'(t,y)=—2n)"? / ak , (3.9)

(3.10)

Then gp(ke) corresponds to the free-particle wave
function.
Expanding and defining in the same way the radial
components Xz, of ¢ and #y, of ¥, we get
Jrllor)=kor- jr(kor)
w1, (ko,r) = kor - ¥ 1(koyr)
XL(ko,r) = SL(kof) —Mz,(ko,r) .

We also define a partial-wave effective interaction or
potential

gr(r)=v(r)urlko,r)/gr(kor)
=o(r)[1—Xp(koyr)/ Julkwr)], (3.12)

9H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London)
A238, 551 (1957).

(3.11)



170

so that
/ gL(kor)v(r)uL(ko,r)dr=[ Ir2(kor)gr(r)dr. (3.13)

In the reference-spectrum method of Bethe et al.5 for
nuclear matter, the G-matrix equation is solved with
two important approximations. The basic idea is to
approximate the operator Q/e by a simpler one. Then
the equation can be solved analytically and the error
in the approximation can be calculated by a pertur-
bation method.

One approximation is to assume the energy denomi-
nator e(k) to be a quadratic function of the relative
momentum. We have also used this idea in our BG
method in order to make calculations simpler.

Assuming a single-particle potential of the form

U(k)=A-+Bk?, (3.14)
we can write for the energy of intermediate states

e(k)=T(k)+U(k)
=A+BE+T (k)= A+TE)/m*, (3.15)

where the constants 4 and m* should be chosen to give
a good approximation to the actual self-consistent
energy in the important range for 2. The constant A4 is
probably rather close to zero, and m* is the dimension-
less effective mass. The constant B is

B=T(k)(1/m*—1)/R2=3#/M)(1/m*—1). (3.16)

The quadratic form (3.15) is equivalent to the differen-
tial operator

e(k)=A+30%2/(Mm*)=A—3(h/ Mm*)V2. (3.17)

For states in the Fermi sea, we can define an equation
similar to Eq. (3.14) with 4, instead of A4, and the
effective mass m,* for the hole spectrum of particles in
the Fermi sea.

The energy denominator for two particles of relative
momentum k and total momentum 2P, i.e., Eq. (2.14),
is then

e(k) = e(P+k)+e(P—k)— H (ko,P)
=—#/M)(V*—~*)/m*
= (/M) (F*+~%)/m*,

’y2= 20k p?— ko"’m*/m()*

(3.18)
where
(3.19)

for propagation on the energy shell and ky<kr. We see
that y? is a positive constant depending on the total
momentum of the pair and on the starting energy. A
is a measure of the gap between the occupied and the
intermediate-state energy spectra. Then

A= (Mm*/5%ks2)(A—A,), (3.20)

and m* and A are the basic parameters of the energy
spectrum. We will later put A=0 and m*=1. Then the
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gap A (or the parameter v2) just defines the hole spec-
trum, which will be our real input parameter.

One should determine the important range of inter-
mediate-state energies by examining the statistical
average of the square of the Fourier-Bessel transform
of the distortion { in the wave function, or rather the
partial-defect wave function Xp/k,. We are therefore
interested in

FL(k) =kg! [w (ﬂL(kf)XL(ko,T)dr.

0

(3.21)

The Fourier transforms can be calculated in two
different ways. One is to integrate Eq. (3.21) directly
numerically, but this method is probably not the best
one. From Egs. (3.6) and (3.11) we see that we can
write

Xp=gr—ur=(Q/e)vur, (3.22)

where the Pauli operator Q is defined by Eq. (2.15), i.e.,
Q(P,k)=0 for k<+/(kp*—P?),
= (P*+-k2—kp?)/(2PF)

for A/(kr*—P%)<k<kp+P,
=1 for k>kstP,

(3.23)

and the energy denominator e is defined by Eq. (3.18).
Then the Fourier transforms are given by

P,k)m ®
kit f Julkr)v(ur(kor)dr.  (3.24)
y2+k? 0

Equation (3.24) is probably more accurate than Eq.
(3.21), at least for k~kp, and we have used the first
one in our calculations. We see that the exclusion oper-
ator Q(P,k) ensures correct behavior near kp.

The volume integral

00

k=p [ (ko) |*dr=4dmp / | Gko) |2dr, (3.25)

0
or

mimil} ¥ 1 3 Jer4) [ ) (Z—)d

even L

=mp[ X +3 X J(2L+1)
odd L

even L

00 XL 2
X/ (-—-) dr=mp > k1, (3.26)
s \ko L

is a very important quantity for the saturation proper-
ties of the system. It is proportional to the probability
of finding a particle in an excited state rather than in
the Fermi sea, and it is the hopefully small parameter
which possibly characterizes the convergence of the
rearranged linked-cluster expansion. In nuclear matter
k is of the order of 10-20%, but unfortunately it is
rather large for liquid *He, as we shall see below. The
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integral «/p in Eq. (3.25) has been called the volume
of the correlation hole, or the size of the wound in the
wave function.

This volume integral of the square of the defect wave
function X(ko,), i.e., the integral in the expression
(3.26) for «, can be written as

® Xr\? 2 r® K
/ (-—) dr=" / Fr(b)dhrpce  (3.27)
o \ko T Jrp P

in dimension [A%], where F(k) is the Fourier trans-
form (3.24). We see that this integral can be calculated
in two different ways, integrating X1(ko,7) in coordinate
space or Fr(k) in momentum space. Because the
integral is density-dependent and hence also « de-
fined by Eq. (3.26), we also calculate the density-
independent expression for k. To get « as defined in
Eq. (3.26) we then should multiply the results (3.27)
by 4wp and include appropriate statistical factors for
the different partial waves.

Potentials and energies can be expressed in units of
°K =ergs/k, where k is Boltzmann’s constant. But in
the following sections we express energies in units of
A-2, the conversion factor being

#2/M=16.36°K Az. (3.28)
Also, to make the notation as simple as possible, indices
are suppressed throughout the paper when they are
not really necessary. All the wave functions are func-
tions of the relative momentum %o, unless otherwise
stated.

The principal equations to be solved are the following:

After an angular-momentum reduction of Eq. (3.5),
the diagonal G-matrix elements for the angular mo-
mentum L and relative momentum %o can be written as

(ko]Gleo)oc41r]rzjz,(kor)v(r)uz,(ko,r)dr, (3.29)

which we obtain from Egs. (2.10) and (3.5). The free-
scattering result, which we have used as an approxi-
mation for L>3, can be written as in Eq. (2.12), ie,

(ko|GL| ko) < — (47/ ko) 8 1.(ko) - (3.30)
Equations (3.5) and (3.29) are rewritten as

<ko[Golko>=>E (ko| G| ko)

=(r/kA X +3 c%I;I(ZL-I-I)

even L
X/ Irlkor)v(r)ur(koyr)dr, (3.31)
0

and we take this as our definition of Gy, i.e., we include
appropriate statistical factors.
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For nondiagonal G-matrix elements, Eq. (3.31) is
changed to

<k|G[ko>=§L; (k|G| ko)

=(4n/kk)[ X +3 EL](ZL-H)

even L

00

X / gr(kr)v(r)urllor)dr. (3.32)

The single-particle energies (2.4) or (2.11) are given
by

e(k)=3k*/M+U (%), (3.33)

where U (k) is defined by Eq. (2.17). The binding energy
can then be calculated according to Eq. (2.18).

The radial wave functions are given by the Bethe-
Goldstone integral equation (3.8) in the form

wr (ko) = gr(kor)+ / TL(r,)o(r Yur(koy)dr'. (3.34)

The Green’s functions I'(r,7") are defined by

I‘L(f;,fl)= _g fw dkcgll(kr)cglz(kr )Q(P’k)m (3.35)

mTJo v+RE
for propagation off the energy shell in the intermediate
states, where Q(P,k) is given by Eq. (3.23).

All the integrals have been calculated by numerical
integration and performed by means of Simpson’s rule
or with a trapezoidal method.

The Green’s functions I'r(r,r') are computed first.
This is a time-consuming part of the calculations and
the release of the energy denominator from the re-
quirement of self-consistency is a great simplification
here. For each partial wave %z, the continuum 0<7< e
is replaced by a discrete set of points within the im-
portant range of the potential v. The corresponding
radial Green’s functions are evaluated for all pairs of
points, and %z is obtained by diagonalizing a finite
matrix, i.e., by matrix inversion.

To obtain the integral (3.35) as accurately as pos-
sible, using the property of the Pauli step function
(3.23), we write Eq. (3.35) in the form

2 o g gu(hr) 2
To(r )= ——m* / S8 ”4 m*
T 0 y2+-k? T
®r+P) g1 (kr) Julkr)[1—Q(P,k) ]
X / dk .
0

,Y2+k2

(3.36)

The first integral corresponds to a Green’s function in
which the exclusion principle is not included. For this
I'z©(r,") an analytic expression can be obtained.
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Using Eq. (3.23), Eq. (3.36) is written
Tr(ry)=T1O(r,r)

+Em* / V(kFLpz)dk Sulkr)§ulbr) } 27»*
T 0 y2+k? T
(kF+P) b Fr N Ep2— (b—P)2
X[ dknﬂL( 1) Jullr)kr—( )]’ (3.37)
v(kp2—P? 2kP(y2+k2)
where 5 (k) gullr)
I‘L(°>(r,r’)=——m*/ dku_r__’ (3.38)
™ ] vi+k?

with the solution

L0y = (m*/2y)[(—=DFHLO (yr) HL O (yr')

—HyOrs) B P (yrd)] (for r>7). (3.39)

Lo@(r,r') = (m*/2y){exp[—v(r+r)J—exp[—v|r—7'| ]},
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Here

H @ () = 0D (Fim)h, O (Fix)
=D (Lin)h, P (Lix)  (3.40)

are the solutions H(yr) of the equation

[d2/dr*— L(L+1)/r*—y2]H L (vr)=0, (3.41)

expressed in terms of spherical Hankel functions. The
latter are defined by
hi®=—ih, ) B @ =ik, (3.42)
where
hL(i)”—‘M/L:!:'I:jL. (343)
For the lowest partial waves we get for Eq. (3.39) the
solutions

L0y =—(m*/2y){[14-1/yr 1+ 1/v7"] exp[ —y(r+7r) ]+ [1£1 /v [1F1/yr'] exp[—v|r—7'| ]},
Ty (1) = (¥ 2L+ 3/ yr+3/ ) TL+3/ ' +3/ )] expl v (r-+)]

—[1£3/yr+3/(y)* JL1F3/vr'+3/ (v')*] exp[ —v |r—7'| ]},

(3.44)

L3O (r,r") = — (m*/29){{1+6/yr+15/ (yr)*+15/(yr)*[1+6/vr'+15/ (vr')*+15/ (vr')*] exp[ — (r+7") ]
F[1£6/vr+15/ ()2 15/ (yr) JAF6/vr'+15/ (') F15/(yr")*] exp[—v|r—7'| I},

and so on. In the expressions above, the upper sign is
for >7/, the lower sign is for r<7'.

The second integral in Eq. (3.36) can be calculated
numerically with high precision. Some typical Green’s
functions are shown in Fig. 1.

The wave functions #r(r) are determined by nu-
merical integration of Eq. (3.34). Because of the strongly
repulsive part of the potential, we had great problems
with an iteration procedure. It would not converge, and
we had to use a matrix inversion directly to get the
wave functions. Afterwards, the G-matrix elements are
calculated by numerical integration.

4. PARAMETERS AND RESULTS

At zero pressure, near zero temperature, an atom
occupies a mean volume define by

1/p=Q/N=4%mry®. (4.1)
At normal mass density, which for liquid 3He is 0.082
g/cm3, the mean interparticle spacing 7, is determined
experimentally to be 2.43 A8 At this density, the
binding energy or mean energy at zero temperature
is usually taken to be —5.04 cal/mole, or —2.53°K/
particle.” The most recent value is, however, —4.92
cal/mole, or —2.47°K /particle,8 so we take the experi-
mental value to be just —2.5°K/particle. The Fermi
momentum is given by Eqgs. (2.20) and (4.1) as

Ep=(9/4m)/ro=1.92/r=0.79 A-1.  (4.2)

The average kinetic energy per particle of the Fermi gas
is then
Tr=15hkpr?/M =18/ry2=3.05°K,

where M is the mass of the 3He atom.

Brueckner and Gammel' have considered two po-
tentials in their calculations. The first one is a Lennard-
Jones!® 6-12 potential of the form

Veu(r) =V (R/r)*~(R/r)],

(4.3)

(4.4)
(4.5)

where

Vo=40.88°K, R=2564,

—
-
——
-~

T, (40,r)

Vs r;,(z.a,r')\ AN P/rﬁ‘“(m,r')
(0), g

/// 20,00 /

/ \ /

Fi1c. 1. Green’s functions I'(,#') for L=0 (and L=2). To©® (7,»")
(dotted line) is with the exclusion principle neglected, i.e., Eq.
(3.44). kr=0.75 271, A=0.5, m*=1.0, and ky=0.5%p.

10 J. E. Lennard-Jones, Proc. Roy. Soc. (London) A106, 4
(1975, J 3 V. (London) , 463
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V[deg.K}

20

vﬂ'thG

_ r[A]

Fi1e. 2. Potentla.ls for liquid ®He. Vay is given by Eq. (4.4), Vsa by
Eq. (4.6), Vs by Eq. (4.11), and Vys by Eq. (4.13).

and 7 is measured in A. This is a semiphenomenological
potential fitted by de Boer and Michels!* (BM) to the
low-temperature virial coefficients.

The second potential is of the general form determined
theoretically by Slater and Kirkwood!? with an ex-
ponential repulsive term, but with parameters first
calculated by Yntema and Schneider (YS),* fitted to
the virial coefficients up to 1200°K. The Yntema-
Schneider potential used by BG! is defined as

Vea(?)=Vo[1200 exp(—4.82r)

—1.24/r5—1.80/1%], (4.6)
udk,[ﬂ\l L=01
- L=1]
L=2]
L=3]
3k
2| [Jlk
1k
r[A]
0 } ;
1 2 3 4 5 6 7 8 9 10
-t
-2f

Fi1G. 3. Wave functlons gjo(kur) and uz(ko,7). kp 0.75 A1,
5, mo*=1.5, and ky=0.5kr

where
Vo=7250°K, 4.7)
and 7 is measured in A.
The YS exp-6-8 potential can generally be written
in the form!*

V(r)=Uo{gi(,8) exp[a(1—7/R)]
— g2(a,8) (R/n)[1+B(R/7)*]},

11 J, de Boer and A. Michels, Physica 5, 945 (1938).

127, C, Slater and J. G. Kirkwood, Phys Rev. 37, 682 (1931).

137, L. Yntema and W. G. Schnelder, J. Chem. Phys 18, 646
(1950).

1§, de Boer, Physica Suppl. 24, 90 (1958).

(4.8)
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where
gi(a,8)=(6+88)/[a(1+8)— (6+88)],

4.9)

g2(e,8)=a/[a(14+8)— (6+88)].
For the parameters in this potential, Buckingham and
Scriven!s (BS) have given the values

Uy=10.18°K, R=29434,

4.10
a=13.5, $=0.20, (4.10)

u/ knml

Ko/ke=0001{ [uy/

~os | Wk
ko/ ke l!.S{tu'm°

25 Luy/ kg
Kol ke= 10 [uy/ ko,

Tuy/k;

201 [uo/k

[ Ko/ks=0001
% ‘J,Ik,{[ko/k,= 05
T | [ko/Ke= 10
104

) &)

XN

Fic. 4. Wave functions Jo(%koer) and 2z (kor) ko is varied.
kr=0.75 A7}, A=0.4, and m¢*=

1 2 3

which gives a potential written in the form (4.6) as

Ves(r)=V[905 exp(—4.597)—1.43/r8—2.48/r%].
(4.11)

The corresponding data for the original YS potential
are, according to de Boer,*

U,=8.12°K, R=3.0A4,

(4.12)
a=142,  B=0.17,
X/ ko[R]
10
L=0]
L=1]
L=2]
osp L=3]
. 4 s A
0 H 3 m——
-0'5 b

Fic. 5. Wave functions Xz (ko,r). 2r=0.78 37,
A=04, m¢*=2.0, and ko=Fp.

18R, A. Buckingham and R. A. Scriven, Proc. Phys. Soc.
(London) A65, 376 (1952).
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X,/ ko [R)
20

-0}

F16. 6. Wave functions Xz (%o,r). ko is varied. kr=0.75 871,
A=0.4, and m¢*=2.5.

which gives a potential of the form (4.6) as

Vys(r)=Vo[1308 exp(—4.73r)
—1.25/r—191/r%], (4.13)

with V, given by Eq. (4.7). This is slightly different
from the potential given by YS,!® which is

Vys(r)=Vo[1200 exp(—4.72r)

—1.24/r5—1.89/7¢], (4.14)

but probably because the parameters (4.12) are derived
from Eq. (4.14) and not vice versa. It is not obvious

9,[&%
2k
6L L=3]
L=2]
sl L=1]
L=0]
o
il
2 [L=0
[L=1,23
1
T r[R)
0 fa= .
07 1 2 \y’«" 5
4l
Fre. 7.

Effective interactions gr(r)=v()u L(k(gr) /G rlker
’

).
Calculated on the energy shell for r>0.7 &. kr=0.78 A~1, A=0.4,

mo*=2.5, and ko=0.5kF.

why BG have used the potential (4.6) rather than the
potential (4.13) or (4.14) in their final calculations.
But for comparison we have also used exactly the same
potential (4.6) in all our calculations. The four poten-
tials (4.4), (4.6), (4.11), and (4.13) are shown in Fig.
2.

The other parameters which we have used in the
calculations are chosen in the following way:
Because BG got their self-consistent solution for

1’o=2.60 A,

kr=0.74 A1, ®15)
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while the experimental value is

ro=243 A,

krp=0.79 A1, (416)

we have chosen two values for the Fermi momentum
in our calculations, i.e.,

kr=0.75 A1 or
(4.17)
=0.78 A1,
g,[&%
sl- Kolks= 0.1251}
ko/ke=100] | £22
6|
L'”} Ko/ Ke= 0125
AR L=Q)) X222
t:;}} Ko/ ke = 1.00
?__‘0 {(k,/k,,- 100 -
oL Wealkp=0125
[Ko/Ke= 100
'f'-z{[k,/k,-ous
0 | e r[A]
07 1 2 M 5
-1}

F1c. 8. Effective interactions gz, (7). Calculated on the energy shell
for 7>0.7 &. ko is varied. £7=0.75 -1, A=0.4, and m¢*=2.0.

The corresponding density is

p=1%kr®/m?=0.0142 A—3 or

4.18
=0.0160 A3, (4.18)
and the corresponding average kinetic energy is
Tr=151%pr2/ M =2.76°K
r=1olhe’/ or (4.19)

=2.99°K.

For the effective mass which defines the energy
spectrum, we have also used different values. One
reasonable approximation for the single-particle energy

R IR
35
30
254

204

=l ]
[L=0 |

[L-”\"\/
[} ”&F\‘j’{?

05

-05 |-

Fic. 9. Fourier transforms Fr(k) of Xi(kos)/ko, defined by
Eq. (3.24). Dotted lines indicate F.(%) calculated according to
Eq. (3.21). k#=0.78 &1, A=0.4, m*=2.0, and ko=Fp.
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Taste I. Diagonal Go-matrix elements (in &), calculated on the
energy shell. RS method is with the exclusion principle neglected
and Eq. (3.38) instead of Eq. (3.36) for the Green’s functions
To(r,"). L=0, A is varied. kp=0.75 A7, m¢*=2.0, and ko=0.5kF.

A RS method BG method
0.3 20.3 37.8
0.4 25.1 4.1
0.5 29.8 50.2

spectrum would be

e(k)=3%k%/m*—Lkp?/m*+p for k<kr,
2

4.20
=1k for k>kr, (4.20)

where u is the chemical potential or separation energy:
u=E(N+1)—E(N)

— (OE/oN)a=E/N+ (/M) @3, 2

Taste IL Diagonal Gz-matrix elements (in 4), calculated on the
energy shell, and Vi-matrix elements (in A), defined by Eq.
(4.30). Statistical weights included. ko is varied. kr=0.75 A7,
A=04, and m¢*=2.0.

L=4 L=5 L=6
ko/kr G Vs Gs Vs Gs Ve
0.50 —042 —0.69 —0.21 —0.78 —0.01 —-0.10
0.75 —-233 =235 —246 —2.86 —0.26 —0.45
1.00 —5.58 —5.50 —6.84 —6.88 —1.07 —1.10

and the experimental value for u is —2.5°K.7® The
energy spectrum (4.20) corresponds to free propagation
of quasiparticles for large excitations. Therefore, if
m*~1 off the energy shell, we may approximately
replace the potential energy for particle states by a
constant:

U(k)=const=0 for k>kp. (4.22)

Tasie ITL Diagonal Gy-matrix elements (in_A), calculated
on the energy shell. Statistical weights included. ko is varied.
A=0.4 and m¢*=2.5.

Ver(8~) kof/kr L=0 L=1 L=2 L=3 L>3 Total
075 0001 51 0 0 0 0 5.1
0125 95 —123 —01 O 0 —29
025 206 —394 —13 —03 0 —204
0375 336 —630 —47 —19 —04 —364
050 448 —719 —96 —62 —17 —446
0625 523 —633 —150 —129 —37 —426
075 3553 —385 —200 —215 —67 —3l4
0875 539 —19 —232 —320 —109 —14.1
100 490 399 —237 —435 —165 5.2
078 0001 117 0 0 0 0 11.7
0125 165 —132 —01 0 0 32
025 281 —414 —15 —03 —01 —152
0375 414 —645 —52 —23 —06 —31.2
030 522 —710 —105 —72 . —19 =38
0625 588 —585 —160 —145 —42 —344
075 604 —202 —208 —238 —71.6 —210
0875 575 114 —234 —350 —123 —19
100 510 557 —228 —470 —186 183
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The effective mass is then chosen to be
m*=1.0 (4.23)
for the particle spectrum, and
me*=1.1, 1.5, 2.0, 2.5, (4.24)

for the hole spectrum.

Tasie IV. Diagonal Gz-matrix elements (in &), calculated on
the energy shell. Statistical weights included. &y is varied. A=0.5
and me*=1.5.

kr(R37Y) ko/kr L=0 L=1 L=2 L=3 L>3 Total
0.75 0.001 12.1 0 0 0 0 12.1
0.125 163 —121 —0.1 0 0 4.1

025 268 —389 —13 —0.3 0 —13.7

0375 389 —620 —47 -—-19 —04 -—-30.2

050 489 —-706 —-96 —62 —1.7 —=39.1

0.625 550 —619 —150 —129 —3.7 —384

0.75 566 —37.5 —199 -21.5 —6.7 —29.1

0.875 538 —20 -—23.2 -—320 —109 -—143

1.00 476 379 —238 —43.6 —16.5 1.6

0.78 0.001 19.5 0 0 0 0 19.5
0.125 240 -—130 —-0.1 0 0 109

025 349 —408 —-15 —-03 -—-01 -—-78

0375 472 —-634 —-52 =23 —0.6 —243

0.50 56.7 —694 —104 —72 —19 -323

0.625 618 —569 —160 —145 —4.2 -—-29.7

0.75 618 —280 —20.7 —238 —7.6 —183

0.875 574 113 —234 -350 —123 -—-2.1

1.00 49.6 534 —230 —471 —18.6 14.3

For the other parameters we have used
A=04,0.5,
ko/kr=0.001, 0.125, 0.25, 0.375, 0.50,
0.625, 0.75, 0.857, 1.00. (4.25)

The parameter A is chosen such that v?is always positive

Tasre V. Diagonal G-matrix elements (in &), calculated on the
energy shell. A and %, are varied. m¢*=2.5.

\ A kr=0.75 A1 kr=0.78 371

ko/lk 0.4 0.5 0.4 0.5
0.001 5.1 12.1 11.7 19.5
0.125 —29 4.2 3.2 11.0
0.25 —204 —13.1 —15.2 —7.1
0.375 ~364  —28.7 —312 —227
0.50 —44.6  —36.4 —383 =293
0.625 —426  —339 —344 =247
0.75 —314 =220 —210 —106
0.875 —14.1 —4.0 -1.9 9.3
1.00 5.2 16.0 18.3 30.2

for a given m¥, i.e.,
’)’2_-—‘ 2AkF2"" koz/'m/o*z kF2(2A"" 1/mo*) >0

it A>(2me*)t.  (4.26)
A connection with Eq. (4.20) would be
A= (ZMO*)'—I'—M/kpz N (4.27)
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TasLe VI. Diagonal G-matrix elements (in &), calculated on the energy shell. m¢* and ko are varied. A=0.5.
o kr=0.75 A1 kr=0.78 31
ko/kr\ 1.1 1.5 20 2.5 11 1.5 20 2.5
0.001 12.1 12.1 12.1 12.1 19.5 19.5 19.5 19.5
0.125 3.9 4.1 4.2 4.2 10.7 10.9 11.0 11.0
0.25 —14.2 —13.7 —13.3 —13.1 —8.4 —7.8 — 74 —-7.1
0.375 —31.5 -30.2 —29.3 —28.7 —25.8 —24.3 —233 —22.7
0.50 —41.6 —39.1 —37.4 —36.4 —35.0 —-323 —-30.4 —29.3
0.625 —42.6 —38.4 —35.6 —33.9 —34.4 —29.7 —26.6 —~24.7
0.75 —35.6 —29.1 —24.6 -22.0 —25.5 —18.3 —13.5 —10.6
0.875 —23.9 —14.3 —79 —4.0 —12.7 —2.1 5.1 9.3
1.00 —12.2 1.6 10.6 16.0 -0.8 14.3 243 30.2

as can be seen from Eqgs. (3.15) and (3.20). The average
momentum P is always set equal to zero.

If the constant 4 in Egs. (3.14) or (3.15) is chosen
equal to zero for the single-particle energy spectrum for
intermediate states, the values for A in Eq. (4.25)
correspond to the following values for the constant
Ao which defines the input hole spectrum,

Ao=—'3.7, —4.6°K for k0= 0.75 A_l,

2
=—4,0, —5.0°K for k=0.78 A1, (4.28)
as can be seen from Eq. (3.20).

To estimate the importance of including the exclu-
sion principle, we have also calculated the main first-
order term in the original reference spectrum method of
Bethe ef al.,® using the same energy spectrum as in the
BG method. That is, we have neglected the exclusion
principle and used Eq. (3.38) instead of Eq. (3.36) for
the Green’s functions I'z(r,#") when solving the Bethe-
Goldstone equation (3.34). The results from the two
methods are compared in Table I for the S wave, and
for some typical standard parameter values.

TasLe VII. Nondiagonal G-matrix elements (&|G1|ko) (in ),
calculated on the energy shell for L<4. Statistical weights
included. % is varied. A=0.4, m¢*=2.0, and ky=0.5k.

For partial waves with L>3, we have replaced the
perturbed wave function #z (ko) in Eq. (3.31) by the
unperturbed one gr(ke), ie., we have made the ap-
proximation

/ 9ulber)o(uslbor)dr= / 92k )o(r)dr.  (4.29)
] 0

Then it is not necessary to solve the Bethe-Goldstone
equation first to get the true wave function #r(ko,r),
and we calculate Eq. (3.31) as

%(kolVleo)=(41r/koz)[ 2 +3 EL]@L'H)

even L

X/ Ir¥kor)o(r)dr. (4.30)

Some calculations to check this approximation are
shown in Table II. The mesh chosen for the radial
integration with this approximation is

r=2.4(0.1)20.0 A. (4.31)

TapLe VIIIL Nondiagonal G-matrix elements (£|Gr|ko) (in &),
calculated on the energy shell for L<4. Statistical weights in-
cluded. % is varied. A=0.4, m¢*=2.0, and ky=Fkp.

Ee(RY) R/kr L=0 L=1 L=2 L=3 Total kr(AY) k/kp L=0 L=1 L=2 L=3 Total
075 0001 306 0 0 0 30.6 075 0001 529 0 0 0 529
01 312 -228 —06 —0.1 7.7 01 529 —60 —06 —01 462

02 330 —432 —23 —07 —131 02 527 —112 —23 —08 384

03 359 —590 —47 —20 —297 03 525 —151 —49 —26 298

04 397 —689 —73 —40 —404 04 521 —168 —84 —59 210

05 441 —722 —96 —62 —440 05 516 —160 —122 —108 127

06 487 —689 —11.5 —83 —400 06 510 —120 —160 —170 59

07 531 =597 —126 —98 —290 07 502 —47 —195 —242 18

08 571 —459 —129 —107 —124 08 493 61 —222 =315 17

09 603 —286 —12.7 —109 8.1 09 482 201 —237 —382 64

10 623 —93 —119 —107 304 10 469 369 —239 —437 162

078 0001 383 0 0 0 383 078 0001 581 0 0 0 581
01 389 —233 —07 —01 148 01 580 —42 —06 —01 531

02 407 —440 —25 —08 —6.7 02 5727 =76 —23 —09 469

03 435 —598 —51 —23 —238 03 573 —96 —51 —28 398

04 472 —69.1 —79 —46 —345 04 566 —96 —86 —64 32.1

05 514 =713 —105 —72 —37.5 05 558 —70 —124 —118 246

06 557 —665 —123 —94 —32.5 06 548 —14 —163 —186 185

07 599 —555 —134 —110 —19.9 07 536 74 —197 —264 149

08 634 —396 —136 —11.8 —16 08 522 194 —221 —344 152

09 659 —204 —132 —119 204 09 506 346 —233 —416 203

10 673 07 —122 —11.7 441 10 488 522 —231 —472 308
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kol ke=0001]

L=0

F1c. 10. Fourier transforms Fr(k) of Xr(ko,)/ke, defined by
Eq. (3.24). Dotted line is Fy(k) calculated according to Eq. (3.21).
ko is varied. kr=0.75 A7), A=0.4, and m*=2.0.

The mesh chosen for all the other integrations is

7,7/=0.3(0.2)0.7(0.1)3.0(0.2)5.0(0.5)10.0(1.0)12.0 A.
(4.32)

The integration is carried out to a distance such that
contributions beyond this distance can be assumed to
be negligible.

The mesh used for the numerical integration in
momentum space, when calculating « or Eq. (3.27), is

k/kr=1.0(0.1)5.0. (4.33)

G [A]
60

ko/ ke
1.0

Total
[L=4
[L=5
[L=2
[L=3

Total
L=1]

=70 |-

Fic. 11. Diagonal G-matrix elements (%o|G1|%o), calculated on the
energy shell. k7=0.75 A7, A=0.4, and m¢*=2.0.
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In the numerical integration of Eq. (3.37) for I'r.(r,7"),

a mesh
k/kr=0(0.05)1.0 (4.34)
is found to be sufficient.

Results from the two-body calculations are then
shown in Tables I-XIV and in Figs. 3-15.

Tables I-IX give G-matrix elements in dimension
A, which can be converted to °K A?® according to Eq.
(3.28). Table X gives the binding energy, with only
two-body terms included, in dimension °K. Tables XI
and XII give the volume integral of the square of the
defect wave function, i.e., the convergence parameter
«z, defined by Egs. (3.26) or (3.27), in dimension A3,
The total «, i.e., the expression (3.25) or (3.26), is shown
in Tables XIIT and XIV. It is just the sum of the terms
in Tables XTI and XII multiplied by the factor wp to get
the dimensionless and density-independent expression
for .

5. SUMMARY AND DISCUSSION

From the various tables and diagrams we can see
how the results change as the input parameters are
varied. The only fixed parameter in our calculations
is the effective mass m*=1 for the particle energy
spectrum off the energy shell. It should be a fairly good
approximation to choose the intermediate-state po-
tentials to be essentially zero as we have done, ie.,
put 7*=1. But then it is necessary to make a separate
calculation of the three-body cluster energy as we are

G [A]
60

-10 |-
-20} [L=4
[L=5
~30 |- [L=2
L=3
—s0
_sol Total
L=1]
~60 |- )
-70 -

Fic. 12. Diagonal G-matrix elements (k9| Gz | ko), calculated on the
energy shell. k»=0.78 37, A=0.4, and m¢*=2.0.
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GIA]

I~ A=05])
A=04] |
4 '
. 7

m3=20]
my=15]

}A-O/o
]A-OS

Fic. 13. Diagonal G-matrix elements (ko| G| ko), calculated on the
energy shell. m¢* is varied. k7=0.75 72,

m§=25])
m3 = 20]
my=11]
my=15])

going to do in a forthcoming paper. Also, the average
momentum P or the c.m. momentum 2P is set equal to
zero. Inclusion of P has been shown not to be important
in nuclear-matter calculations for central forces only,!®
and it should be a fair approximation to neglect it.
The other parameters have been varied to cover their
probable values.

The variation of the G-matrix elements, the binding
energy, and the convergence parameter « can be seen
in the tables. The diagrams show the variation or
behavior of the two-body wave functions, the effective
interactions, the Fourier transforms of X(kor), and
the G-matrix elements. In solving the Bethe-Goldstone
equation to get the wave functions, we had to use
matrix inversion in our calculations, because an iteration
procedure would not converge. This problem of con-
vergence is due to the strongly repulsive soft core in
the potential.

Outside of about 3 A, the effective interaction g ()
has an exponential behavior very similar to the two-
body potential v(r), and they are equal for large dis-
tances. It seems, however, rather difficult to find some
simple analytic function which could replace gi(r)
approximately. It is a complicated problem to calculate
g1.(r) accurately because of the unpleasant zeros in the
wave function gr(kw). In our calculations we have
just used some averaging and interpolation method to
correct gr(r) at each such point, taking into account
the value of v(r) at that point. But it would be nice to
have a more exact method, especially because a calcu-
lation of the three-body energy term would be very
sensitive to the effective interaction gz() off the energy
shell.

The Fourier transforms can be calculated in two
different ways, according to Egs. (3.21) or (3.24), as
stated in Sec. 3. Here it seems more accurate to work
with the true wave function %z (ko,7) in Eq. (3.24) than
with the distortion Xz (ko,7) in Eq. (3.21). This is because
the values for X1.(ko,7) will be more uncertain and have
a greater relative error than the values for the wave
function (ko). Also, the exclusion operator Q(P,k)

16 G. Dahll, E. @stgaard, and B. Brandow, Nucl. Phys. (to
be pubhshed)
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TasLE IX. Diagonal Gz-matrix elements (in &) for L>3, calculated as (ko| V| ko) defined by Eq. (4.30).
Statistical weights included. % is varied.
kr(A7Y)  ko/kr L=4 L=5 L=6 L=7 L=8 L=9 L=10 L=11 Total
0.75 0.125 0 0 0 0 0 0 0 0 0
0.25 —0.03 —0.01 0 0 0 0 0 0 —0.04
0.375 —0.25 —0.18 —0.01 0 0 0 0 0 —0.44
0.50 —0.69 —0.78 —0.10 —0.08 —0.01 0 0 0 —1.65
0.625 —1.35 —1.63 —0.26 —0.37 —0.05 —-0.01 0 0 —3.66
0.75 —2.35 —2.86 —0.45 —0.73 —0.14 —0.20 0 0 —6.73
0.875 —3.73 —4.58 —0.74 —1.18 —0.23 —0.43 -0.05 0 —10.93
1.00 —5.50 —6.88 —1.10 —1.80 —0.35 —0.65 -0.13 -0.10 —16.51
0.78 0.125 0 0 0 0 0 0 0 0 0
0.25 —0.04 —0.01 0 0 0 0 0 0 —0.05
0.375 —0.29 —0.23 —0.02 —0.01 0 0 0 0 —0.55
0.50 —0.77 —0.90 —0.12 —0.12 —-0.01 0 0 0 —1.92
0.625 —1.53 —1.83 —0.29 —0.44 —0.07 —0.05 0 0 —4.21
0.75 —2.65 —3.23 —0.51 —0.82 —0.16 —0.26 0 0 —7.63
0.875 —4.18 —5.16 —0.83 —1.34 —0.26 —0.48 —0.05 —0.01 —12.31
1.00 —6.15 —7.75 —1.25 —2.02 —0.40 -0.73 —0.14 —0.11 —18.55

in Eq. (3.24) gives a more correct behavior at k=Fkp.
When using the transformation (Q/e)vuy, i.e., Eq. (3.22)
in Eq. (3.24), the explicit appearance of Q ensures the
correct behavior near kp, while the presence of v(r)
gives a satisfactory convergence of the integration in
coordinate space.

In the calculations of the binding energy, we see that
the repulsion for L=0 and the attraction for L=1
roughly cancel each other. The partial waves with
L>1 thus give us the binding. The binding energy of
liquid *He is calculated for several values of the input
parameters. The results are given in Table X, and can
be compared with values from other calculations:
—0.20°K /particle of Massey and Woo,*” —0.96°K of
BG,! —1.16°K of Beck and Sessler,’® and —1.35°K of
Schiff and Verlet,”® while the experimental value is
—2.5°K /particle.”:

A special point in our calculations is the problem of
the energy denominator in the Bethe-Goldstone equa-
tion. Here it is very useful to have a reference spectrum
or an effective-mass approximation. The release of the
energy denominator from the loop of self-consistency
through the G-matrix elements and the single-particle
potentials is a great advantage in the calculations, and
here we should try to use the idea of a reference energy
spectrum if possible.

TasLe X. Binding energy for liquid *He (in °K). Only two-body
terms included. A and mg* are varied.

’WLQ*
kr(A7Y) A 1.1 1.5 20 2.5
0.75 0.4 —1.69 —1.43 —1.27
0.5 —1.08 —0.71 —0.45 —0.29
0.78 0.4 —1.12 —0.79 —0.59
0.5 —0.36 0.11 0.43 0.61

17 W, E. Massey and C. W. Woo, Phys. Rev. 164, 256 (1967).
18D, E. Beck and A. M. Sessler, Phys. Rev. 146, 161 (1966).
19 D, Schiff and L. Verlet, Phys. Rev. 160, 208 (1967).

In liquid ®He the “true” effective mass has a large
value which means a flattening of the energy spectrum
with respect to that of free particles. This is because of
an increase in the depth of the single-particle potential
as the Fermi surface is approached, which partially
compensates the increase in the kinetic energy, giving
the large effective mass. For slow particles near the
bottom of the Fermi distribution, the repulsive core
acts strongly and the repulsion is enhanced by the ex-
clusion principle. For more rapidly moving particles
near the Fermi surface, the interaction in states of
higher angular momentum becomes more effective. The
repulsive effect decreases, the attractive interaction
increases, and the interaction energy becomes more
negative as the Fermi surface is approached. The poten-
tial energy of interaction thus increases as the particle
momentum increases, giving the large effective mass.

If we choose the intermediate-state single-particle
potentials equal to zero, and require that a binding

TasLE XI. Volume integrals «z, of the correlation hole (in A%),
defined by Eq. (3.26). Calculated on the energy shell for L<4.
Statistical weights included. & is varied. A=0.4 and m¢*=2.5.

kp(&Y) ko/kr L=0 L=1 L=2 L=3 Total
0.75 0.001 5.01 0 0 0 5.01
0.125 496 0.10 0 0 5.06

0.25 484 039 0 0 5.23

0.375 463 085 001 0 5.49

0.50 4.35 144 003 0.01 5.83

0.625 4.01 212 007 0.02 6.22

0.75 3.65 284 012 005 6.66

0.875 3.25 3.57 020 0.10 7.12

1.00 284 429 028 019 7.60

0.78  0.001 5.09 0 0 0 5.09
0.125 504 011 0 0 5.15

0.25 490 042 0 0 5.32

0.375 4.67 0.91 0.01 0 5.59

0.50 4.37 1.53 0.03 0.01 5.94

0.625 4.00 2.25 0.07 0.02 6.34

0.75 3.60 3.01 0.13 0.05 6.79

0.875 3.18 377 020 011 7.26

1.00 274 4.51 029 020 7.74
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energy calculated from our input hole spectrum be
equal to the binding energy given by the output G-
matrix elements, we get self-consistent solutions of
approximately —0.5°K/particle for 2r=0.75 A-1 and
—0.3°K /particle for kr=0.78 A~1 This is, however,
only an indication. We have probably lost some bind-
ing energy by putting the c.m. momentum equal to zero.
This also has some effect on the slope of our output
single-particle spectrum, and there is not much point in
trying to obtain, for instance, a self-consistent effective
mass from our results. Qur assumption of rather differ-
ent particle and hole spectra near the Fermi momentum
kr is another reason for not calculating a true effective
mass.

We have simplified the original BG method and made
it more convenient in two ways. The first is to express
the total Green’s function I'z(r,’) as the reference
spectrum Green’s function (3.38), which has an analytic
form, plus a correction term which takes the exclusion
principle into account, and in which the range of inte-
gration in momentum space is only of order kr. The
second way is to use the reference spectrum idea of
Bethe for the energy denominator in the Bethe-Gold-
stone equation, as already mentioned. But the use of
single-particle energies calculated from G-matrix ele-
ments, in the energy denominator, is an important
feature of the original BG calculations, and could
possibly be an improvement in our calculations. This
would, however, involve extensive computational time.

It would be nice if one could simplify the BG method
further, but this is probably not possible. For nuclear-
matter calculations, Moszkowski and Scott?® simplified
the problem by separating the potential into a short-
range and a long-range part. The separation distance
should be chosen in such a way that the short-range

TasLE XIT. Volume integrals «z, of the correlation hole (in A3),
defined by Eq. (3.26). Calculated on the energy shell for L<4.
Statistical weights included. k¢ is varied. A=0.5 and m*=1.5.

kp(A7Y) kof/kr L=0 L=1 L=2 L=3 Total
0.75 0.001 4.87 0 0 0 4.87
0.125 4.83 0.10 0 0 4.93

0.25 4.72 0.38 0 0 5.10

0.375 4.52 084 001 0 5.37

0.50 4.27 1.42 0.03 0 5.72

0.625 3.96 210 006 002 6.14

0.75 3.61 283 012  0.05 6.61

0.875 3.25 3.58 020 010 7.13

1.00 2.88 4.32 029 020 7.69

0.78 0.001 4.95 0 0 0 4.95
0.125 491 0.10 0 0 5.01

0.25 477 041 0 0 5.18

0.375 456  0.89 0.01 0 5.46

0.50 4.28 1.51 0.03 0.01 5.83

0.625 3.94 2.23 0.07 0.02 6.26

0.75 3.57 3.00 0.12 0.05 6.74

0.875 3.18 3.77 020 0.11 7.26

1.00 2.77 454 030 0.21 7.82

%S. A. Moszkowski and B. L. Scott, Ann. Phys. (N. Y.)
11, 65 (1960).
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Tasre XIII. Convergence parameter « calculated on the energy
shell. A and % are varied. m¢*=2.5.

A kr=0.75 A1 kr=0.78 41

ko/kr\ 04 05 04 05
0.001 0223 0217 0256 0249
0.125 0226 0220 025 0252
0.25 0233 0227 0267 0260
0.375 0245 0239 0281 0274
0.50 0260 0253 0298 0290
0.625 0278 0270 0319 0310
0.75 0296 0289 0341 0332
0.875 0317 0309 0.364 0355
100 0339 0329 0.389 0378

part alone gives zero phase shift for ordinary free-
particle scattering. The idea is to eliminate the repulsion
and a compensating part of the attraction, and work
only with the remaining interaction outside the sepa-
ration distance. But it is obviously not possible to use
this method in calculations for liquid 3He, where the
S wave and also partly the P wave give a net repulsion.

It is not possible, either, to neglect the Pauli principle,
i.e., to put the exclusion operator Q=1, as in the refer-
ence-spectrum method of Bethe ef al.5 From Table I it
is obvious that the exclusion principle cannot be
neglected as a first approximation, and it seems that
of the three important methods used in nuclear-matter
calculations, only the BG method can be used in
calculations for liquid 3He.

The forces which are used in the calculations are
derived from experiments on the energy shell, while in
the calculations we are sometimes probably rather far
off the energy shell. The extrapolation is made by
assuming that the forces are still given by a potential,
but this may not be quite correct.

The chosen potential seems to have a very strong
influence on the results of the calculations. Potentials
with different shapes will generally give different results
or predictions, and the value obtained for the binding
energy is extremely sensitive to changes in the various
parts of the potential. This is because the binding
energy is actually a small difference between large
repulsive and attractive terms. The repulsion comes
from the large repulsive region in the potential and the
high zero-point Fermi energy, and is only slightly over-
compensated by the attractive part of the potential.
Also, the repulsive soft core in the potential is not well

TapLe XIV. Convergence parameter « calculated on the energy
shell. m¢* and %, are varied. A=0.5.

\no* kr=0.75 A1 kr=0,78 A1
ko/kr\\ 1.1 1.5 2.0 2.5 1.1 1.5 2.0 2.5
0,001 0.217 0.217 0.217 0.217 0.249 0.249 0.249 0.249
0.125 0.220 0.220 0.220 0.220 0.252  0.252 0.252 0.252
0.25 0.228 0.227 0.227 0.227 0.261 0.261 0.260 0.260
0.375 0.241  0.240 0.239 0.239 0.276 0.275 0.274 0.274
0.50 0.257 0.255 0.254 0.253 0.295 0.293 0.291 0.290
0.625 0.278 0.274 0.272 0.270 0319 0.314 0.312 0.310
0.75 0.300 0.295 0.291 0.289 0.346 0.339 0,334 0.332
0.875 0.326 0.317 0,312 0.309 0.375 0.365 0.358 0.355
1,00 0.357 0.342 0.334 0.329 0.410 0.393 0.383 0.378
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known, and may give relatively large errors in the
calculations.

We have not worried about this problem in our work,
but have concentrated upon other parameters. If we
could trust the BG method, we could say something
about the potentials. If we could trust a potential,
we could tell more about the BG method. At the
moment, it seems that we neither know the correct
potential nor are we sure about the method. But some
qualitative results and conclusions should be generally
valid, independent of the specific potential which is
used in the calculations.

The main conclusion is that our calculations give ap-
proximately the same results for the two-body potential
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energy and the single-particle energy spectrum as the
calculations of Brueckner and Gammel® and others.!™—1
The binding energy with only two-body terms included
is approximately —1°K/particle or more likely only
—2°K /particle. In a future paper we shall see if we can
get some additional binding energy from three-body
correlations.
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Drift velocities of mass-identified positive ions in air have been measured to about 5% as a function
of E/N for 2X10" 6 E/NE2X 1074 V cm? and for 1.8X 108 SN S7X 108 cm™. These measurements
lead to values of the zero-field mobilities of 1.6, 3.5, and 2.5 cm?/V sec for N+, NO*, and Os*, respectively,
in ajr. The high-E/N data yield momentum-transfer cross sections of 110, 21, and 30 A2 for N2+, NOt,
and Os*, respectively. The rapid disappearance of N+ and O* due to ion-molecule reactions prevented
good drift-velocity measurements for them, but partial results indicate that O* is about 5% faster, and
N+ about 109, faster, than NO* in air. N2+ is shown to disappear rapidly by charge transfer with O..
Thus, although the classical value of 1.6 is obtained for the mobility of Ny* in air, N2+ cannot be present
long enough at pressures close to atmospheric to account for the classical observations.

1. INTRODUCTION

HIS paper reports measurements of the drift
velocities and hence the mobilities of mass-
identified positive ions in air. It results from an investi-
gation of both the ion-molecule reactions and drift
velocities of ions in dry air carried out in a drift tube.
Details of the reactions studied will be presented
elsewhere.!

Among the several methods of measuring the mo-
bilities of ions in gases, the double-shutter, drift-velocity
spectrometer of Tyndall, Starr, and Powell* operated
with square-wave voltage is the most direct and versa-
tile. The device can be connected in tandem with a mass
spectrometer to provide both mass analysis and drift-
velocity analysis of the same ions. The resulting data
can be easily interpreted even in the presence of
complicated ion-molecule reactions; in fact, the same
apparatus can be used to measure many ion-molecule

* Work supported by Lockheed Independent Research Funds.

1D, E. Golden and G. Sinnott (unpublished).

2 A, M. Tyndall, L. H. Starr, and C. F. Powell, Proc. Roy. Soc.
(London) 121, 172 (1928).

reaction rates. The ability to make meaningful meas-
urements on complicated gas-ion systems accounts
for the increase in popularity of the method in recent
years.®

The present work has been carried out in dry air at
pressures below 0.2 Torr. The findings are thus pertinent
to the ionosphere, where the altitude and the tempera-
ture combine to produce similar or lower pressures and
low humidity. The disagreements with the older mea-
surements on positive ions in air, while failing to identify
the ions studied by Bradbury* and others, do eliminate
some surmises concerning the ions in the older
experiments.

3 For some other apparatus incorporating tandem drift-velocity
mass analysis, see E. W. McDaniel, D. W. Martin, and W. S.
Barnes, Rev. Sci. Instr. 33, 2 (1962); K. B. McAfee and D.
Edelson, in Proceedings of the Sixth International Conference on
Ionization Phenomena in Gases, Paris, 1963 (SERMA, Paris,
1964), Vol. I, p. 299; M. Saporoschenko, Phys. Rev. 139, A349
(1965) ; Y. Kaneko, L. R. Megill, andﬁ]. B. Hasted, J. Chem. Phys.
45, 3741 (1966); P. Warneck, ibid. 46, 502 (1967); J. Heimerl, R.
Johnsen, and M. A. Biondi, Abstracts of the Twentieth Annual
Gaseous Electronics Conference, San Francisco, 1967 (un-
published).

4 N. E, Bradbury, Phys. Rev. 40, 508 (1932).



