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As the Grst step in a theoretical study of the properties of liquid 'He, we have calculated the binding energy
of the system by means of Brueckner theory. The method of Brueckner and Gammel is used to solve the
Bethe-Goldstone equation, calculate the reaction matrix or G matrix, and then get the two-body interaction
energy contribution. The Brueckner-Gammel method is studied in some detail. For simplicity we use the
approximation of an effective mass in a reference energy spectrum, which in principle should be 6tted to
self-consistent single-particle energies. The intermediate-state potential energies are, however, chosen to be
equal to zero. Hence, the three-body energy contribution must be estimated by separate calculations. Various
two-body wave functions, Fourier transforms of wave functions, and G-matrix elements are calculated.
Also, the volume of the correlation hole, which gives the convergence parameter in the linked-cluster ex-
pansion, and an eBective interaction, which is a representation of the G matrix in coordinate space, are cal-
culated, together with the binding energy for liquid He. The calculations are repeated for various input
parameters, i.e., for several values of the parameters which de6ne the reference energy spectrum, and for
several values of the initial relative momentum of the two interacting particles. The total or c.m. momentum
is set equal to zero. The Brueckner-Gammel method is found to be a fairly rapid and convenient method
when the complete Green's function in the Bethe-Goldstone equation is expressed in terms of a corresponding
reference-spectrum Green's function, and the single-particle energies in the energy denominator in the Bethe-
Goldstone equation are replaced by a reference energy spectrum. Third-order and higher-order energy con-
tributions can probably be assumed to be built into this energy spectrum, or they may be estimated by sepa-
rate calculations. The binding energy for liquid 'He with only two-body terms included is found to be approxi-
mately —$'K per particle, which is in general agreement with other calculations.

Rayleigh-Schrodinger perturbation expansion for the
energy, a rearrangement is performed which replaces
the expansion in terms of the large matrix elements of
the potential by an expansion in reaction matrix ele-
ments. This reaction matrix, or 6 matrix, is obtained
by a solution of the two-body problem in the medium.

The multiple scattering theory of Brueckner is
formalized by Goldstone' in the language of second
quantization. The ground-state energy of the system is
obtained as the sum of a perturbation series in the two-
body interaction, where each term in the series is
represented by a linked diagram, Linked diagrams are
diagrams which cannot be separated into independent
parts without breaking at least one interaction line.
One hopes that the Goldstone series converges suQi-

ciently rapidly for practical calculations, but this is
not obvious because of the very strong short-range
repulsion in the potential. However, the wave function
is 6nite, and vanishes in this region. Then the 6 matrix
corresponding to multiple elementary collisions is
introduced, and the corresponding terms in the Gold-
stone expansion are the ladder diagrams, where a given
pair of particles outside the Fermi sea interact any
number of times with each other. The set of all such
diagrams can be summed, and repl. aced by a single
diagram in which the pair of particles interact by the 6
matrix.

Brueckner and Gammel calculate the interaction
between two atoms, taking the rest of the medium into
account in two important ways. The Pauli exclusion
principle is included. , which limits the number of states

1. INTRODUCTION

'HE simplest microscopic theory of liquid 'He
would be that of an ideal Fermi gas, but this

obviously cannot be a good description of the real
liquid 'He. A pure Hartree-Pock theory is not useful
either, because the interatomic potential is strongly
repulsive at short distances, and two-body correlations
must be included to get finite results. A hard-sphere gas
has been studied in the low-density 1imit, but this work
is of on1.y formal interest to us, since liquid 'He cannot
be considered as a dilute system. The range of the forces
is not small compared to the average spacing between
the atoms, and we also need attraction to obtain binding
of the system. We must, in principle, sum an in6nite
class of terms in the perturbation series to take into
account the strong interactions between 'He atoms.
This can be done in a systematic way with diagram-
matic perturbation theory.

The first serious attempt to calculate the properties
of liquid 'He at zero temperature from 6rst principles
was made by Brueckner and Gammel (BG).' The physi-
ca1 basis of the Brueckner theory is that when two 'He
atoms interact, they interact strongly, but at the same
time the liquid is suQicient1y dilute that their inter-
action with other particles may be considered in an
average way. Brueckner and collaborators developed a
method to avoid the difhculties resulting from the strong
repulsion in the potential v. Starting from the linked
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r K. A. Brueckner and J. L. Gammel, Phys. Rev. 109,
(1958).
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available for the interaction pair of atoms. Also, this
pair of particles moves in an average 6eld or self-
consistent potential created by the neighbors. Kffects
from three-body or higher-order clusters are neglected.
The motion of an atom is characterized by a momentum
quantum number, and the ordering of states is like the
ordering in a Fermi gas, but the atomic motion is
associated with very strong polarization effects among
the surrounding atoms, so the particles in the theory are
really quasiparticles, or atoms moving with their
polarization cloud. 'Zo include the exclusion principle
and modified energy spectrum effects, BG use a Green's-
function method to evaluate the G-matrix propagator
in coordinate space. Their results are in reasonable
agreement with experimental results, and may suggest
that two-body correlations are the most important ones
in describing liquid 'He. But their calculated binding
energy is less than half the experimental value.

In the integral equation for the G matrix, single-
particle potentials expressed by diagonal elements of
the G matrix are included. This introduces a problem of
self-consistency. This single-particle energy spectrum
is assumed to have a gap at the Fermi surface. Single-
particle potentials representing the interaction with
particles in the Fermi sea should be calculated on the
energy shell. But when the medium is excited, scattering
of a pair of particles occurs oG the energy shell, and the
single-particle potential for particles above the Fermi
level should be calculated with G-matrix elements off
the energy shell. In their nuclear-matter calculations,
BG' approximate this by an average excitation of the
order of magnitude of the Fermi energy, which is
probably a rather bad approximation. Furthermore,
they simply cut off the single-particle potential energy
spectrum in intermediate states at the point where it
goes through zero. 4 Although this gives results not too
different from ours, it is inconsistent with their stated
procedure, and it is clear that if they had retained the
potential energy after it became positive, they would
have obtained less binding energy. Perhaps the system
would not have been bound at all. It is therefore impor-
tant to redo their calculations in some consistent way.

The Brueckner method can be modi6ed somewhat.
For nuclear matter, Bethe et ul. ' have developed a
method to calculate a relatively simple reference reac-
tion matrix. The self-consistent single-particle spectrum
is represented by a quadratic expression, i.e., an
effective-mass approximation with appropriate coeS-
cients. The release of the energy denominator from the
loop of self-consistency through the G matrix and the
single-particle energies is a great advantage and a major
simplification in practical calculations. We will try to
use this idea also in our calculations.

'K. A. Bruet kner and J. L. Gammel, Phys. Rev. 109, 1023
(1958).

4 K. A. Brueckner (private communication).
~ H. A. Bethe, B.H. Brandowp and A. G. Petschek, Phys. Rev.

129, 225 (1963).

There remains some question about the single-
particle energy spectrum for intermediate states. Bethe
has proposed to calculate the three-body energy as if it
were a self-energy correction to the two-body terms. One
can de6ne the particle potential energies in such a way
that the three-body correlation energy is compensated
by the potential insert diagrams of the Goldstone theory.
The total energy is then given by the 6rst-order two-
body interactions, by summation of two-body terms.
We will, however, in contrast to this method, choose
the intermediate-state potentials to be zero, i.e.,
assume just free propagation or plane waves for the
intermediate states, and then do separate calculations
for the three-body cluster energy.

Q(k„kg)=1if k.)kp andkg)kp,
=0 otherwise.

(2.2)

This is the exclusion-principle effect of the other par-
ticles in the medium on the two strongly interacting
particles.

The energy operator e includes potential and kinetic
energy, and can be written as

e=e +eh e e ~ (2.3)

The single-particle energies e and e are self-consistent
energies for particles moving in the Fermi sea, and e, and
e~ are energies of virtual excitations above the Fermi
surface.

The energy of an unexcited atom is

e(k„)=T(k„)+U(k„),
where T is the kinetic energy,

T(k )=-,'k'k '/M,

(2.4)

(2.5)

and M is the atomic mass.
It is a problem of particular importance and difIiculty

to define the single-particle energies e. In the theory of
Brueckner, the single-particle potential U is given by
the diagonal elements of the G matrix by the relation

U(k.)=Z Dk k. IGlk k-)—(k k. IGlk.k )j (26)

with summation over all occupied states. The second
term in Eq. (2.6) comes from exchange of spin and mo-

2. BRUECKNER-GAMMEL METHOD

In the method of BG,"the energy is calculated from
a reaction matrix similar to the transition matrix for
scattering in free space. This reaction matrix, or G
matrix, is defined by the integral equation

G= e—e(Q/e)G

in operator form. Here v is the two-body potential,
which is assumed to be the same as in free space. The
Pauli exclusion operator Q prevents scattering into
occupied intermediate states, i.e.,
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where GL is a function of relative and c.m. momenta.
The properties of the liquid can then be determined
from the G matrix.

The total ground-state energy is

E=P LT(k )+-,'U(k )j. (2.8)

We introduce relative and c.m. coordinates by
deGnlng

P=-,'(kg+kp),
k= —',(kg —kp),

R= -', (rg+ re),
1'= I'y —f2 ~

(2.9)

Then P is the average momentum of the two particles,
and the c.m. momentum is equal to 2P.

For central forces only, the angular-momentum re-
duction of the G matrix is given by

(k'IGIk)=Z (2L+1)(k'IG Ik)P (k' k). (2.10)

mentum coordinates. If we assume that 6 is a function
of only the magnitude of the total momentum I', we
can write a partial-wave expansion

(k~k~IGIk k )=Q (2L+1)Gr(P,k„„)PI(cos8), (2.7)

Equation (2.12) is probably a good approximation for
I-&3, but for lower values of L, the many-body eGects
are important and the exclusion principle must be
included. The potential is strong in the'important region
and polarization sects occur.

If kp is the initial- and k is the intermediate-state
relative momentum of the two interacting atoms, then
the Pauli operator (2.2) is

Q=1 if I 8+k I )kF and

=0 otherwise,

IP—kI)kr,

Q(P,k) =0 if k'+P'(kg'
=1 if k—E&kp,
= (P'+k' —kp')/(2Pk) otherwise

(2.15)

The single-particle potential (2.6) can be written as

(kg—k) /2

U(k) =— k"(k'IGIk')dk' (for k(k )
7I p

and the energy denominator (2.3) is

e(k, kp, P) =e(P+k)+ e(P—k) —H(kp, P)
= (AP/M) (k&—kg)+ I U(P+k)+ U(P—k)

—U(P+ko) —U(P—k )j. (2.14)

The exclusion operator Q is approximated by its
average over angles of P, i.e.,

Equation (2.4) for the energy of a particle moving on the
energy shell with momentum k„becomes

e(k„)=-', h'k '/M

(kz+k) /2

1+
) ky —k) /2

2

k p' —k' —4k")

4kk'

X(k'IGIk')dk', (2.16)
+2X2XQ Pe Q (2L+1)(k ~IGz, Ik~~)

m even I

+-,' P (2L+1)(k„„IG,Ik..)), (2.11)

(kg—k) /2

U(k) =-
7l 9

k"I P +3 Q g(2L+1)
even L odd L

odd I

with the sum over m taken over the Fermi sea. The first
factor of 2 in the interaction term comes from two spin
states per momentum state, the second factor of 2
comes from the exchange term. The factors 4 and 43 give
the weights of the singlet-even and triplet-odd states.
VVe will later include all these factors in our deGnition
of the G matrix.

We now have an effective interaction between the
quasiparticles, given by the G matrix which is density-
dependent. If we neglect the exclusion principle and the
average Geld from the other atoms, we can write

(k'
I
G

I k) = —(47rhe/Mk)

X{ P (2L+1)~.(k)P, (k k)(1—P.)
even I

+ Q (2L+1)4(k)Pr(k' k)(3+P )}, (2.12)
odd L

where P, is the spin-exchange operator, and br, (k) is the
scattering phase shift for relative momentum k.

4 "~+'&le k '—k' —4k"~
X(k'IG~Ik')dk'+ k"—1+

)kJ-k) /2

XL P +3 P g(2L+1)(k'IGr, Ik')dk'. (2.17)
even I odd L

For k& kg the first integral vanishes.
The average binding energy per particle is then

ky -& h2k2
E~=

(3/kate)

k' +-', U(k) dk. (2.18)
M

Further details of our calculations are given in Sec. 3.
But Grst, for purposes of comparison, we will explain
more about the original BG method.

The Fermi momentum, pr ——Akp, is related to the
density by

p p= A(3e'N/0) '", (2.19)

where E is the total number of particles in a large
volume Q. The normal density can then be determined
from the minimum of Es, Eq. (2.18), as a function of
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the density
p= X/0= x~kr'/m', (2.20)

which gives the number of states in the Fermi sea.
The single-particle energies show a dispersive e6ect

of the medium, vrhich corresponds to a particle moving
in an eGective potential arising from its interaction
with all other particles in the system. For hole states,
these single-particle energies should be calculated on
the energy shell, but for intermediate particle states
they should be calculated oG the energy shell. We then
have an equation similar to Eq. (2.4) for the energy
of an excited particle, but with a single-particle po-
tential U(k) calculated from excited-state G-matrix
elements. In the BG calculations this is approximated
by introducing into the energy denominator (2.3) a
mean excitation energy or parameter 6 equal to the
excitation energy of the Fermi gas. The virtual energies,
defined in this way, then differ at the Fermi surface

by an energy gap, vrhich ensures nonsingular G-matrix
elements. So, for propagation off the energy shell, BG
replace Eq. (2.14) by

e(k, kg, P) = e(k+)+ e(k )+A—H(ko, P), (2.21)
vrhere

f1=1—(Q/~)G. (3.7)

The propagator Q/e is a rather complicated nonlocal
integral operator.

Equation (3.6) is written in coordinate space as

The reaction matrix equation (2.1) is then reformulated
and converted into coordinate space by dining a wave
operator 0, which replaces the uncorrelated wave
function 4 by the correlated vrave function 4, i.e.,

(3.3)

Equation (3.1) is equivalent to the operator equation

(3.4)

and its matrix element is

&~IGI~)=&~I l~) (3.5)

Dividing Eq. (2.1) on the left by e and multiplying
from the right by 4, we get the Bethe-Goldstone
equation9

(3.6)

and for the vrave operator

k,2=k2+P2~(2/vz)PkQ2(P, k). (2.22)

They also replace the total momentum by a root-
mean-square value of I', taken over pairs of particles
in the Fermi sea, i.e.,

4'(r) = C(r)+ F(r,r')u(r')%(r')d'r', (3.8)

where the radial Green's function F(r,r') is

(P') = -'k p(k p —kp) L1+-'kp'(2k p'+kok p)j
for kp(k p, (2.23)

=0 otherwise.

exp'(r —r')
I'(r, r') = —(2s)-' d'k

e(k)
(3.9)

The quantitative agreement vrith experiments of the
results of BG for the binding energy is not quite satis-

factory. They get a binding energy of —0.96'K per
particle at a saturation distance of 2.60 A. This equilib-

rium spacing is not so far from the experimental value

of 2.43 A, ' but the binding energy is less than 40% of the
experimental value of —2.5 K per particle. ~'

3. CALCULATION OF TVfO-BODY TERMS

According to general scattering theory, the two-body

wave function is de6ned by

(3.1)

gr(ko&)=P(21.+1)i~PI,(cose)
(ker)

(3.10)

Then JI,(kor) corresponds to the free-particle wave

function.
Expanding and dedning in the same vray the radial

components Xr, of i and Nr, of 4, we get

and e(k) is the energy denominator (2.3).
The Bethe-Goldstone equation (3.8) is separated into

partial waves by introducing the expansion

C(r)=g(2L+1)ir'jg(kor)Py(ke r)

where C is the unperturbed free-particle vrave function

and 4 is the perturbed one. The distortion of the wave

function due to the potential is vrritten as

gI, (kor) =kor jr,(kpr),

Nr, (ko,r) = kpr @r,(kp,r),
Xr, (ko,r) =gr, (kor) er, (k p r) .—

(3.11)

(3.2)

Due to the strongly repulsive core, the momentum

space matrix elements of the potential e are very large.

~ E. C. Kerr, Phys. Rev. 96, 551 {1954).
7 S. G. Sydoriak and T. R. Roberts, Phys. Rev. 106, 175 (1957}.
'T. R. Roberts, R. H. Sherman, and S. G. Sydoriak, J. Res.

Natl. Bur. Std. (U. S.) 6SA, 567 (1964).

We also de6ne a partial-vrave effective interaction or
potential

gI, (r) =e(r)gz, (kp, r)/gr, (kpr)
= &(&) l 1—xr, (ko,&)/gz, (ko&}j (3 12)

f'H. A. Bethe and J. Goldstone, Proc. Roy. Soc. (London)
A238, 551 (1957l.
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so that

gr(kpr)o(r)ui(ko, r)dr= $12(kor)gz(r)dr. (3.13)

In the reference-spectrum method of Bethe et at. ' for
nuclear matter, the 6-matrix equation is solved with
two important approximations. The basic idea is to
approximate the operator Q/e by a simpler one. Then
the equation can be solved analytically and the error
in the approximation can be calculated by a pertur-
bation method.

One approximation is to assume the energy denomi-
nator e(k) to be a quadratic function of the relative
momentum. We have also used this idea in our SG
method in order to make calculations simpler.

Assuming a single-particle potential of the form

Fl, (k) =kp ' gr, (kr)Xr(kp r)dr. (3.21)

The Fourier transforms can be calculated in two
different ways. One is to integrate Eq. (3.21) directly
numerically, but this method is probably not the best
one. From Kqs. (3.6) and (3.11) we see that we can
write

Xr, gr,—Nr——, (Q/e)oN——I. , (3.22)

gap 6 (or the parameter &2) just de6nes the hole spec-
trum, which will be our real input parameter.

One should determine the important range of inter-
mediate-state energies by examining the statistical
average of the square of the Fourier-Sessel transform
of the distortion f' in the wave function, or rather the
partial-defect wave function Xr/kp. We are therefore
interested in

U(k) =A+Bk', (3.14) where the Pauli operator Q is de6ned by Eq. (2.15), i.e.,
we can write for the energy of intermediate states

o(k) = T(k)+ U(k)
=A+Bk2+ T(k) =A+ T(k)/m*

& (3.15)

Q(P,k) =0 for k&+(kr2 —P'),
= (P'+ k' —kg 2)/(2Pk)

for Q(k22 —P') &k &kp+P, (3.23)

Q(P, k)rN~
FI.(k)= kp '

~2+k2
gr, (kr)o(r)Nr(ko, r)dr. (3.24)B= T(k) (1/m* 1)/k—'= ,'( t' /i2M2—) (1/222* 1) —(3.1.6)

where the constants A and m* should be chosen to give = 1 for k) kr+P,
a good approximation to the actual self-consistent
energy in the important range for k. The constant A is and the energy denominator e is defined by Eq. (3.18).
probably rather close to zero, and m* is the dimension- Then the Fourier transforms are given by
less effective mass. The constant 8 is

The quadratic form (3.15) is equivalent to the differen-
tial operator

o(k) =A+-'k'k'/(Motto*) =A —-'(A'/Mm*) 7' (3 1'/)

For states in the Fermi sea, we can dehne an equation
similar to Eq. (3.14) with Ap instead of A, and the
effective mass teo* for the hole spectrum of particles in
the Fermi sea.

The energy denominator for two particles of relative
momentum lr and total momentum 2P, i.e., Eq. (2.14),
is then

e(k) = o(P+k)+ o(P k) P—(kp, P—)
= —(kp/M) (V2—yp)/2N*

= (kp/M) (k'+go)/mo, (3.18)

K= p I f(ko,r) I
dr =42p If (ko,r) I

r'dr, (3.25)

or

«=4~pLk Z +-' Z 3(2L+1)
even L odd L

=orpI Q +3 Q j(2L+1)
even L odd L

~ (Xr,
dr

o iko

Equation (3.24) is probably more accurate than Eq.
(3.21), at least for k=kr, and we have used the 6rst
one in our calculations. We see that the exclusion oper-
ator Q(P, k) ensures correct behavior near kr.

The volume integral

where
7'= 2hkr2 —kp22ipo/222p* (3.19)

"(Xr, 2

X
I

—dr=spy;, (3.26)
, kko

for propagation on the energy shell and ko&kp. We see
that y' is a positive constant depending on the total
momentum of the pair and on the starting energy. 6
is a measure of the gap between the occupied and the
intermediate-state energy spectra. Then

~= (M~*Pok, p)(A A,), — (3.20)

and en~ and 6 are the basic parameters of the energy
spectrum. We will later put A =0 and m*= i. Then the

is a very important quantity for the saturation proper-
ties of the system. It is proportional to the probability
of 6nding a particle in an excited state rather than in
the Fermi sea, and it is the hopefully small parameter
which possibly characterizes the convergence of the
rearranged linked-cluster expansion. In nuclear matter
K is of the order of 10-20%, but unfortunately it is
rather large for liquid 'He, as we shall see below. The
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integral ~/p in Eq. (3.25) has been called the volume
of the correlation hole, or the size of the wound in the
wave function.

This volume integral of the square of the defect wave
function X(ko,r), i.e., the integral in the expression
(3.26) for ~, can be written as

Fz,'(k)dk ~ ~z ~ (3.2—7)

in dimension PA j, where Fz(k) is the Fourier trans-
form (3.24). We see that this integral can be calculated
in two different ways, integrating Xz(ko, r) in coordinate
space or Fz(k) in momentum space. Because the
integral is density-dependent and hence also ~1, de-
fined by Eq. (3.26), we also calculate the density-
independent expression for f~:. Yo get a as de6ned in

Eq. (3.26) we then should multiply the results (3.27)
by 4xp and include appropriate statistical factors for
the diferent partial waves.

Potentials and energies can be expressed in units of
K=ergs/k, where k is Boltzmann's constant. But in

the following sections we express energies in units of
A ', the conversion factor being

a /Sr = 16.36'K A (3.28)

(ko~Gz, ~ko) ~ 42r r'jz, (kor)o(r)uz(ko, r)«, (3.29)

which we obtain from Eqs. (2.10) and (3.5). The free-

scattering result, which we have used as an approxi-
mation for L)3, can be written as in Eq. (2.12), i.e.,

(ko i Gz
i ko) ~ —(42r/ko) bz(ko).

Equations (3.5) and (3.29) are rewritten as

(k o [ Go [ k o) =g (ko [ Gz [ ko)

(3.30)

=(42r/ko2)L Q +3 g j(2K+1)
eVen L odd I

X gz(kor)o(r)uz(ko, r)dr, (3.31)

Also, to make the notation as simple as possible, indices
are suppressed throughout the paper when they are
not really necessary. All the wave functions are func-
tions of the relative momentum ko, unless otherwise
stated.

The principal equations to be solved are the following:
After an angular-momentum reduction of Eq. (3.5),

the diagonal 6-matrix elements for the angular mo-

mentum I.and relative momentum Ao can be written as

For nondiagonal G-matrix elements, Eq. (331) is
changed to

(k[G(ko)=g (k(G. (ko)

=(42r/kko)L Q +3 g j(2J.+1)
evBn Lr 0'

X gz(kr)o(r)uz(ko, r)dr. (3.32)

The single-particle energies (2.4) or (2.11) are given

by
(3.33)o(k) = -'2k2/M+ U(k),

uz(ko, r)= gz(kor)+ Fz(rr')o(r')uz(ko, r')dr'. (3.34)

The Green's functions Fz,(r,r') are defmed by

2 " gz(kr) gz(kr')Q(P, k)222*

rz, (r,r') = —— dk (3.35)
Vl 0 ~2+k2

for propagation off the energy shell in the intermediate
states, where Q(F,k) is given by Eq. (3.23).

All the integrals have been calculated by numerical

integration and performed by means of Simpson's rule

or with a trapezoidal method.
The Green's functions 1'z(r, r') are computed first.

This is a time-consuming part of the calculations and

the release of the energy denominator from the re-

quirement of self-consistency is a great simplification
here. For each partial wave el„the continuum 0&r & 00

is replaced. by a discrete set of points within the im-

portant range of the potential ~. The corresponding
radial Green's functions are evaluated for all pairs of

points, and eL, is obtained by diagonalizing a finite

matrix, i.e., by matrix inversion.
To obtain the integral (3.35) as accurately as pos-

sible, using the property of the Pauli step function

(3.23), we write Eq. (3.35) in the form

2
rz(r, r') = —-rN~

gz(kr)gz(kr') 2
dk +~~

7'+k'

gz(kr) gz(kr') $1—Q(F,k)j
dk (3.36)

y2+k2

where U(k) is defined by Eq. (2.17).The binding energy
can then be calculated according to Eq. (2.18).

The radial wave functions are given by the Bethe-
Goldstone integral equation (3.8) in the form

The 6rst integral corresponds to a Green's function in

and we take this as our de6nition of Gl„i.e., we include which the exclusion principle is not included. For this

appropriate statistical factors. Fz, &o&(r,r ) an analytic expression can be obtained.
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Using Eq. (3.23), Eq. (3.36) is written

I'r, (r,»') = Fr, &o&(r,r')

2 &'r ~'& g, (kr)g, (kr') 2
+—m* dk +-m*

0 y'+k' s.

Here

Hr, '+'(x) = i' +'&(Wix) kr, &'&(Mix)

=i &~'&(+ix)kr, &'&(+ix) (3.40)

are the solutions Hr, (pr) of the equation

~(JDg2—P2)

gl. (kr) gi.(k»') Lkra —(k —P)')
dk —,(3.37)

2kB(y'+k')

[d'/dr' L(L—+1)/r' y')H—r, (yr) =0 (3 41 )

expressed in terms of spherical Hankel functions. The
latter are de6ned by

2
I' &'&(r,r') = ——m*

with the solution

g r,(k») gr, (kr')
(3.38)

~2+ks where
hg") = —ihl, '+, hl, (') = ihL, (-),

Itl, (~) ——sl,&l'g'I, .

(3.42)

(3.43)

I'r, &o&(r,r') = (m /2y)l (—1)~Hr, & &(y»)Hr, & &(yr') For the lowest partial waves we get for Eq. (3.39) the
Hr& &(y—r&)Hr&+&(yr~')) (for r)r'). (3.39) solutions

I', "&(r,r') = (m*/2&)(expl —p(r+r')) expl —v I»—"I)}
I', &'&(r,r') = —(me/2y)(f 1+1/7«)[1+I/yr') expl —y(r+r'))+L1+I/vr)l Iwl/v»') expl —el«
I', &'& (r,r') = (m*/2y) ([I+3/yr+3/(yr) ')

I 1+3/yr'+3/(7»') ') expl —y(«+ r'))
—I:1+3/v»+3/(vr)')ii+3/vr'+3/(vr')') expL —el»—«'I)}, (3 44)

I'o&'&(r, r') = —(m*/2y)([1+6/yr+15/(yr)a+15/(yr)']$1+6/yr'+15/(yr')'+15/(yr')') exPI —y(r+r'))
+LI+6/7»+15/(vr)'+15/(7»)')I. 1~6/vr'+15/(vr')'~15/(7»')') expl:—7 I

»—r'I) },

and so on. In the expressions above, the upper sign is
for r&r', the lower sign is for r&r'.

The second integral in Eq. (3.36) can be calculated
numerically with high precision. Some typical Green's
functions are shown in Fig. 1.

The wave functions Nr, (r) are determined by nu-
merical integration of Eq. (3.34).Because of the strongly
repulsive part of the potential, we had great problems
with an iteration procedure. It would not converge, and
we had to use a matrix inversion directly to get the
wave functions. Afterwards, the 6-matrix elements are
calculated by numerical integration.

ynM(») = yoL(g/»)» —(g/») s)
where

Vo ——40.88oK, R=2.56 A,

(4 4)

(4.5)

The average kinetic energy per particle of the Fermi gas
is then

Tr = 'A'kr'/M =—18/ro'=3 05 K (4 3)

where 1lf is the mass of the 'He atom.
Srueckner and Gammel' have considered two po-

tentials in their calculations. The first one is a Lennard. -
Jones'o 6-12 potential of the form

4. PARAMETERS AND RESULTS

At zero pressure, near zero temperature, an atom
occupies a mean volume de6ne by

I/p= 0/X= s4rrro' (4 1)

kr ——(9/4s) "%o=192/»o=0 79 ~ (4.2)

At normal mass density, which for liquid He is 0.082
g/cm', the mean interparticle spacing ro is determined
experimentally to be 2.43 A.o At this density, the
binding energy or mean energy at zero temperature
is usually taken to be —5.04 cal/mole, or —2.53oK/
particle. ~ The most recent value is, however, —4.92
cal/mole, or —2.47'K/particle, ' so we take the experi-
mental value to be just —2.5 K/particle. The Fermi
momentum is given by Eqs. (2.20) and (4.1) as

-0.4

-0.7-

P (2.0,r)
r,"'(m, r )

/

I/

«Fo (4.0, r/ &D)

I /
'll 1 /

I /
'&l I /il /

FIG. 1.Green's functions Fs(r,r') for 5=0 (and I=2). I'o«& (r r')
{dotted line) is with the exclusion principle neglected, i.e., Eq.
(3.44). kg=0. 75 A ') b, =0.5, m*=1.0, and kp=0. 5k@.

I0 J. E. Lennard-Jones, Proc. Roy. Soc. {London) A106, 463
(&924)
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V tdeg, K]
20

g.(,~) =(6+v)/L (1+~)-(6+v)j,
g.(.,~)= /E.(1+~)-(6+8~)3.

(4.9)

$0

I or the parameters in this potential, Buckingham and
Scriven" (BS) have given the values

Us=10.18'K, 8=2.943 A,
e=13.5, P=0.20,

(4.10)

-'lO

Fxo. 2. Potentials for liquid He. VgM is given by Eq. (4.4), Vgo by
Eg. (4.6), Vss by Eq. (4.11), and Fvs by Eq. (4.13).

and r is measured in A. This is a semiphenomenological
potential fitted by de Boer and Michels" (BM) to the
low-teIQperature vlrIal coeS.clients.

The second potential is of the general form determined
theoretically by Slater and Kirkwood" eath an ex-
ponential repulsive terIQ but %Kith parameters 6rst
calculated by Yntema and Schneider (YS),"6tted to
the virial coe%cients up to 1200 K. The Yntelna-
Schneider potential used by BG' is de6ned as

Vno(r) = Vst 1200 exp( —4.82r)
—1.24/r' —1.89/r'j, (4.6)

2.O

tO

O.S

FIo. 4. Wave functions go(ko«) and ux (ko«). ko is varied
k~ ——O.ls A;1, ~=0.4, and no*=2.0.

whIch glvcs a potcIltIal wrl'ttcII III 'tllc fol'III (4.6) as

Vns(r) = VsL905 exp( —4.59r)—1.43/r' —2.48/rs$.
(4.11)

The corresponding data for the original VS potential
are, according to de Boer, '4

Pe=8.12'K, 8=3.0 A,
n= 14.2, P=0.17,

FIo. 3. Wave functions go(ko«) and Nq(ks, «). ks =0.75 L I,
d =0.$, mo~=1.5, and ko=0.Sky.

Vo= 7250'I,

and r is measured in A.
The YS exp-6-8 potential can generally be written

ln the folTQ~4

V(r) = ~o(gI(~,P) COL~(1 —«/&) j
—gs(~P)(~/r)'t 1+P(~/r)'j), (4.8)

&' J. de Boer and A. Micheis, Physics 5, 945 (193&)."J.C. Slater and J. G. Kirkmood, Phys. Rev. 37, 682 (1931).
"J.L. Yntema and W. G. Schneider, J. Chem. Phys. 18, 646

(1950).
I4 J. de Boer, Physics SuppL 24, 90 (1958).

I"IG. 5. Wave functions XI,(ko,r). k~=0.78 A ~,

6,=0.4, moan=2. 0, and ko=ky.

'~R. A. Suctingham and R. A. Scriven, Proc. Phys. Soc.
(London) A65, 3'ld (1932).
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~lXi/k4)Al
2.0-

1.0

while the experimental value is

ro=2.43 A,

kp=0.79 A ', (4.16)

D.S

we have chosen two values for the Fermi nmmentum
in our calculations, i.e.,

-D.S

9 10 kg=0.75 A ' or

=0.78 A-t. (4.1/)

FIG. 6. Wave functions xs(kor) ko is v. aried. kr=0.7$L ',
x=0.4, a d ~0*——2.5.

which gives a potential of the form (4.6) as

&vs(r) = &o+308 exp( —4 73r)
—1.25/rs —1.91/r'j (4.13)

with Vo given by Eq. (4.7). This is shghtly different
from the potential given by YS,"which is

6-

tfkgk~
'(k /k

2, tfk /k,

1

0.7

ks/kk» 0.126]1
ks/kF»)00])

~ ks/kp» 0125
L»)3]

,
' ks/kg» 1,00

Vms(r) = &ot 1200 exp( —4.72r)
—1.24/rs —1.89/rsj, (4.14)

but probably because the parameters (4.12) are derived
from Eq. (4.14) and not vice versa. It is not obvious

FIG. 8. Effective interactions gg(r). Ca1cu1ated on the energy sheB
for r &0.7 X. k0 is varied. k~=0.'j5 & ', 6,=0.4, and x@0*=2.0.

The corresponding density is
, l g„fk'l

L»3]
L» 2]
L» 't l
L» 0)

p=skro/ors=0. 0142 A ' or

=0.0160 A-o.

and the corresponding average kinetic energy is

Ts ———'Aokrs/M =2.76'K or

=2.99 K.

(4.18)

(4.19)

f L=O

gL 1,2,3

~II

0

For the effective mass which de6nes the energy
spectrum, we have also used diGerent values. One
reasonable approximation for the single-particle energy

Fzo. 7. Effective interactions gr(r) =o(r)lr(ko r)/gz(kor).
Calculated on the energy shell for r)0.7 k kr=0.78 6', 5=0.4,
m0*=2.5, and k0=0.5k@.

why Ilo have used. the potential (4.6) rather than the
potential (4.13) or (4.14) in their 6nal calculations.
But for comparison we have also used exactly the same
potential (4.6) in all our calculations. The four poten-
tials (4.4), (4.6), (4.11), and (4.13) are shown in Fig.
2.

2,0

'1.0-
rL-Ol
[L»1

01
»1]

2l

The other parameters which we have used in the
calculations are chosen in the following way:

Because BG got their self-consistent solution for

re= 2.60 A,
kr=074A r

k/kF'==—-j I-o i
L»2lD.S-

Fro. 9. Fourier transfornts Fr, (k} of Xr, (ko,r)/ko, dered by(4.15) Eq. (3.24). Dotted lines indicate Fr, (k) calculated according to
Eri. (3.2&). 4"=0.7g A ', 6=0.4, oooo'=2.0, and ko=kr.
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TABLE I. DlagoQal Go-matrix elements (ln A)p calcUlated on the
energy shell. RS method is vrith the exclusion principle neglected
and Eq. (3.38) instead of Eq. (3.36) for the Green's functions
Fo(r r') I=0 6 zs varied k~=0 75 X ~ mo =2 0 and ko=0 5k~

BG method

Tbc cGcctive Inass ls then chosen to be

for the particle spectrum, and

0.3
0.4
0.5

20.3
25.1
29.8

37.8
44.1
50.2

neo~= j..i, 1.5, 2.0, 2.5,
for the hole spectrum.

(4.24)

TABLE IV. Diagonal GI,-matrix elements (in A,), calculated on
the energy sheH. Statistical freights included. ko is varied. 4=0.5
Rnd Bio =1.5.

TABLE H. Diagonal Gl,-matrix elements (in A), calculated on the
energy shell, and Vi,-matrix elements (in A), deaned by Eq.
(4.30). Statistical weights included. ko is varied. k~ ——0.7$Q-~,
~=0.4, and ~;=2.0.

0.50
0.7$
1.00

G4

—0.42 —0.69—2.33 —2.35
-5.58 —5.$0

—0.21—2.46—6.84

—0.78—2.86—6.88

—0.01 —0.10—0.26 —0.45—1.07 —1.10

e(k) =-,'ks/Ns* —-', ks s/its*+ p, for k&ks,
(4.20)= Qk' for k&kg,

vrhere p is the chemical potential or separation energy:

p =E(X+1)—E(E)
= (rfE/rfÃ)u= E/X+ (p/E) (rfE/Bp),

ky(i ') ko/ky I.=O

0.75 0.001 12.1
0.125 16.3
0.25 26.8
0.375 38.9
0.$0 48.9
0.625 $5.0
0.75 56.6
0.875 53.8
1.00 47.6

0.78 0.001 19.5
0.125 24.0
0.25 34.9
0.375 47.2
0,50 56.7
0.625 61.8
0.75 61.8
0.87557.4
1.00 49.6

0—12.1—38.9—62.0
-70.6—61.9—37.5
-20
37.9

0—13.0—40.8—63.4
69.4—56.9

-28.0
11.3
53.4

0—0.1—1.3

—96
-15.0.—19.9

2312
2308

0—0;I—15
5+2—10.4—16.0—20.7—23.4—23.0

0—03—19—6.2
-12.9—21.$—32.0—43.6

0
0—0.3

e j—14.5—23.8—3$.0—47.1

0
0
0—0.4

~ 7
307—6.7—10.9—16.5

0
0—0.1—0.6—1.9—4.2—7.6—12.3—18.6

12.1
4.1

I3%7—30.2—39.1—38.4—29.1—14.3
1.6

19.5
10.9—78

-24.3
32/3—29.7—18.3
2.1

14.3

and the experimental value for fs is —2.5 K.'' The

energy spectrum (4.20) corresponds to free propagation

of quasiparticles for large exritations. Therefore, if
m~=1 o6 the energy she0, ere may approximately

replace the potential energy for particle states by a
COnstant:

U(k)=const=O for k&kJ. (4.22)

[4(A ') ks/kz

O.j5 O.OOI
0.125
0.2$
0.375
0.50
0.625
0.75
0.875
1.00

5.1
9$

20.6
33,6
44.8
523
5$.3
53.9
49.0

0
I2%3

-39.4
-63.0
-71.9
-63.3—38.5—19

39.9

0—0.1—1.3—4.7—9.6—15.0—20.0
23.2—23.7

0
0
0.3—I 9—6.2—12.9

2I0$—32.0—43.5

0
0
0-0.4
347—67

-10.9—16.5

5.1-2.9—20.4—36.4
44.6—42.6—31.4—14.1
$.2

TAnrz f1'. Diagonal Gz;matrix elements (in L), calculated

on the energy shell. Statistical vreights included. ko is varied.
6=0.4 and mo =2,5.

4=0,4, 0.5,

ks/k s =O.OO1, 0.125, 0.25, 0375, 0.5O,

O.625, 0.75, O,857, 1.OO.

4/k

0.001
0.125
0.25
0.375
0.50
0.62$
0.75
0.875
1.00

kg=0.75 A 1

0.4 0.5

5.1—29—20.4
-36.4
-44.6—42.6

3I lll4—14.1
5.2

121

—13.1—28 j—36.4—33.9—22.0—40
16.0

k~=0.78 A-~

0.4 0.5

11.7
3.2—15.2

31k2—38.3—34.4—21.0

18.3

19,5
11.0

70I
22 j7
29 3—24.7—10.6
9.3

30.2

TABLE V. Diagonal G-matrix elements |'in A), calculated on the
energy shell. 6 and ko are varied. no~ =2.5.

0.j8 0.00I
0.125
0.25
0.375
0.50
0.625.
0.75
0.87$
1.00

11.7
16.$
28.1
41.4
52,2
58.8
60.4
57,5
51.0

0
I342—41.4—64.5—71.0—58.5—29.2
11.4
55.7

0—0.1—1.5—$.2
-10.$—16.0—20.8—23.4—22.8

0
0—0.3
23

-14.5—23.8—35.0—47.0

0-
0—0.1—0.6

,
—19—4.2—7.6
I203

-18.6

11.7
3.2—15.2

3Ie2—38.3—34.4—21.0—19
18.3

A connection with Kq. (4.20) uj'ouid he

6=(2tls*) '—p/kp', (4.27)

for a given f80 q
1.e.q

y'= 2&kt s—kss/two*& kg'(2h —1/yes*) )O

if b.)(2m&&*)-'. (4.26)
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Tax.z VI. Diagonal G-matrix elements (in A), calculated on the energy shell. m0* and k0 are varied. b, =0.5.

ipppp'
kpikpi

kp =0.75 A-1

1.5 2.0 2.5
k~=0.78 A I

1.5 2.0 2.5

0.001
0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

12.1
3.9—14.2—31.5—41.6—42.6—35.6—23.9—12.2

12.1
4.1

1307—30.2—39.1—38.4—29.1—14.3
1.6

12.1
4.2

1343—29,3—37.4—35.6—24.6—79
10.6

12.1
4.2

13p1—28.7—36.4—33.9—22.0—4.0
16.0

19.5
10.7—8.4—25.8

-35.0—34.4—25.5
1207—0.8

19.5
10.9—7.8—24.3—32.3—29.7—18.3

2p 1
14.3

19.5
11.0
74—23.3—30.4—26.6—13.5
5.1

24.3

19.5
11.0—7.1
22.7—29.3—24.7—10.6
9.3

30.2

as can be seen from Kqs. (3.15) and (3.20). The average
momentum I' is always set equal to zero.

If the constant A in Kqs. (3.14) or (3.15) is chosen
equal to zero for the single-particle energy spectrum for
intermediate states, the values for 4 in Eq. (4.25)
correspond to the following values for the constant
Ao which de6nes the input hole spectrum,

For partial waves with I&3, we have replaced the
perturbed wave function eL(ko, r) in Eq. (3.31) by the
unperturbed one p(L(kor), i.e., we have made the ap-
proximation

JL(kor)v(r)uL(ko, r)dr= rir'(kor)v(r)dr. (4.29)

Then it is not necessary to solve the Bethe-Goldstonej4.28'= —4.0, —5.0 K for ko=0.78 A ', equation 6rst to get the true wave function gL(ko, r),
and we calculate Eq. (3.31) as

as can be seen from Eq. (3.20).
To estimate the importance of including the exclu-

sion principle, we have also calculated the main Grst-
order term in the original reference spectrum method of
Bethe et al.,' using the same energy spectrum as in the
BG method. That is, we have neglected the exclusion
principle and used Eq. (3.38) instead of Eq. (3.36) for
the Green's functions I'L(r, r') when solving the Bethe-
Goldstone equation (3.34). The results from the two
methods are compared in Table I for the S wave, and
for some typical standard parameter values.

P (kpiVLiko)=(4~/ko')t P +3 P j(21+1)
even L odd L

&& PIL (kpr)v(r)dr. (4.30)

r =2.4(0.1)20.0 A. (4.31)

Some calculations to check this approximation are
shown in Table II. The mesh chosen for the radial
integration with this approximation is

TABLE VII. Nondiagonal G-matrix elements (k i GLikp) (in A),
calculated on the energy shell for L&4. Statistical weights
included. k is varied. 4=0.4, mo*=2.0, and ko=0.5k@.

TABLE VIII. Nondiagonal G-matrix elements (ki GL[kp) (in A),
calculated on the energy shell for L&4. Statistical weights in-
cluded. k is varied. 6=0.4, m/ =2.0, and k0= k~.

k~(A ') k/kg LO L= 1 L=2 L=3 Total kg(A ') k/kg L=0 L=i L=2 L=3 Total

0.75 0.001
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

30.6
31.2
33.0
35.9
39.7
44.1
48.7
53.1
57.1
60.3
62.3

0—22.8—43.2—59.0—68.9
72p2—68.9—59.7—45.9—28.6—9.3

0—0.6
203—47
703—9.6—11.5—12.6—12.9—12.7—11.9

0—0.1—0.7—2.0—4.0—6.2—8.3—9.8—10.7—10.9—10,"7

30.6
7.7

13p1—29.7—40.4—44.0—40.0
-29.0—12.4

8.1
30.4

0.j5 0.001
0.1
0.2
0.3
0.4
0.5
0.6
O.j
0.8
0.9
1.0

52.9
52.9
52.7
52.5
52.1
51.6
51.0
50.2
49.3
48.2
46.9

0—6.0—11.2—15.1—16.8—16.0—12.0

6.1
20.1
36.9

0—0.6—2.3—49—8.4
1202—16.0—19.5
2202
23.7—23.9

0—0.1—0.8—2.6—5.9—10.8—17.0—24.2—31.5—38.2—43.7

52.9
46.2
38.4
29.8
21.0
12.7
5.9
1.8
1.7
6.4

16.2

0.78 0.001
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

38.3
38.9
40.7
43.5
47.2
51.4
55.7
59 9
63.4
65.9
6/. 3

0
23.3—44.0—59.8—69.1—71.3—66.5—55.5—39.6—20.4
0.7

0—0.7
245—5.1—7.9—10.5—12.3—13.4—13.6—13.2—12.2

0—0.1—0.8—2.3—4.6
7.2

—11.0—11.8
-11.9—11.7

38.3
14.8—6.7—23.8—34.5—37.5—32.5—19.9-1.6
20.4
44.1

0.78 0.001
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

58.1 0
58.0 —4.2
57.7 —7.6
57.3 —9.6
56.6 —9.6
55.8 —7.0
54.8 —1.4
53.6 7.4
52.2 19.4
50.6 34.6
48.8 52.2

0—0.6
203—5.1—8.6—12.4—16.3—19.7

224
23.3—23.1

0—0.1—0.9—2.8—6.4—11.8—18.6—26.4—34.4—41.6—47.2

58.1
53.1
46.9
39.8
32.1
24.6
18.5
14.9
15.2
20.3
30.8
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k/'k, =o(o.o5)1.0

Iyn the nnmerical integration o& Eq (3 37) &or 1 /("&
a mesh

(4 34)

2.5-

2.0-

O.S

-0.5-

FIG. 10. Fourier transforms J'L, (k) of Xl,( 0, ),(k r), k0 de6ned by
Eq. (3.24). Dotted line is J o(k) calculated according to Eq. ( .

The integration is carried out to a distance such that
contributions beyond this distance can be assumed to

The mesh used for the numerical integration in
momentum space, when calculat g q.in ~ or E . (3.27), is

k/kg = 1.0(0.1)5.0. (4.33)

The mesh chosen for all the other integrations is

r r' =0.3(0.2)0.7(0.1)3.0(0.2)5.0(0.5)10.0(1.0)12.0 A.
(4.32)

is found to be sufFicient, .
Results from the two-body calculations are then

shown in Tables I-XIV and in Pigs. 3—15.
T bl s I-IX give 6-matrix elements in dimension

A, which can be converted to K A according to q.
(3.28). Table X gives the binding energy, with on y
two-body terms included, in dimension K. a
and XII ive the volume integral of the square of t e
defect wave function, i.e., the convergence parameter
zz, defined by Eqs. (3.26) or (3.27), in dimension A'.
The total a, i.e., the expression (3.25) or (3.26), is shown
in Tables XIII and XIV. It is just the sum of the terms
in Tables XI and XIImultiplied by the factor xp to ge
the dimensionless and density-independent expression
for ~.

S. SUMMARY AND DISCUSSION

From the various tables and diagrams %e can see
how the results change as the input parameters are
varied. The only fixed parameter in our calculations

spectrum o6 the energy shell. It should be a fairly good
t' to choose the intermediate-state po-

tentials to be essentially zero as we have done, i.e.,
put m~= l. But then it is necessary to make a separate
calculation of the three-body cluster energy as we are

i~ Gtt;~l
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,'k ~G Iko) calculated on theF 11.Diagonal G-matrix elements zko,IG.
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Frc. 12. Diagonal G-matrjx elements G ko calculated on the
energy shell. A~=0.78 A ~, 6=0.4, and no*=2.0.
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FIG. 13. Diagonal G-matrix elements (ko(G~ ko), calculated on the
energy shell. nsP is varied. kg=0. /5 L '. -10
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going to do in a forthcoming paper. Also, the average
momentum I' or the c.m. momentum 2I' is set equal to
zero. Inclusion of E has been shown not to be important
in nuclear-matter calculations for central forces only, "
and it should be a fair approximation to neglect it.
The other parameters have been varied to cover their
probable values.

The variation of the G-matrix elements, the binding
energy, and the convergence parameter I(: can be seen
in the tables. The diagrams show the variation or
behavior of the two-body wave functions, the effective
interactions, the Fourier transforms of Xz(ks, r), and
the G-matrix elements. In solving the Bethe-Goldstone
equation to get the wave functions, we had to use
matrix inversion in our calculations, because an iteration
procedure would not converge. This problem of con-
vergence is due to the strongly repulsive soft core in
the potential.

Outside of about 3 A, the effective interaction gz(r)
has an exponential behavior very similar to the two-
body potential e(r), and they are equal for large dis-
tances. It seems, however, rather dBBcult to 6nd some
simple analytic function whiCh could replace gr, (r)
approximately. It is a complicated problem to calculate
gr, (r) accurately because of the unpleasant zeros in the
wave function gz(ker). In our calculations we have
just used some averaging and interpolation method to
correct gI.(r) at each such point, taking into account
the value of e(r) at that point. But it would be nice to
have a more exact method, especially because a calcu-
lation of the three-body energy term would be very
sensitive to the effective interaction gr, (r) o8 the energy
shell.

The Fourier transforms can be calculated in two
different ways, according to Eqs. (3.21) or (3.24), as
stated in Sec. 3. Here it seems more accurate to work
with the true wave function u&(ks, r) in Eq. (3.24) than
with the distortion Xr (ks,r) in Eq. (3.21).This is because
the values for Xz(ks, r) will be more uncertain and have
a greater relative error than the values for the wave
function ut(ks, r). Also, the exclusion operator Q(E,k)

"G. Dahii, E. Pstgaard, and B. Brandow, Nucl. Phys. (to
be published).
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FIG. 15. Nondiagonai G-matrix elements (k (Gr, ~ko), calculated
on the energy shell. The total G matrix is with only I,&4 indgdcd,
ky =0.75 g ' 6=0.4, mp*=2.5, and kp=ky,

Fxo. 14. Nondiagonai G-matrix elements (k(Gs(k0), calculated
on the energy shell. The total G matrix is with only I.(4 included.
kg —-0.75 j ~, 6=0.4, es *=2.5, and k =0.5k~.



270 E. PSTGAARD

TABLE IX. Diagonal Gz, -matrix elements (in A) for L&3, calculated as (ko~ Vz, ~ko) defined by Eq. (43O).
Statistical weights included. k0 is varied.

kz(A ') ko/ks L=9 L= 10 Total

0.75

0.78

0.125
0.25
0.375
0.50
0.625
o.75
0.875
1.00

0.125
0.25
0375
0.50
0.625
0.75
0.875
1.00

0—0.03—0.25—0.69—1.35—2.35—3.73—5.50

0—0.04—0.29—0.77—1.53—2.65—4.18—6.15

0—0.01—0.18—0.78—1.63—2.86—4.58—6.88

0—0.01—0.23—0.90—1.83
3023—5.16—7.75

0
0—0.01—0.10—0.26—0.45—0.74—1.10

0
0—0.02—0.12—0.29—0.51—0.83—1.25

0
0
0—0.08—0.37—0.73—1.18—1.80

0
0—0.01—0.12—0.44—0.82—1.34—2.02

0
0
0—0.01—0.05—0.14—0.23—0.35

0
0
0—0.01—0.07—0.16—0.26—0.40

0
0
0
0—0.01—0.20—0.43—0.65

0
0
0
0—0.05—0.26—0.48—0.73

0
0
0
0
0
0—0.05—0.13

0
0
0
0
0
0—0.05—0.14

0
0
0
0
0
0
0—0.10

0
0
0
0
0
0—0.01—0.11

0—0.04—0.44—1.65—3.66—6.73—10.93—16.51

0—0.05—0.55—1.92—4.21—7.63—12.31—18.55

TAsLz X. Binding energy for liquid 'He (in 'K). Only two-body
terms included. 6 and mo* are varied.

kp(A i) 2.0 2.5

in Fq. (3.24) gives a more correct behavior at k=k».
When using the transformation (Q/e)sir. , i.e., Eq (3.22)
jn Eq. (3.24), the explicit appearance of Q ensures the
correct behavior near kr, while the presence of e(r)
gives a satisfactory convergence of the integration in
coordinate space.

In the calculations of the binding energy, we see that
the repulsion for L=O and the attraction for L=1
roughly cancel each other. The partial waves with
L&1 thus give us the binding. The binding energy of
liquid 'He is calculated for several values of the input
parameters. The results are given in Table X, and can
be compared with values from other calculations:
—0.20'K/particle of Massey and Woo," —0.96'K of
BG, —1.16 K of Beck and Sessler is and —1.35'K of
SchiB and Verlet, " while the experimental value is
—2.5'K/particle. "

A special point in our calculations is the problem of
the energy denominator in tLe Bethe-Goldstone equa-
tion. Here it is very useful to have a reference spectrum
or an effective-mass approximation. The release of the

energy denominator from the loop of self-consistency
through the 6-matrix elements and the single-particle
potentials is a great advantage in the calculations, and
here we should try to use the idea of a reference energy
spectrum if possible.

TABLE XI. Volume integrals aI- of the correlation hole (in L'),
de6ned by Eq. (3.26). Calculated on the energy shell for L&4.
Statistical weights included. ko is varied. 6=0.4 and mo*=2.5.

k~(A ') k0/'k~ L=O

0.75 0.001 5.01 0
0.125 4.96 0.10
0.25 4.84 0.39
0,375 4.63 0.85
0.50 4.35 1.44
0.625 4.01 2.12
0.75 3.65 2.84
0.875 3.25 3.57
1.00 2.84 4.29

L=2 L=3
0 0
0 0
0 0

001 0
0.03 0.01
0.07 0.02
0.12 0.05
0.20 0.10
0.28 0.19

Total

5.01
5.06
5.23
5.49
5.83
6.22
6.66
7.12
7.60

In liquid 'He the "true" e6ective mass has a large
value which means a Qattening of the energy spectrum
with respect to that of free particles. This is because of
an increase in the depth of the single-particle potential
as the Fermi surface is approached, which partially
compensates the increase in the kinetic energy, giving
the large effective mass. For slow particles near the
bottom of the Fermi distribution, the repulsive core
acts strongly and the repulsion is enhanced by the ex-
clusion principle. For more rapidly moving particles
near the Fermi surface, the interaction in states of
higher angular momentum becomes more eGective. The
repulsive effect decreases, the attractive interaction
increases, and the interaction energy becomes more
negative as the Permi surface is approached. The poten-
tial energy of interaction thus increases as the particle
momentum increases, giving the large effective mass.

If we choose the intermediate-state single-particle
potentials equal to zero, and require that a binding

0.75 0.4
0.5 —1.08

—1.69—0.71
—1.43—0.45

—1.27—0.29

0.78 0.4
0.5 —0.36

—1.12 —0.79 —0.59
0.11 0.43 0.61

"W. E. Massey and C. W. Woo, Phys. Rev. 164, 256 {1967).
'8 D. E. Beck and A. M. Sessler, Phys. Rev. 146, 161 (1966).
' D. &cliff and L. Verlet, Phys. Rev. 160, 208 (1967).

0.78 0.001 5.09 0
0.125 5.04 0.11
0.25 4.90 0.42
0.375 4.67 0.91
0.50 4.37 1.53
0.625 4.00 2.25
0.75 3.60 3.01
0.875 3.18 3.77
1.00 2.74 4.51

0 0
0 0
0 0

0.01 0
0.03 0.01
0.07 0.02
0.13 0.05
0.20 0.11
0.29 0.20

5.09
5.15
5.32
5.59
5.94
6.34
6.79
7.26
7.74
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TABx,E XII. Volume integrals ar, of the correlation hole (in A.'),
de6ned by Eq. (3.26). Calculated on the energy shell for L&4.
Statistical weights included. ko is varied. b =0.5 and esP =1.5.

&+(~-~) &&j»
0.75 0.001

0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

L=Q L=i
487 0
4.83 0.10
4.72 0.38
4.52 0.84
4.27 1.42
3.96 2.10
3.61 2.83
3.25 3.58
2.88 4.32

L=2 L=3 Total

0 0 487
0 0 4.93
0 0 5.10

0.01 0 5.37
0.03 0 5.72
0.06 0.02 6.14
0.12 0.05 6.61
0.20 O.10 7.23
0.29 0.20 7.69

0.78 0.001 4.95 0
0.125 4.91 0.10
0.25 4.77 0.41
0.375 4.56 0.89
0.50 4.28 1.51
0.625 3.94 2.23
0.75 3.57 3.00
0.875 3.18 3.77
1.00 2.77 4.54

0 0
0 0
0 0

0.01 0
0.03 0.01
0.07 0.02
0.12 0.05
0.20 0.11
0.30 0.21

4.95
5.01
5.18
5.46
5.83
6.26
6.74
7.26
7.82

~ S. A. Moszkowski and 3. L. Scott, Ann. Phys. (N. Y.)

energy calculated from our input hole spectrum be
equal to the binding energy given by the output Q-

matrix elements, we get self-consistent solutions of
approximately —0.5'K/particle for k~ ——0.75 A ' and
—0.3oK/particle for k~ ——0.78 A '. This is, however,
only an indication. %e have probably lost some bind-
ing energy by putting the c.m. momentum equal to zero.
This also has some e6ect on the slope of our output
single-particle spectrum, and there is not much point in
trying to obtain, for instance, a self-consistent effective
mass from our results. Our assumption of rather difer-
ent particle and hole spectra near the Fermi momentum
kp is another reason for not calculating a true effective
mass.

%e have simpli6ed the original BG method and made
it more convenient in two ways. The 6rst is to express
the total Green's function Ft,(r,r') as the reference
spectrum Green's function (338),which has an analytic
form, plus a. correction term which takes the exclusion
principle into account, and in which the range of inte-
gration in momentum space is only of order kp. The
second way is to use the reference spectrum idea of
Bethe for the energy denominator in the Bethe-Gold-
stone equation, as already mentioned. But the use of
single-particle energies calculated from 6-matrix ele-
ments, in the energy denominator, is an important
feature of the original HG calculations, and could
possibly be an improvement in our calculations. This
would, however, involve extensive computational time.

It would be nice if one could simplify the BG method
further, but this is probably not possible. For nuclear-
matter calculations, Moszkowski and Scott ' simpli6ed
the problem by separating the potential into a short-
range and a long-range part. The separation distance
should be chosen in such a way that the short-range

TABLE XIII. Convergence parameter ~ calculated on the energy
shell. b, and ko are varied. m0*= 2.5.

ko/km'

0.001
0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

kg=0.75 A '
0.4 0.5

0.223 0.217
0.226 0.220
0.233 0.227
0.245 0.239
0.260 0.253
0.278 0.270
0.296 0.289
0.317 0.309
0.339 0.329

kg=0 78 A '
0.4 0.5

0.256 0.249
0.259 0.252
0.267 0.260
0.281 0.274
0.298 0.290
0.319 0.310
0.341 0.332
0.364 0.355
0.389 0.378

TABx.E XIV. Convergence parameter ~ calculated on the energy
shell. two* and ko are varied. b, =0.5.

&mo~
ko/kg~

kz =0.75 A-~

1.5 2.0 2.S
ky =0,78 ~-I

1.5 2.0 2.5
0.001
0.125
0.25
0.375
0.50
0.625
0.75
0.875
1.00

0,217
0.220
0.228
0.241
0.257
0.278
0.300
0.326
0.357

0.217
0.220
0.227
0.240
0.255
0.274
0.295
0.317
0.342

0.217
0,220
0.227
0.239
0.254
0.272
0.291
0.312
0.334

0.217
0.220
0.227
0.239
0.253
0.270
0.289
0.309
0.329

0.249
0.252
0.261
0.276
0.295
0.319
0.346
0.375
0.410

0.249 0.249
0.252 0.252
0.261 0.260
o.275 0.274
0.293 0.291
0.314 0,312
0.339 0.334
o.365 0.358
0.393 0.383

0.249
0.252
0.260
0.274
0.290
0.310
0.332
0.3SS
0.378

part alone gives zero phase shift for ordinary free-
particle scattering. The idea is to eliminate the repulsion
and a compensating part of the attraction, and work
only with the remaining interaction outside the sepa-
ration distance. But it is obviously not possible to use
this method in calculations for liquid 'He, where the
S wave and also partly the I' wave give a net repulsion.

It is not possible, either, to neglect the Pauli principle,
i.e., to put the exclusion operator Q=1, as in the refer-
ence-spectrum method of Bethe et c/. ' From Table I it
is obvious that the exclusion principle cannot be
neglected as a first approximation, and it seems that
of the three important methods used in nuclear-matter
calculations, only the BG method can be used in
calculations for liquid 'He.

The forces which are used in the calculations are
derived from experiments on the energy shell, while in
the calculations we are sometimes probably rather far
o6 the energy shell. The extrapolation is made by
assuming that the forces are still given by a potential,
but this may not be quite correct.

The chosen potential seems to have a very strong
inhuence on the results of the calculations. Potentials
with dMerent shapes will generally give di8erent results
or predictions, and the value obtained for the binding
energy is extremely sensitive to changes in the various
parts of the potential. This is because the binding
energy is actually a small di6erence between large
repulsive and attractive terms. The repulsion comes
from the large repulsive region in the potential and the
high zero-point Fermi energy, and is only slightly over-
compensated by the attractive part of the potential.
Also, the repulsive soft core in the potential is not well
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known, and may give relatively large errors in the
calculations.

%C have not worried about this problem in our work,
but have concentrated upon other parameters. If we
could trust the SG method, we could say something
about the potentials. If we could trust a potential,
we could tell more about the 30 method. At thc
moment, it seems that we neither know the correct
potential nor are we sure about the method. But some
qualitative results and conclusions should be generally
valid, independent of the speci6c potential which is
used in the calculations.

The main conclusion is that our calculations give ap-
proximately the same results for the two-body potential

energy and the single-particle energy spectrum as the
calculations of Srueckner and Gammel' and others. '7 '9

The binding energy with only two-body terms included
is approximately —1 K/particle or more likely only
—sroKiparticle. In a future paper we shall see if we can

get some additional binding energy from three-body
correlations.
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Drift velocities of mass-identiGed positive ions in air have been measured to about +5% as a function

of 8/E for 2&20 "&E/E&2X20 ' V cm' and for 2.8&20"&E&7X20"cm '. These measurements

lead to values of the zero-Geld mobilities of 1.6, 3.5, and 2.5 cm~/V sec for ¹+, NO+, and O~+, respectively,
in air. The high-E/X data yield momentum-transfer cross sections of 110, 21, and 30'.' for Ne+, NO+,

and Og+, respectively. The rapid disappearance of N+ and 0+ due to ion-molecule reactions prevented

good drift-velocity measurements for them, but partial results indicate that 0+ is about 5% faster, and
N+ about 20% faster, than NO+ in air. N2+ is shorn to disappear rapidly by charge transfer arith Og.

Thus, although the classical value of 1.6 is obtained for the mobility of ¹+ in air, ¹+ cannot be present

long enough at pressures close to atmospheric to account for the classical observations.

I. INTRODUCTION

'HIS paper reports measurements of the drat
velocities and hence the mobllltlcs of mass-

identi6ed positive ions in air. It results from an investi-

gation of both the ion-molecule reactions and drift
velocities of ions in dry air carried out in a drift tube.
Details of the reactions studied will be presented
elsewhere. '

Among the several methods of measuring the mo-

bilities of ions in gases, the double-shutter, drift-velocity
spectrometer of Tyndall, Starr, and Powe112 operated
with square-wave voltage is the most direct and versa-

tile. The device can be connected in tandem with a mass

spectrometer to provide both mass analysis and drift-

velocity analysis of the same ions. The resulting data
can be easily interpreted even in the presence of
complicated ion-molecule reactions; in fact, the same

apparatus can be used to measure many ion-molecule

~ Work supported by Lockheed Independent Research Funds.
' D. E. Golden and G. Sinnott iunpublishedl.
2 A. M. Tyndall, L. H. Starr, and C. F. Pomell, Proc. Roy. Soc.

(London) 12j., imp'2 (1928).

reaction ra, tes. The ability to make meaningful meas-

urements on complicated gas-ion systems accounts
for the increase in popularity of the method in recent
years. '

The present work has been carried out in dry air at
pressures below 0.2 Torr. The endings are thus pertinent
to the ionosphere, where the altitude and the tempera-
ture combine to produce similar or lower pressures and
low humidity. The disagreements with the older mea-
surements on positive ions in air, while failing to identify
the ions studied by Bradbury4 and others, do eliminate

some surmises concerning the ions in the older

experiments.

~ For some other appara, tus incorporating tandem drift-velocity
mass analysis, see E. W. McDaniel, D. W. Martin, and W. S.
garnes, Rev. Sci. Instr. M, 2 (1962); K. 3. McAfee and D.
Edelson, in Proceedkngs of the Sixth Internatt'onat Conference on

Iogisatiol Ehelamena Az Gases, I'aris, lP63 (SERMA, Paris,
2964), Vol. I, p. 299; M. Saporoschenko, Phys. Rev. D9, A349
(1965);Y. Kaneko, L.R. Megill, and J.S.Hasted, J.Chem. Phys.
45, 3741 (1966);P. Warneck, ibid. 46, 502 (296't|'); J. Heimerl, R.
Johnsen, and M. A. Biondi, Abstracts of the Twentieth Annual
Gaseous Electronics Conference, San Francisco, 2967 (un-
published).

4 jV. K. Bradbury, Phys. Rev, 40, 508 (1932).


