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A rigorous upper bound for the heat capacity at constant volume Cy is used to provide an alternative
derivation of a result due to Rice: A locus of points of in6nite Cv is in general incompatible with thermo-
dynamic stability. An analogous upper bound is obtained for the adiabatic compressibility. The bounds
are extended to multicomponent stystems, where they suggest that Cp should not diverge along a con-
tinuous line of critical points or plait points. They make plausible the absence of an in6nite heat capacity
in a certain class of "decorated" Ising models (including Syozi's model for a dilute ferromagnet) and in
the spherical model. Possible implications for Quids or ferromagnets containing impurities are briefly
discussed.

tigated a soluble "lattice gas" model of a multicompo-
nent system, and Qnds that along the locus of plait
points Cv (with mole fractions held constant) is
generally finite.

We intend to show that the aforementioned "excep-
tions" to an infinite heat capacity at a critical point
are by no means accidental, but reflect specihc features
of the models involved and in fact a finite heat capacity
is to be expected on grounds related to thermodynamic
stability. Rice' has pointed out that a locus of points of
infinite C~ in a compressible solid should lead to a
mechanical instability resulting in a first-order phase
transition (and. , incidentally, reducing Cv to a finite
value). Some 6rst-order phase transitions in solids seem
explicable in terms of an "incipient" in6nity in Cg."
Our approach to the problem is similar to that of Rice,
but we argue in reverse. We assume that the stability
requirements are satisfied and deduce an upper bound.
for Cy which will in general be finite, or at least not
divergent along a continuous curve. An analogous bound
on the adiabatic compressibility is obtained by invoking
thermal in place of mechanical stability.

In Sec. II the aforementioned bounds are derived for
simple fluids and model paramagnets. A generalization
to multicomponent systems will be found in Sec. III,
while Sec. IV contains applications to various models
and physical situations.

I. INTRODUCTION

~ 'HERE is by now good evidence that the constant-
volume heat capacity Cz diverges to in6nity near

the critical point in certain lattice-gas models, in a
manner which seems to be reflected in the more careful
experimental measurements on real Quids. ' In addition
to the exact results for two-dimensional Ising lattices,
for which a logarithmic divergence is found in the
soluble cases, ' series expansion methods for three-
dimensional Ising models suggest an analogous, or
slightly sharper, divergence. 4

By contrast, there are a variety of "decorated" Ising
lattices whose properties can, by a suitable trans-
formation, be derived from those of the "undecorated
lattice, " in which Cy, or its Ising-model analog, exhibits
a sharp but 6nite cusp at the phase transition point. '
The spherical model, ' as is well known, possesses a finite
heat capacity at its critical point. Clark' has inves-

II. ONE-COMPONENT SYSTEMS

Consider a region in the volume V, temperature T
plane in which entropy 5 and pressure p are continuous
functions, together with their 6rst partial derivatives
with respect to V and T. Their total temperature
derivatives along some differentiable curve V(T) are
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FIG. i. Curves in the volume-temperature plane
illustrating Eqs. (2.'/) and (2.8).
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S' P'V'&Cia/T—= (BS/BT)v.

(2 5)

(2.6)

Next consider a phase-transition curve in the V-T
plane, by which we mean a curve at whose points the
Helmholtz free energy has some nonanalytic behavior
(for example, the coexistence curve for a liquid-vapor

system). It is not a priori obvious that (2.6) will be
applicable along such a curve, since some of the assump-

tions of continuity involved. in its d,erivation may be
violated. We may, however, adopt the following

approach: Suppose Vs(T) is a portion of a phase-transi-

tion curve which is twice continuously di6erentiable in

some range T &T&Tq. For e&0 de6ne a family of
curves (Fig. 1)

V, (T)= Vs(r)+s (2 7)

along which we shall assume that (2.6) holds, at least
when e is sufFiciently small. With ~ 6xed, let a and b

denote the points [V,(T ), T,j and I V.(rs), Tsj,
respectively. Integration of (2.6) along the curve V, (T)
yields

5'dT — p'V'dr

=5(B)—5(o)—t:P(f)Vs'(Ts) —P(o) Vs'(T.)j
pv, "(r)dr& (C,/T)dT, (2.8)

provided th'at V'= d V/dT is 6nite. (We shall use primes
to denote total temperature derivatives. ) The Maxwell
relation

(aP/ar) „=(BS/BV)r (2.3)

combined with (2.1) and (2.2) yields

5' P'V'= (B—S/ar)v (BP/BV)—r(v')' (2 4)

Thermodynamic stability implies that

Es= V-'(a V/ap—)s (2.9)

The bound may be obtRlned Rs follows: Along R dif-

ferentiable curve S(p) in the entropy-pressure plane
we have

dv (av) av ds

dp 5 apis BS ~dp

dr BT (a)T~ ds+I'
I
—.

dp ap s t BSi,dp

(2.10)

(2.11)

Kith the help of the Maxwell relation

(aV/BS) „=(aT/BP) s,
and. noting that

(aT/as), =T/c„& 0,

we arrive at the analog of (2.6):

(2.12)

(2.13)

—dv/dp+(dS/dp)(dr/dp)& VKs. (2.14)

where we have used integration by parts to eliminate p'.
Under the rather weak assumption that 5 and p are
bounded throughout the region of immediate interest to
us, including the curve Vs(T), it is evident that the
left side of (2.8) provides a 6nite upper bound, in-

dependent of ~, for the integral of C& along any of these
curves. In particular it rules out the possibility that Cg
"diverges everywhere along Vs(T)" if the statement in

quotation marks is taken to mean that given any
E&0, and any temperature in the interval T,& T& Tq,
one can 6nd an sir(T)&0 such that within the range
Vs(T) & V( Vs(T)+ ex(T), Cr is not less than'. Our ar-
gument works mltalis mgtandis in the region V( Vs(T).
Note also that a bound analogous to (2.8) and. applicable
near a twice-continuously differentiable phase boundary
curve ps(T) in the p-T plane may be obtained from (2.6)
by a similar technique. A "divergence" of Cv (in the
sense used above) along a finite portion of such a curve
is thus ruled out.

Ke expect that in most cases encountered. .in practice
(2.6) is applicable along a phase-boundary curve itself,
in the sense that the quantities involved possess finite
limits as one approaches the curve. (The limits may be
different on different sides of the curve. ) As long as
5', p', and V' are 6nite, so is Cv, but at certain isolated.

points on the curve one or more of these quantities may
become infinite. Such an in6nity must of course be an
"integrable" singularity, since apart from very patho-
logical model systems one always expects 6nite changes
in 5, p, and V along a finite portion of the phase-
boundary curve.

The inequality (2.6) places an upper bound on the
derivative of an extensive thermodynamic variable

(entropy) with respect to the corresponding intensive
variable (temperature) while holding another extensive
variable (volume) 6xed. We are thus led to expect an
analogous upper bound for the adiabatic compressibility
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On the basis of this inequality we would not, for
example, expect KB to diverge along a 6nite length of
a twice continuously differentiable phase-transition
curve Tp(p).

Sy similar methods one can obtain upper bounds on
the d,erivative of an intensive quantity while holding
another intensive variable fixed; for example, (BT/BS)„.
The resulting

/orner

bounds on heat capacity at constant
pressure and isothermal compressibility do not at
present seem to be of much interest in analyzing phase
transitions.

Essential to the derivation of (2.6) and (2.14) are the
conditions of mechanical and thermal stability, (2.5)
and (2.13), which in turn correspond to convexity
properties of various free energies. There are other
systems in which the analogous inequalities are not
quite as obviously related to stability. For example, in
the Heisenberg and Ising model paramagnets (see
Appendix) one can introduce a potential A (T,M) with
the properties

is the Helmholtz free energy, the chemical potential p,;
for the jth species is given by

while the entropy is

lI;, =BF/Be, ,

S= BF—/BT

(3.1)

(3.2)

V=np, —P=ilp=BF/Bep.

I'=( np(T), ei(T), , n (T)}

(3.3)

be a differentiable curve in the multidimensional
variable space; we denote total temperature derivatives
along this curve by a prime. Provided. that the requisite
derivatives exist and are continuous, we may write

In writing partial derivatives we shall assume the
quantities held constant are among the arguments of F
given above. For simplicity, we adopt the formal
conventions

H= (BA/BM)r, S=—(BA/BT)pr (2.15)

(BH/BM), = (BPA/BMs), &0, (2.16)
S'=BS/BT+ Q ( )n

~~ &an, i
(3 4)

where M is the magnetization and, H is the external
field. By replacing V by M' and p by H, one can—repeat
the entire argument from (2.1) to (2.6) in order to
obtain

S'+H'M'& (BS/BT)si= Csr/T, (2.17)

dM dS dT BM)
+ &

i
=xs.

dH dH dH BH)s
(2.18)

Its d.erivation is parallel to (2.10)—(2.12), with (2.13)
replaced by (see Appendix)

(BT/BS)ir T/Cir & 0. —— (2.19)

III. MULTICOMPOHENT SYSTEMS

We shall d.erive generalizations of (2.6) and (2.14)
appropriate to multicomponent fluids. Analogous results
are possible for other systems with more than two
thermodynamic variables; for example, magnetic solids
with non-negligible magnetomechanical effects. Con-
sider a system containing nj, n2, ,n moles of com-
ponents 1,2, ,np, respectively. If F(T,V,ei, ,e„)

where the prime denotes a total temperature derivative
along a differentiable curve M(T)

Presumably such an inequality is also valid for "real"
paramagnets, including ferro- and. antiferromagnets,
provided that one neglects magnetomechanical cou-
pling. (Otherwise the strain components in a crystal
must be introduced. as additional thermodynamic
variables. ) However, the condition (2.16) does not hold
for diamagnetic materials, which shows that it does not
have the same generality as (2.5).

The inequality which corresponds to (2.14) is

(Bu~)
ii =Bid;/BT+pij pep'.

p &Bn,i
The Maxwell relations Lace (3.1) and (3.2))

BS/Be; = Bll,,/BT—
enable us to combine (3.4) and (3.5) in the form

BS t9IJ,gS'= —g in', '+g P n n '
8T i i & BRIg

(3.5)

(3.6)

(3 &)

The Helmholtz free energy is a minimum at equilib-
rium for a system at a fixed temperature, " and hence
its second variation should be non-negative;

BF Bp
Bn,sn, =g Bn;Bn,&0, (3.S)

JIg Bs~BKp 2& Bsy

or, in other words, Bp;/Bn& is the jk component of a
symmetric positive matrix, a matrix with no negative
eigenvalues. This is equivalent to the statement that F
is a convex function of the ep+1 independent extensive
variables. We see that the final term in (3.7) is non-neg-
ative; by dropping it we obtain the desired inequality

CvS'+ Z
&BTiv,„, T.(3.9)

"See, e.g., H. Csllen, Thermodywumics (John Wiley gr Sons,
Inc., Ne~ Yak, 1950},Chap, 6,

Note that C~ is a heat capacity at constant volume and
constant mole number for every species.
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(3.14)

all

g va-
tives on the left side of (3.14) refer, and there is no such
restriction in (3.9). The chemical potentials yo for
k&g are thus in a sense redundant; they are held
constant on both sides of the inequality (3.14), which
does not, therefore, represent much of an advance over
(3.9).Nonetheless, it seems that (3.14) may be valuable
in certain applications. In particular, if we let p= —p,
that is, include pressure among the "redundant"
variables, then (3.14) gives a bound on the heat
capacity at constant pressure C~ along a curve for which

p has a axed value.
The generalization of (2.14) to multicomponent

systems may be carried out in close analogy with (3.1)-
(3.9). Let H(p, S,n~, . . . ,n ) be the enthalpy for a
system containing n&, e2, . , m moles of components
1, 2, , m. We may write

I',= {no(T)+oao,ng(T)+ooi, ,n„(T)+oa„), (3.10)

where the cr; are constants. Integration along one such
curve from T=T, (the point a) to T=To (the point b)
yield. s

5'(&)—~(a)+Z[p (&)n '(») —
l (a)n '(T.)j

'Cy
dT. (3.11)p,n;"(T)dT&

The left side is 6nite in the limit e ~ 0, provided that
the entropy and all chemical potentials are bounded.
Thus from (3.11) or (3.9) one expects that Cv will not
diverge along a finite length of the curve F. A word of
caution is in order as to the type of curve F to which
these arguments apply. Since in this section we have
permitted all the extensive arguments of Ii to vary, one
can obviously obtain a locus of infinite Cy by 6nding a
single point (T,V,n~, ) where Cv is infinite, and. then
generating a curve by increasing all the extensive
variables by the same factor, the temperature remaining
constant. Since the I do not exist in this case, our
considerations do not apply.

Let us next consider the heat capacity of a multi-
component system in which certain intensive variables
are held constant. Let G(T,no, ' ' 'no, go+a, ' ' 'p ) be
the appropriate "free energy" for which

V= BH/Bp,

p;= BH/Bn, , ,

(3.15)

(3.16)

where (3.16) holds also for j=0 if we employ the
convention

(3.17)sp=5~ p,p= T.

The quantities held constant in taking partial deriva-
tives are always among the arguments of II given above.

I.et
~= {~(p),n (p), ,n-(p))

be a differentiable curve in our variable space, and let
a prime denote the total pressure derivative (not
temperature) along this curve. With suitable continuity
conditions, we may write

p;= BG/Bn;,

n;= BG/BII, ;—,
S= BG/BT. —

0 1 ~ ~ e
q

i=tt+1, q+2, , no (3.12)

m

V'= + Q ~n,',
Bp;=o Bn,.j

(3.18)
The quantities held constant in partial derivatives are
among the arguments of G. We shall assume that one of
the n&, not necessarily eo, is equal to V, and the corre-
sponding p& is equal to —p.

Consider a hyperplane in the space of variables
obtained by setting all the p, ; for a+1&i&m equal to
hxed constants. Along a di6erentiable curve

(3.19)+2
Bp o an)

which, combined with the aid of the Maxwell relations
[see (3.15) and (3.16)j

Provided that the various derivatives possess 6nite E replaced by G. Thus we obtain the desired result:
limits as one approaches a phase-boundary curve,
which in general will lie on a phase-boundary hyper- o (BS
surface, (3.9) is applicable along such a curve. A more
cautious procedure is to assume that the curve F is
twice continuously differentiable, and that (3.9) holds It must be emphasized that go+a, po+o, . , p are
on a family of curves for e&0. srrictl comstaet alon the curve I' to which the deri

I'= {no(T),n, (T), ,n, (T)) (3.13)
yield the result

BV/Bn, =By~/Bp, (3.20)

lying mashie this hyperplane we may express the total
temperature derivatives of S and p,; for 0&j4q by
means of (3.4) and (3.5), provided it is understood that
the upper limit on the summations is q, not m. Both
(3.6) and (3.7) are valid when both j and l'o lie between
0 and q and, with the same restriction, (3.8) holds with

BV Bp;,—V'+P II, n/= — +P n no' . (3.21)
BP i& Bno

The second variation of H at constant pressure is
non-negative and we conclude, in analogy with (3.8),
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that the last term in (3.21) is non-negative. Thus

dV ~ dp dn; tt'BV

+ Q & —
~

= VKs, (3.22)
dp ~=sdp dp ~ap s,.;

and the analog of (3.14) may also be obtained without
difliculty.

IV. APPLICATIONS

A. X Transition in Liquid Helium

Since dp/dT is finite for the X transition curve
separating normal and superQuid phases in pure He4,

we would expect Cr to be finite even if (as is often
assumed) C~ becomes infinite. This result is well known;
for instance, the analysis of Buckingham and Fairbank"
suggests that (2.5), and consequently (2.6), become
equalities on the P line. However, the maximum
value of Cv is so large (at least for pressures near
the vapor pressure) that it appears to be experimentally
inaccessible. "

In He'-He mixtures the composition provides an
additional variable, so that the boundary separating
superQuid and normal phases is a surface rather than a
line. The intersection of this surface with a plane of
constant pressure is a line along which we may apply
the results of Sec. III. In particular, if pressure is
considered a redundant variable, say, equal to p, then
(3.14) provides an upper bound on C„„ the heat
capacity at constant pressure and composition. We
would not, therefore, expect this heat capacity to
diverge along a finite section of the phase-transition
line in a constant pressure plane, though it might
diverge at special points such as the limit of composition
corresponding to pure He'. Rice" has already pointed
out that one should expect C„ to be finite, and has made
the interesting suggestion —which is neither required
nor ruled out by thermodynamics alon"- that C„,might
diverge at the temperature below which the second-
order transition separating the normal and superQuid
becomes first-order. "

S. Plait Points and Critical Points

A pure Quid has a unique liquid-vapor critical point
in the p Tor rs Tplane (r-s=N/V -is the density). In a
binary mixture, on the other hand, the composition
provides an additional variable, and one finds, in
general, a locus of critical points in the n~-n2-T or
p x Tspace Lx= Ni/-(N-i+Ns) j.

In the simplest case, where the liquids are completely
miscible, this locus may be a smooth curve joining the

"M. J. Buckingham and W. M. Fairbank, in Progress in Low
Temperature Physics, edited by C. J. Gorter (North-Holland
Publishing Co., Amsterdam, 1961),Vol. III, p. g0."K. C. Lee and R. D. PuB, Phys. Rev. 158, 170 (1967);
O. K. Rice, ibid. 153, 275 (1967).

I4 O. K. Rice, Phys. Rev. Letters 19, 295 (1967).
~~ K. H. Graf, D. M. Lee, and J. D. Reppy, Phys. Rev. Letters

19, 417 (i967).

liquid-vapor critical points of the pure components"

along which the results of Sec. III should apply. We
therefore expect that Cy, , and K8,, will not diverge

along a finite portion of such a curve. Experiments on

air and impure X2 suggest that Cy, has a 6nite cusp
along the critical-point curve of the system X2-02."
[Note added in proof J. .S. Rowlinson has pointed out

to us that the intersection of an azeotropic line with

the critical-point curve provides a unique point on the
curve which is an excellent candidate for an infinite Cy,
since the behavior of an azeotrope is in many ways
analogous to that of a pure Quid. ]

In addition to the liquid-vapor critical-point curve, a
two-component solution can have a liquid miscibility

gap with a locus of consolute points at which two liquid
phases in equilibrium become identical. These consotute
points lie on a curve in n~-n2-T space, which may or
may not intersect the liquid-vapor critical-point curve. '
(If these curves do intersect, then the distinction
between liquid-vapor and liquid-liquid. equilibrium may
cease to be meaningful. ) In either case, provided that
the curve (rsi(T), sss(T)) is twice differentiable, the
results of Sec. III should apply, and so we expect that
Cz, and E&, will again be finite, except possibly at
isolated points on the curve.

This conclusion is particularly interesting, because the
usual Ising magnet or lattice-gas model can also be
interpreted as a model of a binary liquid mixture with
a miscibility gap, and, when so interpreted, it predicts
an in', nite Cr, at the consolute point. When used as a
model of a binary liquid mixture, however, the ordinary
lattice-gas model does not include density as a variable,
since every site of the lattice is occupied by a molecule
of one species or the other. As a consequence, there
is a unique critical point instead of a curve, and an
infinity in C&,, at this point is not ruled out by our
considerations.

On the other hand, a decorated lattice model of a
binary mixture in which density does play a role has
recently been investigated by Widom, " and extended
by Clark and by Neece. ' This model is closely related
to that of Syozi, discussed in Sec. IV C. Clark Gnds a
miscibility gap in n~-n2-T space with a consolute-point
curve (or plait-point curve) which passes through a
maximum temperature. He finds that C~,, has a finite
cusp at every consolute point except the one at the
maximum temperature, for which rss'(T) = ~, and at
which Cy diverges. This, of course, agrees precisely with
the results of Sec. III. In a similar model investigated

"John K. Ricci, The Phase Rule and Heterogeneous Equilibrium
(D. Van Nostrand, Inc. , New York, 1951),p. 56.

'~ Yu. R. Chaskin, V. G. Gorbunova, and A. V. Voronel,
Zh. Eksperim. i Teor. Fiz. 49, 433 i1965l /English transl. :
Soviet Phys. —JETP 22, 304 (1966)g.

"See Ref. 16, Chap. 8; also J. S. Rowlinson, Liquids and
Liquid Mixtures {Butterworths Scientific Publications, Ltd. ,
London, 1959), Sec. 6.9."B.Widom, J. Chem. Phys. 46, 3324 (1967).

~o G. Neece, J. Chem. Phys. 47, 4112 {1967).
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by Clark and Neece, "the curve of consolute points has,
as a natural end point, the consolute point obtained
from the ordinary lattice gas, mentioned above. Here
also, Cy, , has a finite cusp at all the consolute points
except the limiting one.

On the basis of our analysis in Sec. III, this behavior,
at least insofar as Cv remains finite along (most of)
the consolute-poirit curve, should be a quite general
feature in multicomponent systems, and is not speci6-
cally related to the decorated lattice models. Thus we
can with confidence rule out a locus of infinite Cy, , in
another model investigated by Wheeler, 22 even though
the exact behavior of Cy is not known and would
probably be very de.cult to obtain.

Experimental measurements of the heat capacities of
binary mixtures near the consolute point have been
made, but are not suf5ciently accurate to distinguish
between a weak divergence and a 6nite cusp. ~' What is
measured in practice is the heat capacity of a sealed
tube containing the immiscible liquids in the presence
of vapor, in the neighborhood of the liquid-liquid con-
solute point. The presence of vapor places an additional
constraint on the system, and singles out a umqle
consolute point which is, in fact, an endpoint of the
consolute-point curve. Because of this uniqueness, our
results do not exclude the possibility of a divergent
Cy, ,at this point. Although the measurement is made at
constant volume, presumably the heat capacity mea-
sured is closer to C„, of the liquids alone than to Cz,
of the liquids alone, because the vapor pressure of the
liquids does not change too rapidly. The measurement
of a constant-volume heat capacity of a liquid mixture
with no vapor present will be diKcult experimentally
because (Bp/BT)v, , is large for liquids.

In a three-component solution there is still another
composition variable, and the locus of critical points
becomes, in general, a surface. In discussing the
behavior of three-component systems, it is customary
to consider the intersection of this surface with one of
constant pressure, producing a curve in the x~x~T space,
called the plait-point curve, along which the results of
Sec. III apply. Since the pressure is strictly constant,
we expect C„, and E;y,, as well as C~ and Eg, to
be 6nite along these curves. There do not yet exist
accurate determinations of heat capacities or compressi-
bilities near the plait-point curve for three-component
solutions.

Both in the three-component case, above, and in

two-component systems in which the consolute-point
and critical-point curves intersect, it frequently happens
that the critical locus passes through a maximum or
minimum temperature. ""When this happens, the

~'R. K. Clark and G. ¹ece,J. Chem. Phys. (to be pub-
lished)."J.C. Wheeler (to be published)."H. Schmidt, G. Jura, and J.H. Hildebrand, J.Phys. Chem. 63,
297 (1959);Kh. Amirkhanov, I. G. Gurvich, and k. M. Matizen,
Dokl. Akad. Nauk (SSSR) 100, 735 (1955).

"See Ref. 16, Chap. 1Q.

bounds on Cv and/or C~ diverge, and, in analogy with
Clark's results, we expect that Cv (and/or C„) may
diverge at this point.

In view of the interest in critical-point behavior in
pure Quids, we would like to point out that the "infinite"
heat capacities which are suggested by recent experi-
ments should, in principle at least, become finite upon
the addition of impurities to a sample. One assumes
that a constant volume-and-composition heat capacity
is being measured, and, since the impurity concentration
is a new variable (or a new set of variables), there will
be a curve (or surface) of critical points along which
the results of Sec. III apply. Whether or not this is
important in practice depends on the magnitude of the
bound (3.9) in particular cases, and we have not
attempted to make any estimates. A number of
experimental problems such as the time required to
reach equilibrium, presence of gravitational fields, and
finite temperature resolution of the apparatus will
serve to "round off" a heat-capacity spike and may
well be more important than impurities for measure-
ments made to date.

C. Dilute Ferromagnets

Certain modifications of the Ising model are known
to lead to finite heat capacities at a point where the
mode1 undergoes a second-order phase transition. Let us
consider Syozi's model of a dilute ferromagnet, a
particular case of a decorated. Ising model. For our
purposes the details are unimportant; me need only note
that in addition to ordinary Ising spins, Syozi introduces
on special sites additional operators 0; which can take
the value 0, interpreted as an "unoccupied" site, in
addition to the values &1 (understood as a site
"occupied" with an "ordinary" Ising spin). The total
number of special sites which are occupied is given by

(P= Q 0.;2.

If Xo is the Hamiltonian, a free energy F(T,p) may
be de6ned through the relation

"=Tr(expL —&(3'-o—u+)3), (4 2)

where Tr stands for trace, and p is a chemical potential
(Syozi uses the symbol P for Pp) which is adjusted, as
the temperature varies, to hold the thermal average of
(P fixed. The model possesses a critical point at which
the heat capacity (in zero magnetic Geld) possesses a
Gnite cusp. In the limit of 100% occupancy of the
special sites, the heat capacity diverges to in6nity.

We have here a situation very analogous to the
constant-magnetization heat capacity in (2.17). By a
Legendre transformation on Ii one obtains another free
energy A (T, (P) with the properties (see Appendix)

5= —(BA/BT)(p, p= (BA/8(P)r, (4.3)

(Bp/8(P) r&0. (Q 4)
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The obvious analogy with (2.15) and, (2.16) allows us
to write down the analog of (2.17) immediately:

dS dp, d(P Cy
+ )

dT dT dT T
(4 5)

Explicit calculation shows that the locus of critical
points in the (P-T plane is a smooth curve with d6'/dT
finite or zero, so that along this curve we expect C6 to
remain 6nite, in agreement with Syozi s result, apart
from the special point where {P achieves its maximum
(and. p -+ oo, so that a singularity is not surprising).

Our thermodynamic arguments make possible reason-
able inferences about the behavior of analogous models
for which closed-form solutions are not now available.
If one made airy site in an Ising model a "special" site,
rather than just the decorated. sites, one would again
expect a finite heat capacity apart from 100%%uq oc-
cupancy. There is no similar restriction on the heat
capacity at constant p (rather than 0&), and in Syozi's
model one Gnds that this diverges.

Brout" has pointed out that a physically more
realistic model of a dilute ferromagnet is one in which
the vacant sites are fixed in position, or "frozen in, "
since the processes leading to relocation of atoms in
magnetic crystals are comparatively slow. Syozi's model
diGers from Brout's in that while the average concentra-
tion of occupied. sites is 6xed, the detailed features of the
distribution may d,epend on temperature; e.g., the
locations of occupied sites are correlated in a way which
d.epends on temperature. %e are unable to apply our
results to Brout's model since we have no reason to
believe that the free energy as a function of concentra-
tion has the required convexity properties. One might
hope to make Syozi's model closer to Brout's by the
device of introducing additional chemical potentials to
regulate the pair correlations and higher-order correla-
tions between occupied sites. As long as the number of
such potentials remains 6nite, one can use our results in
Sec. III to place bounds on the heat capacity at constant
(P and constant correlations. However, Brout's model is
obtained in a strict sense only after introducing an
indnite number of such potentials, which makes our
argument inapplicable. (It does not imply that Brout's
model would necessarily show an in6nite capacity, but
the question is left open. )

5('.= —P J,,o,o;, (4.6)

s' R. Bront, Phys. Rev. 115, 824 (1959).

D. Spherical Model

In the spherical model' the "spins" 0-; may vary
continuously from —~ to +on. In addition to the
Hamiltonian

a "spherical constraint" is introduced. by requiring that

m=g o.,' (4.7)

be a constant independent of temperature. (It is
customary to let K=X, the number of lattice sites. )
We shall require that the thermal average (X), which
we shall also denote by X, be constant, that is, we
shall employ the "mean spherica1. model, "which appears
to give the same thermodynamic results as the "or-
dinary" spherical model. ~'

Let the free energy F(T,p) be de6ned through the
equation

dg ~ d(r2 d(r~ exp — K—p,X . 4.8

By a Legendre transformation one introduces

A(T,"X)=Ii+px (4.9)

Since C~ is always "the heat capacity" computed, for
this model, we naturally expect it to be bounded if the
phase-boundary curve, or locus of critical points, is well
behaved in the X Tplane. (It is a-straight line with
6nite slope. )

Our argument is applicable not only in the usual
spherical model, where the result of a 6nite heat capacity
is known by explicit calculation, but also to Langer's
modided spherical mode12' in which an add. itional
interaction term serves to remedy some of the "un-
physical" features of the ordinary spherical model.
Langer was unable to work out the details of this
model near its critical point, but our thermodynamic
argument indicates that the heat capacity almost
certainly remains Gnite, as long as the spherical con-
straint is maintained.

E. Thomyson's Decorated Ising Models

Thompson' has calculated the properties of a deco-
rated two-dimensional Ising model in which, in addition
to ordinary Ising spins, continuum spins similar to those
in the spherical model are placed on special sites. He
found that (a) if each continuum spin has a normal
distribution, the heat capacity of the entire system has
a logarithmic divergence, like that of the standard
Ising model. If, however, (b) the continuum spins
satisfy a spherical constraint t see (4.7)], the heat

"H. %. Lewis and G. H. Wannier, Phys. Rev. 88, 682 I', 1952);
C. C. Yan and G. H. Wannier, J. Math. Phys. 6, j.833 (1965)."J. S. Langer, )Phys. Rev. 137, A1531 (1965).

with precisely the properties given in (43) and (4.4),
but with (P replaced by X.The result which corresponds
to (4.5) is

dS dp dX C~
+ )

dT dT dT T
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capacity has a 6nite cusp at the critical point. It is
clear from the discussion in Sec. IV D that our thermo-
dynamic reasoning would supply an upper bound. for
the heat capacity in (b), and we would expect it to be
finite apart from very special circumstances. There is
no analogous constraint in (a), and thus nothing in our
arguments which would rule out an in6nite singularity.
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matrix of second partial derivatives is negative or,
given any real numbers x, y, then

O'F O'F O'F
x' +2xy +y' &0.

OT OTOIJ Op
(A5)

When X and 5R commut"- --this includes the examples
discussed in the body of the paper —one may verify the
theorem by differentiating inside the trace in (A1) and
showing that the quadratic form is equal to

—P(PP*(8—&8))+p(OR—(OR))j'), (A6)

which, since it is minus the average of the square of a
real quantity (or a Hermitian operator), cannot be
positive. The theorem also holds when 5R and K do
not commute, though the proof is more difIj.cult."For
our present purposes we need only the results obtained
from setting first x and then y equal to zero in (A5).
(We shall use OR in place of (OR).)

APPENDIX: STABILITY CONDITIONS FROM
STATISTICAL CALCULATIONS

(r)OR/rip) r———(O'F/r)I»') r& 0
&

(BS/BT)„=—(r)'F/8 T')„&0

(A7)

(AS)

S=—(r)F/aT)„,

while diGerentiation inside the trace yieMs

(A2)

Tr[&Its &Bj
&P)

(OR) =
TrLe—s8] r)p r

(A3)

The angular brackets ( ) denote the customary thermal
average, and we employ the abbreviation

/= 3!—&aOR. (A4)

Theorem: For positive temperatures, F is a convex-

upwards, or concave, function of p, and T. That is, the

Let K be the Hamiltonian of a system and 5K the
operator corresponding to some extensive variable.
We define a free energy F(T,p) through the relation

e s~= Trfexp-P(X isOR)—j, — (Ai)

where P=1/kT is the inverse temperature, and Tr
denotes either the quantum-mechanical trace or the
classical phase space integral. The entropy is given by

In general, one expects these to hold as strict inequalities
unless ii or T achieves one of its limiting values (& o&, 0
or + &x&, respectively), or possibly at a phase transition.
One can introduce additional potentials by Legendre
transformations; for example,

A (T,OR) =F+iiOR

has the properties

S=—(r)A/BT)sit, ii = (8A/BOK) r (A.10)

Note that the arguments leading to (A7) and (AS) do
not depend on whether 5K is the magnetization and p,

the magnetic field, in which case (A7) and (AS) corre-
spond to (2.16) and (2.19), respectively, or OR is the
concentration (P in Syozi's model Lcompare (A1) and
(4.2)$ or OR is the parameter OI in the spherical model

)see (4.8)$. In all cases, the inequality (A7) permits us
to place an upper bound on the heat capacity.

'» D. Ruelle, Helv. Phys. Acta 36, 789 (1963); R. B. Griilrths,
J. Math. Phys. 5, 1215 (1964).


