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The velocity and attenuation of first sound have been measured to within microdegrees of the A transition
of liquid helium at a frequency of 22 kc/sec. Relative sound-velocity measurements of 1 part in 105 could
be obtained. The attenuation reaches a maximum about 1 or 2 udeg below the transition while the velocity
minimum occurs 6 udeg below T\. Above the transition, the sound velocity satisfies the necessary condition
for the validity of the Pippard-Buckingham-Fairbank relations out to at least 6 mdeg from the A point.
Below T, the velocity shows an added temperature dependence beyond that expected from the Pippard-
Buckingham-Fairbank relations, which is proportional to |7\—7|%9 If this temperature dependence
persists, the velocity of sound above and below the transition approaches a common value of 217.3 m/sec at
the A point. Except in the immediate neighborhood of 7', the attenuation below the transition is propor-
tional to |T»—T|™%. This result is in agreement with the prediction of the Landau-Khalatnikov theory.
Except in the immediate neighborhood of T, the attenuation above the transition is proportional to
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| 7\—T'|~¥2 This temperature dependence is not understood theoretically at present. Velocity dispersion
results above and below the A point are also presented.

I. INTRODUCTION
A. Pippard-Buckingham-Fairbank Relations

N a second-order phase transition the Ehrenfest

relations govern the discontinuities in isobaric
specific heat C,, isobaric expansion coefficient 8, and
isothermal compressibility Kr:

AC, =aVTAB,

1
AB=aAK7, W

where V is the specific volume, T is the temperature,
a=(dp/dT), is the slope of the phase transition line,
and the discontinuities are AC,, AB, and AKy. A X
transition is characterized not only by the absence of a
latent heat, and possible discontinuity in Cy, 8, and Kr,
but also by the fact that these quantities are singular,
going to infinity as the X transition is approached.
Stronger conditions, the Pippard-Buckingham-Fairbank
relations!? (hereafter PBFR), govern these quantities
in the immediate neighborhood of the X transition,
and can be written as follows:

Cp=aV\T28+Co,
B=oaKr+ps,

as 1 /dV
Co= Tx<—'> ) ﬁo=——<—) .
aT/\ VaNdT

B. Simple Derivation of the PBFR

)

where

Consider a point on the entropy surface S(p,T) of a
substance and a line element through that point and

* Work supported in part by the U. S. Office of Naval Research.
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1A, B. Pippard, Phil. Mag. 1, 473 (1956).

2 M. J. Buckingham and W. M. Fairbank, in Progress in Low
Temperature Physics, edited by C. J. Gorter (North-Holland
Publishing Co., Amsterdam, 1961), Vol. III, Chap. IIL.
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lying on that surface. Then

as (aS +dp<as
T aT>p dT ap)T'

Using the Helmholtz relation 8= — (1/V)(8S/3p)r and
the definition C,=T7(8S/dT),, one obtains

©)

dp as
Com(So)rTsHT——, (@
aT aT
where C,, 8, V, and T are the values at the point and
dp/dT and dS/dT apply to the line element. This
relation holds exactly at any point on the entropy
surface, whether or not there is a A\ transition. In
particular it applies to the A line. In the absence of
infinite values of dp/dT and dS/dT it is clear that if
C,is singular, as it is at the X line, so is 8. If we consider
points lying close to but not on the A line, then, since
C,p and @ are singular, they will vary greatly for small
displacements. There will be a small region where the
variations of all qualities other than C, and 8 can be
neglected and thus the first PBFR is obtained. An
exactly similar treatment applied to the volume surface
V(p,T) yields the second PBFR.

It is worthy of emphasis that if a transition is
characterized by an absence of latent heat and a
singularity in C, then (a) there must also be a singu-
larity in 8 and Ky and (b) there is no question that
PBFR is exact in the limit. The only question has to
do with the extent of the region around the X line, where
departures are insignificant.?4

3 This is clearly pointed out in A. B. Pippard, The Elements of
Classical Thermodynamics (Cambridge University Press, London,
1957), p. 145.

4+ K. C. Lee and R. D. Puff, Phys. Rev. 158, 170 (1967).
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C. Velocity of Sound at a A Transition

It is not difficult to show that the low-frequency
velocity # is given by the relation

V2 v G %G \%/ 3°G\™!

A

u? dp/s ap?/r \apaT/ \a1%/,
where G is the Gibbs potential.

It is thus clear that in the Ehrenfest scheme of
ordering phase transitions, depending as it does on the
order of the derivative of the Gibbs potential which is
discontinuous, the velocity of sound is in general
discontinuous at first- and second-order phase transi-
tions and is continuous at higher-order transitions.
Furthermore, for A\ transitions, the quantity # is
continuous, as will be immediately evident, so that a
sufficient condition that a transition be first' or second
order is the appearance of a discontinuity in the sound
velocity. By use of PBFR and the relations

G 1 0G 1 79%G
CP=-T<—‘) ’ ﬁ='— 5 KT=_—<~_) y
a2/, V 3paT v\ap/ s

it is not difficult to show by substitution in Eq. (5) that

2w—u) 1 1 C? 1
e ©

= P
wm? u? o2VTC,

u)ﬁ
where #) is the sound velocity at T}, and
w2=a2V2T/(Co—aBoVT). )

It is thus seen that a necessary, but not sufficient,
condition that PBFR hold is that the velocity of sound
is a linear function of the reciprocal of the isobaric
specific heat.

A measurement of the velocity of sound in the
immediate neighborhood of the N line will yield the
following information:

(1) The region in which the necessary condition that
PBFR is exact can be investigated by establishing the
region in which the sound velocity and the reciprocal
of the specific heat are linearly related.

(2) From the slope of # versus C,~! the quantity
Co/a, which is (dS/dp)», can be determined.

(3) The velocity of sound at the X\ line #, can be
determined. Given an independent determination of
Co, Egs. (6) and (7) can then be used to obtain 8 and .

In He-II near the M\ transition, a relaxation phe-
nomenon® results in acoustic attenuation and dispersion
and, particularly because of dispersion, earlier measure-
ments®? could not be used in the way just described,
For such purposes it is necessary to use low frequencies,

L. D. Landau and I. M. Khalatnikov, Dokl. Akad. Nauk
SSSR 96, 469 (1954).

¢ A. Van Itterbeck and G. Forrez, Physica 20, 133 (1954).

7 C. E. Chase, Phys. Fluids 1, 193 (1958).
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and measurements at 9.75 kc/sec have recently been
reported® where it was found that # and C;! were
linearly related in He-I but not in He-II. The He-II
measurements were in the range 10~ °K<(Th—T)
<102 °K. Moreover, the He-II sound-velocity data
fit a simple power law in (75— T') which, if extrapolated
(although as pointed out in Ref. 8, the validity of an
extrapolation is questionable), lead to a sound-velocity
discontinuity at 7. The purpose of the investigation
reported here was to carry such measurements into the
immediate neighborhood of the X\ line with high
precision.

The measurements were sufficiently accurate and the
approach to the A point sufficiently close that dispersion
and attenuation effects were observable with reasonable
precision in the microdegree region of the N point even
at these low frequencies. These results will also be
reported.

II. EXPERIMENTAL METHOD
A. Apparatus

A standard glass double Dewar was used. The helium
bath could be regulated to within =+0.001°K for
extended periods of time. The bath temperature was
measured by obtaining the vapor pressure with a
Wallace and Tiernan FA 160 pressure gauge. Measure-
ments of the sound velocity were made in a copper
cylindrical resonator 4.4 cm long and 2.5 cm in diameter.
The ends of the resonator were terminated with identical
acoustic transducers which were of the solid dielectric
condenser type.? The transducers were sealed to the
resonator with indium seals. A cross section of the top
transducer is shown in Fig. 1. A sheet of 0.00025-in.-
thick Mylar,® aluminum coated on one side, was
stretched across a solid copper back plate. The alumin-
ized Mylar, which was grounded to the resonator body
through the copper ring, acted as a movable plate of a
parallel-plate capacitor. An ac voltage applied to the
unbiased drive transducer produced sound waves of
twice the impressed frequency. The pickup transducer
was biased with 200 V dc and responded at the fre-
quency of the sound propagating in the liquid. The
top transducer had a storage volume above the back
plate which was approximately 29, of the total volume
of the resonator. The main purpose of this volume was
to ensure that there was liquid helium between the two
transducers without having liquid in the 0.013-in.-i.d.
filling tube. Liquid in this tube would have introduced
a variable hydrostatic pressure and superfluid heat
leak. The bottom transducer was essentially identical
to the top one except for the omission of the storage

;GIS)Rudnick and K. A. Shapiro, Phys. Rev. Letters 15, 386

(1 .

?W. Kuhl, G. R. Schodder, and F. K. Schroder, Acustica 4,
519 (1954).

10 Metalized Films, Hastings and Co., 2314 Market Street,
Philadelphia, Pa.
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Fi16. 1. Cross section of top transducer. The aluminized Mylar acts
as a free vibrating plate of a parallel-plate capacitor.

volume and support tube. Each transducer could be
used as a transmitter or receiver of sound.

The resonator was isolated from the surrounding
He-II bath by placing it in a vacuum can. The 0.013-
in.-i.d. stainless-steel capillary filling tube supported
the resonator. A 2.3 kQ heater (0.002-in.-diam Karma
wire) was wound around the outside of the resonator.
The current in the heater could be adjusted to balance
the heat leak to the bath and small changes from this
condition could be used to achieve controlled tempera-
ture drift rates. Helium gas from a storage volume kept
at room temperature was condensed into the resonator.
The sample chamber was initially cooled below the A
point using helium transfer gas in the vacuum can.
The amount of helium transferred to the sample
chamber could be determined by monitoring the initial
and final pressures of the room-temperature storage
volume using a Wallace and Tiernan FA 145 pressure
gauge. Pressures could be read to within 4-0.5 mm over
the entire 0-1500-mm range of the gauge. After the
transfer was completed, the gauge monitored the pres-
sure in the resonator.

B. Temperature Measurements

The temperature of the helium in the sample chamber
was measured with a Texas Instrument type 104A
vented germanium thermometer. The resistor was
placed along the axis of the resonator in direct contact
with the liquid. Since the temperature range of this
experiment was primarily -£25 mdeg about the A
point, calibrations using the usual three-constant
Clement and Quinnel equation!! were amply accurate.

1. R. Clement and E. H. Quinnel, Rev. Sci. Instr. 23, 213
(1952).
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Owing to the poor thermal properties of He-I, all cali-
bration points were taken below the A point and the
results extrapolated to the He-I range. The resistor
had a A-point value of 68 kQ, at which temperature the
sensitivity was 5 udeg/Q. The resistance was measured
with an ac bridge system shown in Fig. 2. The phase-
sensitive detector consisted of a transformer input audio
amplifier with a gain of 107. The signal, after going
through a mechanical chopper, was integrated and the
dc output fed to a recorder.

In order to accurately measure temperature to
within microdegrees of the N point it was necessary to
minimize self-heating in the resistor. For power inputs
above 10~8 W, the self heating could be detected by a
jump in resistance which occurred as the \ point was
crossed. With input powers of 10~* W or less, this jump
no longer occurred.

In He-II the principal heat-transfer mechanism is
normal-superfluid counterflow and there is excellent
thermal equilibrium for nominal temperature drift rates.
In He-I the principal mechanism is normal thermal con-
vection and thermal equilibrium is adequate only where
the expansion coefficient is appreciable and when the
drift rate is quite slow. At T—T\==6.3X107% °K the
expansion coefficient is zero and of different sign above
and below this point. The convection reverses direction
on drifting through this point and there is a charac-
teristic thermal anomaly.

C. Velocity Measurements

The resonant frequencies of a cylindrical resonator
are given by

f=3ul (P/1*+ (amn/@)*]", ®)

where f is the resonant frequency, u is the sound

velocity, P is zero or a positive integer, / and a are

the length and radius, respectively, of the cylindri-

cal enclosure, and an, is a solution of the relation
b
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d[J n(ma)]/da=0, where J.(ra) is a Bessel function of
the first kind. The transducers used in this experiment
have the property that they are best coupled to the
plane-wave modes of the resonator which are charac-
terized by am.=0 and consequently the velocity is
given by

u=2lf/P. Q)

It was possible to continuously track a resonance as
the sample chamber slowly drifted in temperature.
The output of the pickup transducer was fed back to the
drive transducer with sufficient gain and filtering to
cause the circuit to self-oscillate at one of the plane-
wave modes of the resonator (see Fig. 3). The wave
analyzer was used in an afc mode which tracked the
received signal f and also had an output of the same
frequency. After passing through the phase shifter
and amplifier the signal triggered a generator which
produced a square wave whose period was twice that
of the input sine wave. A bandpass filter, tuned to the
first Fourier component of the square wave, produced
a sinusoidal signal of frequency 3f. The generator
which halved the frequency was necessary since the
frequency was doubled in converting the electrical
signal to an acoustic signal at the drive transducer.
The signal at the pickup transducer was amplified by
40 dB before returning to the wave analyzer input to
complete the loop. Once the loop was self-oscillating
the phase shifter was adjusted for a maximum input
signal to the wave analyzer, which corresponded to the
peak of the resonance. The system then self-oscillated
at the resonant frequency of the resonator, as the
temperature drifted, without further adjustment.

For the high Q modes of the resonator this self-
oscillating technique gave stable frequency readings to
better than 1 part in 10% High resolution was obtained
by using a receiver tuned to one of the higher Fourier
components of the square wave and feeding this signal
to a counter. The binary-coded decimal (BCD) output
of the counter corresponding to the last two digits was
converted to a dc signal which was fed to a recorder.

The output of the square-wave generator was
independent of input voltage. The change in amplitude
of the acoustic signal as monitored on the input meter
of the wave analyzer was then a measure of the change
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in quality factor ) of the resonator, which in turn is a
function of the acoustic attenuation coefficient of the
helium. Thus a record of the amplitude was used to
determine the attenuation coefficient.

By using a two-pen recorder one could make simul-
taneous measurements of any two of the three quanti-
ties, velocity, attenuation, and temperature. Driving
voltages of from 2 to 15 V rms were used during the
experiments. Routine checks on the linearity of the
system were made by doubling the input voltage. This
produced no change in the resonant frequency to within
the accuracy of adjusting the phase shifter, 1 or 2
parts in 10°.

D. Calibration of Transducers; Magnitude of
Temperature Swing in Sound Wave

An estimate of the temperature swing in the resonator
produced by the acoustic sound wave was made using
the relation which applies to the reciprocity calibration
of transducers.® This relation for identical trans-
ducers is

Mo=[(Vo/I)(1/K) ]2, (10)

where M, is the sensitivity of the transducer as a
microphone in (esu of potential)/(dyn/cm?). V; and Iy
are, respectively, the microphone open-circuit potential
difference and the driver current in esu. The four-
terminal network is shown in Fig. 4. K is the ratio of
the pressure P, (dyn/cm?) at the microphone face to
the volume velocity (cm?/sec) at the driver and depends
on the acoustic geometry. If #; is the particle velocity
at the driven face (cm/sec) and S (cm?) is the area of
the transducer, K is given by

When the frequency of the driver corresponds to a
natural frequency of the resonator a standing wave is
set up between the transducers. If the pressure ampli-
tude in the forward-going wave is P and the attenua-
tion in the medium is « (Np/cm) then the pressure at
the microphone face is Po= 2P~ The velocity at the
driver face due to the interference of the forward-going

DRIVER MICROPHONE
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F16. 4. Four-terminal reciprocity network. C;: capacitance of a
transducer. C,: cable capacitance. Z;: combined impedance of a
transducer and cable. V,: generated microphone voltage. V,':
measured microphone voltage. Ii: actual driving current. I':
measured driving current. V,': measured driving voltage.

13 W. R. Maclean, J. Acoust. Soc. Am. 12, 140 (1940).
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and reflected plane waves is #;= (Po/pu) (1—e~22%). For
the case o<1,

K= (2pu/Sk)Q. (12)

Defining the driver and microphone units to consist of a
transducer and its respective cables leads to a maximum
pressure in the standing wave given by

V'V 20u2Q\ 12
P2=( 1 Ve 2p¥ Q) X 10772,
ZT Sl

(13)

where now V' and V' are expressed in volts and Z,
is the impedance in ohms of the microphone-cable
system. The capacitance of the cables and transducer
was approximately 350 pf. At the frequency of 22
kc/sec the Q of the resonator was approximately 400
at T. Vi never exceeded 15 V and usually was con-
siderably smaller; at this maximum value V' was
approximately 3X10-% V. The maximum pressure,
using these values, is 57 dyn/cm? At low frequencies,
sound is propagated under isentropic conditions. The
ratio of the pressure swing to the temperature swing
is given by (9p/6T)s=C,/TVB. At 107¢ °K from the A
point this gives (9p/97T)s>21.40X10% dyn/cm? °K,
resulting in a maximum temperature swing in the
resonator of 4X10~7 °K, which is beyond the tempera-
ture resolution of the experiment.

III. RESULTS
A. Presentation and Interpretation of Data

The velocity of sound has been measured within
+20 mdeg of the A transition using the techniques
described in the previous section. A slow drift through
the transition is shown in Fig. 5. The resonant fre-
quency of the ninth harmonic (22 kc/sec) and the
output amplitude are recorded simultaneously as a
function of time. The spike marks on the amplitude
curve record the times at which the resistance bridge
was balanced, and therefore the temperature was
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known. The anomalous behavior of the velocity and
attenuation of sound near the transition can clearly
be seen. The smallest steps in the frequency curve
corresponded to relative velocity changes of less than
one part in 10°. It is apparent that the velocity of sound
minimum and attenuation maximum do not occur at
the same temperature. The temperature of the attenua-
tion maximum is very near that of an inflection point
of the velocity curve. The minimum in velocity and
maximum in attenuation were separated by approxi-
mately 4 udeg at this frequency.

The position of the N point was determined by the
difference in heat transfer in He-I and He-II. Figure 6
shows the resonant frequency and resistance with
constant heat input as a function of time for an 8-min
period, during which the temperature drifted up 80
udeg. Because of the excellent heat transfer by the
superfluid, the resonator walls, liquid, and resistor are
in thermal equilibrium at all temperatures below T
(a—b). However, upon crossing the transition, this
mode of heat transfer ceases and the principal heat-
transfer mechanism is thermal convection. Convection
can be pronounced in the neighborhood of the ) point
because of the large thermal-expansion coefficient of
He-I. Since the circulating convective currents take
time to be established, there is a period during which
the resistor shows no change in temperature (b— c).
When the warm liquid sinks along the walls and finally
rises along the axis there is a sudden increase in the
temperature of the resistor (). When the convective
flow reaches a steady state, the liquid and resistor
are once again in good thermal equilibrium. The A\
point is at the intersection of ¢b and b¢ and within an
uncertainty of a microdegree or two occurs at the
inflection point of the velocity curve. Thus, the attenua-
tion maximum occurs very close to the \ point and the
velocity of sound minimum is about 4 udeg lower. Later
in this paper we present evidence that the attenuation
maximum actually occurs 1.8 udeg below the A point.

20 Te- 50sec+l

FREQUENCY CHANGE (CYCLES/SEC)

1 100

@
o

OUTPUT AMPLITUDE (arb. scale)

Fic. 5. Sound velocity and
attenuation in the neighbor-
hood of the A point. These
measurements cover the tem-
perature range from 40X 1076
°K below to 75X 1076°K above
the transition. The smallest
steps in the frequency curve
correspond to relative velocity
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o
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B. Sound Velocity Measurements from 1.8 to 2.5°K

For purposes of comparison, the temperature depend-
ence of the sound velocity was determined in an extended
region about the N point. Figure 7 shows velocity
measurements from 1.8 to 2.5°K. Measurements of
Chase” and Van Itterbeek and Forrez® are also shown.
Chase used a pulse technique to measure the velocity at
1 Mc/sec while Van Itterbeek and Forrez used an
acoustic interferometer in the frequency range 200 to 800
kc/sec. The temperatures used in the earlier investi-
gations, which referred to the 1948 He! vapor-pressure
scale,* have been adjusted to fit the 1958 He* tempera-

ture scale. The data of the present investigation agree
quite well with the earlier measurements and has
smaller scatter.

C. Velocity of Sound near T

The temperature dependence of the velocity within
20 mdeg of the \ transition is shown in Fig. 8. The total
change of the velocity within this region is only 19.
The anomaly at about 6 mdeg above the transition
occurs at the temperature of the density maximum. The
anomalous behavior is not in the sound velocity, which
is smoothly varying in this region, but in the tempera-
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M H. van Dijk and D. Shoenberg, Nature 164, 151 (1949).
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=420 mdeg of the transition. The data designated by @ and [
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perature. An anomaly in the temperature measurement occurs
above the transition at the density maximum.

ture measurement and is caused by the reversal of the
convective current, as discussed previously. The tem-
perature of the density maximum can be determined
using this convective anomaly and is found to be
T5+0.0062824-0.0001°K. Details will be given in a
separate paper. Figure 9 shows the temperature
dependence of the velocity in regions successively
closer to the X point. The anomaly in the sound velocity
at T is apparent on each of the three scales.

In Fig. 10 the velocity is plotted against the reciprocal
of C,, using specific-heat values calculated from the
Buckingham and Fairbank relation?

Cp=4.55—23.00 logio| T—T1| —5.20A (J/g°K), (14)

where A=0 for T<T) and A=1 for T>T\ The
velocity # is taken with respect to #min, the minimum
value measured experimentally. Since there was some
question about the quality of the thermal equilibrium
in He I during a drift, some measurements were made
under equilibrium conditions and are shown by crosses.
These agree well with those taken while drifting.

The necessary condition that PBFR hold is satisfied
above the \ point, where a linear relationship extends at
least out to 6 mdeg. A least-squares fit to the equation

Ur—Umin=A4/Cp+B (15)
out to 3 mdeg gave
A=12.0X10° (cgs, °K) and B=-—>58.6cm/sec. (16)
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Below the X point, there are serious departures from
the linear relationship for temperatures greater than a
millidegree from the transition. In the range 7 —T
somewhat less than a millidegree, the points appear
to lie along the line determined by the He-I data. This
departure does not necessarily imply that the PBFR
are invalid below the transition. As has been shown,
small systematic deviations of k7, Cp, or 8 from the
limiting logarithmic behavior® or a small temperature
dependence of ¢y or B¢® could account for the observed
temperature dependence of the sound velocity. The
velocity is a sensitive parameter for measuring de-
partures from the PBFR. There is an important
difference between the present results and the earlier
work of Rudnick and Shapiro.® The earlier investigation
found a 0.19, shift in velocity between the He-I and
He-II curves of Fig. 10. This shift is unexplained but
may be caused by an end correction which underwent
a jump at the transition. In any case these results
supersede those. As was found in the earlier work, the
present data below the transition can be fitted over three
decades in (T\—7T) with a relation of the form

(%11—%mmin) =D (T —T)V2. an

An extrapolation of this temperature dependence to the
transition is very questionable,® but it is clear that if
this is done #min is the velocity at the X point and is
approximately 60 cm/sec greater than the A point
velocity found from the He-I data. It has been shown!®
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F1c. 9. Sound velocity in temperature regions successively
closer to the transition. These measurements were made at a
frequency of 22 kc/sec while drifting slowly up in temperature.

15 D, H. Douglass, Jr., Phys. Rev. Letters 15, 951 (1965).
18 M. Revzen, A. Ron, and I. Rudnick, Phys. Rev. Letters 15,

384 (1965).
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that a discontinuity in velocity implies the existence of
two X lines with slightly different slopes, which in turn
implies a narrow intermediate state at higher pressures.
The velocity below the transition can be written
in the following form, which does not introduce a
velocity discontinuity:
uII—umin=A/cp+B+DlATlﬂ. (18)

The exponent » is dependent on the choice of the
constants A4 and B. These constants, in turn, depend

loo_ U i TTTTT T T T T rrrry
sof  f=22ke/sec ]
E
Y= -
7 OE .
B sf :
YL -——(uu-ul)cp“%xloalT)‘-Tl‘9 .
| b el L1l
5 10 20
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F1G. 11. Temperature dependence of the excess velocity. The
data points correspond to using 4=12.0X10° (cgs, °K) and B
—58.3 cm/sec in Eq. (18).

1/, (de—%sg)'

on the extent of the temperature region from which
data is used in their determination. Figure 11 shows
the temperature dependence of the excess velocity
uir—u1 at a given value of C,. This is the difference
between the sound velocities on the two sides of the
transition at a given abscissa in Fig. 10. The best-fit
values of the constants 4 and B for data in the range
2X1072 °K below to 3X10~% °K above the transition
were used in this plot. A comparison of the two relations,
Egs. (17) and (18), with the present data and the
earlier work® is shown in Fig. 12. With the increased
resolution of the present experiment, small systematic
deviations from the square-root relation can be seen.
Equation (18)lappears to give a better fit to the present
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F16. 12, Comparison of Egs. (17) and (18) with the
velocity below the transition.
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data, although it must be emphasized that basically
discrepancies in the velocity of less than a few parts in
10% are involved in making this judgment.

The asymmetry of the fit to PBFR above and below
T is reminiscent of a similar asymmetry in the average
value of the order parameter in the Landau theory of
second-order phase changes!” which takes on nonzero
values only below the transition. While at first glance
this would appear to be a promising avenue of explora-
tion, there are basic difficulties. The Landau theory
applies to second-order phase changes which we have
shown are characterized by a sound-velocity dis-
continuity, whereas the liquid-helium phase change is a
M transition where no such discontinuity is expected.
To a certain extent this difficulty can be avoided by
incorporating, in the order-parameter-independent part
of the Gibbs function, a temperature dependence which
is appropriate to a N transition. A difficulty remains,
however, that the usual Landau expansions are not
carried out to high enough order to yield the tempera-
ture dependence of the second derivatives of the Gibbs
function, which is necessary in obtaining the tempera-
ture-dependent velocity. When, in fact, the expansions
are carried out to higher orders it is possible to show
that below the A point there is an added temperature-
dependent term which to lowest order is proportional
to (Tn—7T), not unlike the last term in Eq. (18). A
recent phenomenological theory of the N transition?*
also leads to a similar added temperature-dependent
term in the velocity. However, it is not possible to
determine the magnitude of this term on the basis of
other independent data. For this purpose one would
require highly accurate measurements of C,, 8, and
Kr in the immediate neighborhood of T in He II.

The best-fit values of the exponent » and coefficients
found from this experiment from 2X10~2 °K below to
3X 1073 °K above T are

n=0.9,
A=12.0X10° (cgs, °K),

=—58.3 cm/sec, (19)
and

D=4X10? (cgs, °K).

From the results of this experiment, values of the
Pippard constants a, Co, and 8y have been found. C, is
determined by locating the temperature at which
B8=0, at which point C,=C,, and using the value of
C, in Ref. 2. By and a are determined from %, and the
value of 4 using Eqgs. (6) and (7). (dS/dp)) has also
been determined. These quantities are compared with
the results of other observers in Table I. In the vicinity
of the A point the PBFR take the form

Cp=1.82X1028+5.97 (J/g °K),

20
B=1.22X10°Kr+1.74 (°K)~L. @)

17 1,, D. Landau, Physik Z. Sowjetunion 11, 26 (1937); 11, 545
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Of particular interest is the slope of the A line. The
present determination has the disadvantage that it is
indirect. Direct determinations face the difficulty that
the slope is a rapidly changing function of pressure at
the vapor pressure, and consequently highly accurate
determinations of temperature and pressure close to
this point are necessary. Thus, the determination of
the slope, at a point, as in the present instance, has a
real advantage.

D. Attenuation of Sound

Besides the anomalous behavior in the sound velocity,
there is attenuation and dispersion close to the A
point. Pellam and Squire'® were the first to observe
a large attenuation near the transition. Measurements
by Chase” at a frequency of 1 Mc/sec showed a velocity
of sound minimum below the transition and an attenua-
tion maximum between the A point and the velocity
minimum. When dynamic processes occur near the A
point the reestablishment of equilibrium takes place
comparatively slowly. By associating a relaxation time
7 with these processes, it has been shown!® that the
sound velocity is given by

1

w=—-"[uf—twrul], (21)

(1—dw7)
where #, and u., are, respectively, the sound velocities
in the low- and high-frequency limits. Under the
condition X = (u,—u0)/#0<1, the velocity and attenua-
tion associated with this relaxation mechanism can be
written in the form

wir?
u=uo(1+x ) (22)
14?72
and
X/ wir
a=——< > . (23)
U \ 14 w272

A complication in applying this in the present instance
is that experimentally #, is strongly temperature-
dependent near 7. This is a direct consequence of the
fact that the framework for the theory is that of a
second-order phase transition (where no such strong
temperature dependence obtrudes) while the real situa-
tion is that of the N transition. The two are rendered
compatible by allowing #, and #, to be strongly
temperature-dependent but their difference to be
constant.

The Q of a resonant system is given by Q=2rE,/Ey,
where E, is the energy stored and Ey is the energy lost
per cycle. E, is proportional to the square of the ampli-
tude 4 of the sound in the resonator, while Ej is

(1937); L. D. Landau and E. M. Lifshitz, Statistical Physics
(Addison-Wesley Publishing Co., Reading, Mass., 1958), Chap. 14.
18 J, R. Pellam and C. R. Squire, Phys. Rev. 72, 1248 (1947).

¥ [, D. Landau and E. M. Lifshitz, Fluid Mechanics (Addison-
Wesley Publishing Co., Reading, Mass. 1959), p. 304.
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TasLe 1. Comparison of thermodynamic quantities at the A point.

a Bo Co @S/dpn U\

(atm °K7Y) (°K™) J gt°KY (J atm™ g1 °K™) (m/sec)
Present work —120 1.74 5.97 —2.25X1072 217.3
Buckingham and Fairbank#* —130 1.9 —1.77X1072 216.0
Rudnick and Shapiro? —129 1.85 —2.25X1072 %igé;
Chase, Maxwell, and Millett® — 975 1.378 6.3
Kerr and Taylorf —118.4 6.387 > T

5.34T <7\

Lounasmaa and Kaunisto# — 98 1.223
Chaseh 218.0
Elwell and Meyer! —114 1.66
Kierstead! —111.1 1.60
Ahlersk —114

= Reference 2.

b Reference 8.

¢ Limiting value as the transition is approached from above.

d Limiting value as the transition is approached from below.

e C. E, Chase, E. Maxwell, and W, E. Millett, Physica 27, 1129 (1961).
t E, C. Kerr and R. D. Taylor, Ann. Phys. (N. Y.) 26, 292 (1964).

€0, V. Lounasmaa and L. Kaunisto, Ann, Acad. Sci. Fennicae, Ser. A VI, No. 59 (1960).

b Reference 7.
i D. Elwell and H. Meyer, Phys. Rev. 164, 245 (1967).
i H. A. Kierstead, Phys. Rev, 162, 153 (1967)

k G, Ahlers, Bull. Am. Phys. Soc. 12, 1063 (1967.) ;and (private communication).

proportional to #:?R, where R is the acoustic resistance
and %, is the velocity of the Mylar membrane. If the
transducer has a high mechanical impedance then
will be independent of the acoustic load. Far from the
transition, the acoustic resistance at the source is due
primarily to the background attenuation. Under these
assumptions Q~ A2 and the attenuation ¢ in Np/cm, is?

a=w/2Qu~1/42. (24)

The acoustic conditions throughout the temperature
range are demonstrably not those used in obtaining
this equation, and in the absence of certain knowledge
about them recourse to experiment was necessary. The
shape and peak height of the resonant tuning curve
was obtained using a very stable sweep oscillator.
Interestingly enough it was found that Q~A4? within
experimental error both above and below the \ point
to within 10~% °K of the transition. During the actual
experiment the Q of the resonator was also measured
using the relation Q= f/(fs— f1), where f, and f; are
the half-power frequencies. The absolute value of the
attenuation was determined by averaging the Q’s
obtained from the tuning-curve measurements and the
half-power frequency method. The absolute accuracy
of the attenuation measurements was about 159, ; the
relative values are considerably more accurate.
Because of the lag in establishment of thermal equi-
librium just above the A point, an alternative method
had to be employed to measure temperatures in the
microdegree neighborhood of the transition. Measure-
ments close to the transition were made with a constant
heat input. The power input to the resonator was
determined from the temperature drift rate below the

2 Close to the transition the acoustic resistance is due primarily
to the attenuation in the medium. This could then lead to Q~A4
and a~1/4.

transition. Using the known temperature dependence
of the specific heat,? the temperature departure from
Ty could then be determined from time difference
measurements.

The attenuation measured at a frequency of 22 kc/sec
is shown in Fig. 13. There was a background attenua-
tion which amounted to about 209, of the maximum
attenuation measured. Below T there is good agree-
ment to within 1.5X107% °K of the transition between
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F16. 13, Temperature dependence of attenuation at 22 kc/sec. This
data has been corrected for background attenuation.
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the actual temperature measured experimentally and
the “temperature calculated from the specific-heat
temperature dependence. In the limit wr<1, the
attenuation relation Eq. 23 reduces to

o= (X/t)u?T. (25)

The temperature dependence of the attenuation is the
same as the relaxation time in the limwr<1, since
frequency changes can be considered negligible.

1. He-IT

Landau and  Khalatnikov® (hereafter LK) have
treated the problem of attenuation near a second-order
phase transition. In the case of helium the establishment
of equilibrium between the normal and superfluid
components proceeds extremely slowly just below the A
point. This process can be characterized by the relaxa-
tion of the order parameter to its equilibrium value.
The classical approach to phenomena near critical
points developed by Landau'” leads to a relaxation time
for T'< T of the form

D

r=———, 26
1| (26)

where D is a constant. Since the expectation value of
the order parameter is zero above the transition, this
theory makes no prediction above the \ point.

Figure 14 is a plot of total measured attenuation
(including background) versus | T\—T'|~! for measure-

BARMATZ AND 1.

RUDNICK 170
ments above and below the transition. Except in the
immediate neighborhood of the transition, the data
below T fall along a straight line and thus have the
temperature dependence predicted by the LK theory.
This has also been observed by Chase” for frequencies
in the megacycle region. The ratio of the absolute
values of attenuation at 22 kc/sec and 1 Mc/sec is
«proportional to the ratio of the frequencies to the 1.9
power for the attenuation below 7). The attenuation
above T is definitely not proportional to | T\ — T~
Equation (23) can be rewritten in the form

X Z

a/w=H(Z), H(Z)=— , (27)
U 221
where Z=wr. The function H(Z) is logarithmically
symmetric about Z=1, where the attenuation reaches a
maximum. Comparing the attenuation data at 22
kc/sec with the function H(Z) yields the temperature
at which wr=1, the strength of the attenuation, X/u.,
and leads to the following values of the constants in
the LK theory: #,—u#o=47 cm/sec and D=1.3 X101
sec °K. This value of D, which corresponds to wr=1 at
T\»—T=18X10"%°K, is also consistent with data
obtained at 44 kc/sec.

In order to correlate the effects of attenuation,
dispersion, and velocity near the transition, measure-
ments were made with the system simultaneously self-
oscillating at two resonant frequencies. These measure-
ments were possible because of the rather flat response
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F1c. 14. Total attenuation (arb. scale) versus |7— 75|t °K. The vertical intercept of the solid
line gives the background attenuation below the 5 point.
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of the capacitive transducers over the frequency range
1 to 100 kc/sec. Two electronic systems similar to that
shownin Fig. 3 werelocked to the seventh and eighteenth
harmonics. These simultaneous data obtained from a
pair of two pen X-Y recorders are shown in Fig. 15.
By monitoring the ratio of the resonant frequencies,
the position of the dispersion maximum relative to the
other extrema could clearly be seen. The temperature
dependence of the dispersion is shown in Fig. 16.
Equations (22) and (23) predict the dispersion
maximum to occur below the transition. For angular
frequencies of w; and w; the position of the dispersion
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F1c. 15. Simultaneous measurement of temperature, dispersion,
attenuation, and velocity. The attenuation and velocity corre-
spond to the 44-kc/sec resonance. The dispersion is the ratio of
6.5 times the frequency of the seventh harmonic to the frequency
of the eighteenth harmonic.

VELOGITY CHANGE
(ppM)
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maximum is given by the relation 72=1/wyw, and has
the value

We—wy
T e e
wetwy
The general relation for dispersion can be written in the
form
Us—U1= (uuo—'uﬁ)F(Z:wl/w2) ) (29)
where

F(Z w1/w2)
=[1—<w1/w2>23(

: 2 . (30
(1+Z2)[1+(w1/w2)2Z2]> (30)
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Fic. 16. Temperature dependence of dispersion.

A comparison of the dispersion between the seventh
and eighteenth harmonics with the function F(Z,w;/ws,)
gives the following values for the constants of the LK
theory : #,—uo=22 cm/sec and D=2.04X 10! sec °K.

It can be shown that T, T, (the temperature of
maximum attenuation), and Tp (the temperature of
maximum dispersion) are related in the following way:

Tp—T,
[1— (wy/wa)t2]’

At the frequencies used in this experiment the tempera-
ture difference between the maxima was only a few
microdegrees and thus subject to large uncertainties.
Values of #,—#o and D determined from these tem-
perature differences are in qualitative agreement with
those found by the other methods above. A more
accurate determination of these constants could be
obtained from similar measurements made in the
Mec/sec region where the temperature difference be-
tween the maxima would be much larger.

It is seen that the values of u,—u, and D differ
considerably, depending on the method used to obtain
them. No single values for these quantities can be
given with confidence but in the interest of carrying
the analysis somewhat further the following values
are proposed:

T)‘_' Ta= (31)

%.—to=28 cm/sec,
D=1.5X10" sec °K..

(32)
(33)

They must be regarded as our conscientious best
estimates arrived at by weighing values according to
our confidence in them.

In Fig. 17 the attenuation measurements are com-
pared with the LK theory using the values above. A
shift of only 1 or 2 udeg in the position of the A point
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would considerably improve the fit to the theory. A
similar comparison for the dispersion measurements is
is shown in Fig. 18.

The results obtained from attenuation and dispersion

measurements can be used to determine the position.

of the velocity extremum. Using Eq. (18) as the func-
tional form for %, and setting the derivative of Eq. (22)
to zero yields f(Th—T)=g(Z), where

F(Tr—T)=2.8X10%/C2+64.4(Th—T)*?,
§(2)=2*/(1+2),

and Z is again equal to wr. A parametric plot for a
frequency of 22 kc/sec is shown in Fig. 19. The curves
intersect at two points, 7.2 and 0.5 udeg below 7. As
the transition is approached from lower temperatures
the increase in velocity due to the relaxation phenomena
becomes comparable to the decrease expected from

(34)

T T T T T T

up (44 ke/sec) - uy (ITke/sec) cm/sec

10®

0 1 ol i i

-6
v T,-T (K

Fic. 18. Comparison of dispérsion between the 44 and'17
kc/sec resonances to the LK theory. Solid line is theoretical
prediction using averaged values of the LK constants.

PBFR and a velocity minimum is reached. Closer to
the M point, where wr>>1, the rate of increase due to
the relaxation effect is greatly reduced, resulting in a
velocity maximum. Experimentally, the velocity mini-
mum was found to be about 6 udeg below 7. No velocity
maximum was observed although there is an inflection
point in the velocity curve very near the X point. It is
interesting to note that the measurements of Chase’
at 1 Mc/sec also showed no velocity maximum, which
should have occurred at about 22 udeg below Th.
Chase’s measurements were made in an open bath, and
this may have precluded its observation.

Because of the hydrostatic head difference the
calculated \ points at top and bottom of the resonator
differ by 5 pdeg. A recent theoretical result? leads to
the conclusion that, in the present circumstances,
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F1c. 19. Parametric plot to determine maximum (at 0.5 pdeg)
and minimum (at 7.2 pdeg) in velocity at 22 ke/sec. The func-
tions f(Z3—T) and g(Z) are determined using the averaged values
of the LK constants.

ar, v. Kikn.adze, Tu. G. Mamaladze, and O. D. Cheishvili,
Zh. Eksperim, i Teor. Fiz., Pis'ma v Redaktsiyu 3, 305 (1966)
[English transl.: Soviet Phys.—JETP Letters 3, 197 (1966)].
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liquid helium should be either superfluid throughout
or normal throughout. Hohenberg? has pointed out
that this derivation is based on an incorrect application
of the Landau theory. Moreover, recent experiments®
have revealed the existence of an interface separating
the two fluids. If such an interface existed in our
resonator this would have had serious effects on the
results in the S-udeg region, where the interface is
traveling through the resonator. None of our obser-
vations can be used to directly support the existence
of such an interface. On the other hand, such an effect
can contribute to the differences between the experi-
mental results and those of the LK theory (or for that
matter, any other theory) within approximately 5 udeg
of the A\ point.

Ferrell et al?* have developed a general dynamical
scaling theory of the M\ transition which predicts a
(T\—T)* temperature dependence of the attenuation
coefficient of first sound below the transition. (No
conclusions are reached concerning He-1.) This scaling
theory does not employ any adjustable parameter and
good agreement? is obtained for the absolute magnitude
of the attenuation at 22 kc/sec.

2. He-I

The attenuation above the transition is plotted
against |T\—T'|~¥2 in Fig. 20. A linear relationship,

a=1.7X10-5/(T— T2, (35)

is found over a decade in (T'—T)). Because of the
difficulty in measuring temperature just above T\, the
coefficient has an uncertainty of 509%. Chase,” using
12.1 Mc/sec, has also observed this temperature depend-
ence over the range 3 to 30 mdeg above T'\. His values
are higher by a ratio of the frequencies raised to the
1.25 power. The attenuation above the transition is
less strongly temperature-dependent than below T, and
does not appear to satisfy a relaxation relation of the
form of Eq. (23).

The theories® 2 which have expanded upon the
general approach of LK to account for the attenuation
above a second-order phase transition do not predict
the temperature dependence found experimentally.
Pippard proposed a theory? which assumes that above
the A point there could be inclusions of He-II because
of fluctuations in temperature. Calculations are difficult
because the size and number of inclusions must be

22 P. C. Hohenberg (private communication).

2 G, Ahlers (private communication).

#R. A. Ferrell, N. Menyhé4rd, H. Schmidt, F. Schwabl, and
P. Szépfalusy (to be published).

25 I, A. Yakovlev and T. S. Velichkina, Usp. Fiz. Nauk 63, 411
(1957) [English transl.: Advan. Phys. Sci. 63, 552 (1957)7].

26 R. Kikuchi, Ann. Phys. (N.Y.) 10, 127 (1960).

7T, Tanaka, P. H. E. Meijer, and J. H. Barry, J. Chem. Phys.
37, 1397 (1962).

28 A. P. Levanyuk, Zh. Eksperim. i Teor. Fiz. 49, 1304 (1965)
[English transl.: Soviet Phys.—JETP 22, 901 (1966)7].

» A, B. Pippard, Phil. Mag. 42, 1209 (1951).
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F1c. 20. Total attenuation (arb. scale) versus |T— Ty |~V/2, The
vertical intercept of the solid line gives the background attenua-
tion above the A point.

known as a function of temperature. Ferrell et al.®
find a |T—T\|"'/ singular temperature dependence
of the thermal conductivity above the X point. The
attenuation associated with this mechanism is, how-
ever, several orders of magnitude below the measured
value.

E. Discussion

Recently, Hohenberg has pointed out® that many
features of the attenuation of first sound may be
understood in a very simple way, by extending the
dynamic scaling theories.?**:# These theories were
originally proposed® to explain the attenuation of
second sound at the M\ point, and later extended to
spin-wave modes at magnetic transitions.®? In both
cases one is dealing with what may be called a “critical
mode,” the mode which dominates the frequency
spectrum of the order-parameter fluctuations at long
wavelengths near the critical point. For second sound
the modification which occurs in the dispersion relation
as T approaches T, is of the form

wa(B) =usk[14+iARE+0(RE)?], (36)

where u, is the second-sound velocity, 4 is a
constant, and the correlation length ¢ diverges as e
(e=|T\—T|/T>»). Since it may be shown that uy~ e’/2,
the damping coefficient D [D= (2u3/w?)a] for second
sound is Dy~Ausf~ ¢/%, which diverges approximately
as the § power.2%0

Equation (36) may be rewritten as

wa(k) =usk[1+idwy(B) 7o+ 0(ware)?],  (37)

where the ‘“critical frequency” for second sound is
i l=we () =usfI~e If it is now assumed that the
critical frequency 757 also gives the leading contri-
bution to the damping of first sound, one obtains the
formula

wl(k)=ulk[l+iBw1(k)72+O(w172)2]. (38)

®R. A. Ferrell, N. Menyhard, H. Schmidt, F. Schwabl
P. Szépfalusy, Phys. Rev. Letters 18, 801 (1967) ks
:; g % I'Iiolhenberg gplgvaée communication).
. I. Halperin and P. C. Hohenberg, Phys. Rev. L
700 (1967 g ys. Rev. Letters 19,
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In this case the damping constant for the noncritical
first-sound mode becomes D;=Busrs~el, which
yields the observed temperature dependence shown in
Fig. 14. Moreover, one would predict a maximum in
attenuation at wire~~1. Evaluating the formula for
given above, using the values of Ref. 24, yields 5
~(2.2X102/| T\—T'|) sec, which is within an order of
magnitude of the experimental value [Eq. (33)].

For the critical mode the damping corrections can
be expressed either as in Eq. (36) or as in Eq. (37), but
for the noncritical first-sound mode the form analogous
to Eq. (36), namely,

w1 (k) =wk[14i4'kE4-0(kE)*], (39)

would predict Dy~e2/3, which is contrary to obser-
vation. It is thus seen that the assumption of the
original dynamic scaling theory [Eq. (36)] applies
only to the critical modes and must be modified in
discussing other modes, as in Eq. (38). While this
modification yields good agreement for the attenuation
in He-II, it would predict the same behavior in He-I,
namely, Di~¢7), and this is contrary to observation,
This discrepancy shows that the point of view adopted
here cannot be completely correct, and it is very
difficult to see how the observed asymmetry can be
reconciled with any of the present scaling ideas.

It is interesting to note that similar arguments
reproduce the main features of a recent calculation® of

# Leo P. Kadanoff and Jack Swift, Phys. Rev. 166, 89 (1968);
P. C. Hohenberg (private communication).
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sound damping at the liquid-gas critical point. In this
case the “critical mode” is a thermal conduction mode
whose frequency is wr=Dzk? and Dr=«/pC,, where «
is the thermal conductivity. It is known experimentally®
that Dy vanishes with an exponent which, although
uncertain at the moment, is approximately 2. The
sound mode may again be considered noncritical since
its contribution to the order-parameter correlation
function is smaller (by a factor of order ¢-2Ine) than
the contribution of the critical mode. By introducing
the critical frequency 77'=Dr{2 one can again
assume a sound dispersion relation of the form given
in Eq. (38) (with 7, replaced by 7). This leads to a
sound damping constant D,=Au2&/Dy~ €2, whose
singularity is precisely the one predicted by Kadanoff
and Swift.®
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