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pair of particles. Symbolically, E can be related to V

by the operator equation'

E=V+VGA, (7.10)

where G is the free-particle boson Green's function in
the Preserrce of the Bose corsdesssatiots so

U. nder conditions
of a strong Bose condensation (N&)1), G can be written,
to a good approximation,

iG(r, t) =iGo(r, t)+Nse'", -(7.11)

where Go is the empty-space free-particle Green's
function. The second term takes account of the en-
hanced scattering into, or out of, the k=o single-
particle state resulting from the Bose condensation.
Because of the presence of No in (7.11), the scattering
matrix E will be a function of density p and temperature
T (since Ns changes with p and T). One can take the
potential V„of this paper to be an eGective scattering

'9 K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117 (1957).
'e S. T. Beliaev, Zh. Ehsperim. i Teor. Fin. 34 417 (1958)

LEnglish transl. : Soviet Phys. —JETP 7, 289 (1958) .

matrix, but then one must assume this effective V„ to
change with temperature in some manner not considered
in the earlier equations of this section.

The second oversimplidcation results from neglecting
lifetime and renormalization sects, probably very
important in He4. The hyperspin formulation is in-
herently incapable of treating such eGects. Exactly the
same situation is true with the isospin formulation of
superconductivity, " the latter being incapable of
treating lifetime and renormalization sects in a strong-
coupling superconductor. Schrieffer and his coworkers"
have achieved considerable success in treating such
effects by means of Nambu's formulation of super-
conductivity" in terms of matrix Green's functions.
An analogous sort of treatment appropriate for the
many-boson problem is undoubtedly necessary for an
accurate calculation of superQuid helium at 6nite
temperatures.

"For a detailed discussion, see J. R. Schrie6er, Theory of
Superconductivity (W. A. Benjamin, Inc., New York, 1964),
Chap. 'l.

"Y.Nambn, Phys. Rev. 117, 648 (1960).
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The low-temperature expansion of the properties of Fermi liquids is discussed within the framework of
Landau's theory. It is shown that the leading corrections to the low-temperature asymptotic forms come
mainly from the scattering of quasiparticles with small energy and momentum transfer, and that they are
proportional to T' for the inverse mean free times for thermal conductivity and spin diffusion, and to
T lnT for the speci6c heat. The energy and damping of a quasiparticle are calculated from the same point
of view. The special case of a nearly ferromagnetic Fermi liquid is considered explicitly, and comparison
is made with results already obtained from a Green's-function approach, from the random-phase approxi-
mation, and from the concept of "paramagnons. "

I. INTRODUCTIOH

' 'T has been known for some time' that at low tem-
~ - peratures the properties of liquid He' approach their
asymptotic Fermi-liquid. behavior rather slowly, and
recently it was suggested' ' that this is a consequence of

~ Work performed under the auspices of U. S. Atomic Energy
Commission.

t Part of this work was included in lectures at the University
of Sussex, England, in the Spring of 1967 and in a talk at the
Gordon Conference on "Dynamics of Quantum Solids and
Liquids, "Crystal Mountain, Washington, July 1967.' J. C. Wheatley, in Quaetum Flu@'s, edited by D. F. Brewer
(North-Holland Publishing Co., Amsterdam, 1966}.' S. Doniach and S. Engelsberg, Phys. Rev. Letters 17, 750
(1966);S. Doniach, S. Engelsberg, and M. J. Rice, in Proceedings
of the Teeth International Conference oe Low-Temperature Physics,
Moscmu, 1966 {VINITI, Moscow, 1967); N; F. Berk and J. R.

the fact that the exchange interaction is almost strong
enough to make the liquid ferromagnetic. The dominant
processes were imagined to be those in which a particle
emitted or absorbed. a persistent spin Quctuation or
"par amagnon. "

In particular, it was found that at temperature T
there were contributions proportional to T'lnT in the
speci6c heat' and to T' in the inverse mean free times
for thermal conductivity and spin diBusion. ' These
terms appeared with large coeKcients and seemed to be
of the right order of magnitude to account for the ob-
served properties of liquid He'.

Schrieifer, Phys. Rev. Letters 17, 443 (1966); in Proceedings of
the Teeth International Conference oe Leo-Temperature Physics,
3foscom, 1966 (VINITI, Moscow, 1967).

s M. J. Rice, Phys. Rev. 159, 153 (196/); 162, 189 (1967).
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The 6rst calculations'' were carried out in the
random-phase RppI'oxlmRtlon, but, in this pRpcx', thc
problem will be considered by means of Landau's
theory of a Fermi llsquid. 4 5 The Soltzmann equation, will

be used to obtain the transpoxt lifetimes and quasi-
particle damping. This approach clearly displays thc
ollgln of thc terms pI'opoltlonal to T RDd shows thRt

they do Dot require proximity to a ferromagnetic phase
transition, but, rather, they are a general feature of
Fermi systems and are a consequence of quasiparticle
scattering with small energy and momentum transfer.
The cocKcients may bc obtained in terms of the forward-

scattering amplitude which determines the equilibrium

properties, and they are particularly large when the
system is strongly coupled or nearly ferromagnetic. In
the latter case they have the same form as those ob-
tained by Rice, w'ith diGerent numerical factors.

The quasiparticle energy and the specific heat will

be deduced from the expression for the damping. The
result is very similar to that obtained by Amit, Kane,
8nd Wagner, 6 using R Greens-fUIKtion method. Thc
di6erencc appears to come from sca.ttering with large
moIDcDtum tx'RnsfcI', w'h1ch ls outside thc scope of thc
methods used here. Also, in either approach the coe%-
clcnt, of the Ts 1DT term ln the spcclGC 11cRt ls incom-

plete, since it depends in part upon the energy and

temperature dependence of the forward-scattering am-

plitude which determines the equilibrium properties,
and this is not known.

In an almost ferromagnetic llquld, thc impox'tant

feature is that quasiparticle scattering with small

energy and momentum transfer is analogous to critical
scattering of light ox' ncutx'ons from R systcID which is

close to a second-order, or continuous-phase-transition

point. Thc csscntlal diGcrcncc ls that, lD a trRnsport.

process, the scattered particle is identical to the

scatterer) and thc sylnmetry of thc SCRttcI'lng amplitudes

implies that thc backvrard scattering is critical also.
At 6rst sight, the calculation appears to be rather

diBercnt from thc paramagnoI1 Rppx'oRch —in fact, it
can be arranged to bring out either physical picture.
Thc advantage of using Fermi-liquid theory, apart from

the fact that it has been used very widely to under-

stand the properties of liquid Hc, is that, instead of

carrying out an approximate calculation on a Inodel

Hamiltonian with weak forces, one works with formally

exact relationships involving quantities which have some

connection with experiment. The other essential dif-

ference is that the particles which emit and absorb

paramagnons are assumed to be the bare fermions, ~

4A. A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys.
22, 329 (1959).

~ D. Hone, Phys. Rev. 121, 669 (1961);121, 1864 (1961).
s D. J. Amit, J. W. Kane, and H. Wagner, Phys. Rev. Letters

19, 425 (196'I); D. J. Amit, lectures presented at the Eighth
Scogtish Unj, yersjtjes Summer School in Physics, 1967 (to be
published).

r T. Izuyama, D. J. Kim, and R. Kubo, J. Phys. Soc. Japan
18, 1025 (1963),

whereas Fermi-liquid theory considers the scattering of
quasiparticlcs. Thus cvcry w'herc %'e shal'1 6nd that thc
full CGective mass at the Fermi surface replaces the
bare mass in the paramagnon results. ' This is a feature
of the work. Of Amit, Kanc, and Wagner' also.

Expressions for the scattering amplitudes and the
transport lifetimes wiH bc given in Sec, II. Section III
wi11 bc concerned with the lour-temperature expansion
of thc tI'Rnspolt cocKcicnts, Rnd Scc. IV with thc quRsl-
particle damping and energy and the speci6c heat of
the system.

D. SCATTEMÃG RATES IN THE
FERMI-LIQUID THEORY

ID this section, some of the results of Landau's theory
of a Fermi liquid will be discussed, in order to establish
the notation and state the assumptions.

The transport coeKcients are proportional to mean
free times ~, and at suKciently low temperatures they
Rl'c detcI'Inlned by col4sions of tw'o quaslpaI'tlclcs. Thc
momentum and energy will be denoted. by (yr, er) and

(ys, es) for the incoming quasiparticles and by (yr', er')
and (ys', es') for the outgoing quasiparticles.

It has been shown4 ' that at low temperatures

der' des' 8(sr+ es er" es—')ns(—es)

X (1—ns(sr')]$1 —Ns(ss') jW, (1)

where ns(e) is the equilibrium Fermi function and W' is

R w'clghtcd RvcI'Rgc scRttcx'1Qg I'Rtc which dcpcnds upoD
the transport process. For the thermal conductivity E,
thc vlscoslty gq RIll thc splD dlffuslon D2

sin8
d8 (1—cos8)w(8, y),

cosg8

)( (1—cos8)' sine&to(8, &), (3)

sin8
de

cos~8

X (1—cos8) (1—cosy)top) (8,y), (4)

where m* is the CGectivc ma, ss at the Fermi surface, 8

is the angle between yr and ys, and @ is the angle be-
tween the (yr, ys) plane and the (yt', ys') plane.

The scattering rates 2m and 2nD may be expressed in
terms of sca,ttellDg RIQplltudes 2@ RDd Ao, which ax'c,

respectively, even and odd under interchange of either
the incoming particles on the outgoing particles. Yo
lowest order in the temperature T, it is suKcient to
calculate F with the incoming particles on the Fermi
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The spin-dependent scattering amplitude may then be
written

A (1,2',s)=A (y&,o&, y2', e2, s)
=-', (3Ao+Az)+2(Ao —A2t)~i, o2, (10)

where e» and e2 are spin operators for the scattering
particles. It has been shown4 that, for small lool and

lql,
Ep

A (1,2',s) =C (1,2')+ Tr „dy2
82rp22

Po 0
&&8(po—pg)C (1,3) A(3,2',s), (11)

S—Po

where Xp is the density of states at the Fermi surface
and is equal to P2m~/2 Ao, and C (1,2') is the forward-
scattering amplitude which determines the equilibrium
properties. In Eq. (11) it is assumed that cv has a small
positive imaginary part.

Conventionally, C (1,2') is written in the form

XoC'(1$')=&(ya y2 )+Z(yl'y2 )&1'&2 ~ (12)

surface, and, indeed, this has been assumed in writing
down Eqs. (2)—(4). In that case, As and Ao are,
respectively, even and odd under change of sign of
cosP. Then, in Eq. (4),

2') ——(22r/i2) l
A a+A o

l

2 (5)

is the scattering rate for distinguishable particles, and,
in Eqs. (2) and. (3),

2w= (22r/h)[3lAol + lAzl j (6)

is the scattering rate for indistinguishable particles
with triplet and singlet spin weights. The alternative
expression

2~= (22r/i2)[lAz+Aol'+2lAol'g (7)

is often used. Here A @+Ao and 2A o are the scattering
amplitudes for antiparallel spins and parallel spins,
respectively. The two forms of w give the same results
for 7„and r~, since A~AO* and Ag*AO are odd func-
tions of cosp and so they do not contribute. However,
since Ag and A 0 are approximated by forward-scatter-
ing amplitudes, as is often done, the p dependence is
not treated correctly, and Eqs. (6) and. (7) will lead to
different values of 7„and v~.

It is possible to obtain some information about Ao
and A~ from the equilibruim properties. For this
purpose, it is desirable to use the variables p», p2' and
the momentum transfer q=y»' —p»=p2 —p2' to specify
the collision. For small lql, it turns out that q enters
through the variable

s= No*co/qp p,

where P2 is the Fermi momentum and ~ is the energy
transfer

where Es is the Fermi energy ps'/2222*. For small p and

l
2&' —o& l, Eq. (15) may be rewritten

6» —6»
S =

4@822 sin'28+ (22'—oi)2 sec'28

where q is related to s by Eq. (8).

(16)

III. LOW-TEMPERATURE EXPANSION OF
TRANSPORT COEFFICIENTS

The thermal conductivity will be considered erst, and
we shall calculate 5'~', which is the contribution to
Wz in Eq. (2) from the region 0(&(po, where po is
small enough for Eqs. (11) and (16) to be valid. It will

It is well known, ' that the averages Fp and Zp of F and Z
over the Fermi surface are determined by the first sound
velocity and spin susceptibility, respectively, and that
the average of F weighted with p» y2' over the Fermi
surface is d.etermined by m*. This is the only empirical
information available, but it may be supplemented by
enforcing condition that A 0 vanishes when y»

——y2.
Equation (11) gives an exact description of screening

of the equilibruim scattering amplitudes for small

l
o2' —oil and q. The paramagnon theory' ' uses the

random-phase approximation for this purpose. The
existing theory does not make any statement about
larger values of

l
oi' —oil or q except that Ao and A~

may be determined for g 2r (which is the same as

q 2P2 sin28) from their symmetry under change of
sign of cosp.

In order to consider a nearly ferromagnetic Fermi
liquid, explicit results will be quoted for the special
case in which F(yi y2') is zero and Z is a constant and
equal to Zo. Then Eq. (11) may be solved to give

2EoA o= —2EoAz= 42Zo/(1+x2Zo[1+n(s)]}, (13)

where
n(s)=-', s in[(s —1)/(s+1)g.

In a ferromagnetic Fermi liquid, 1+2oZo(0. In a nearly
ferromagnetic Fermi liquid, 1+xZo is positive but very
small, and the right-hand side of Eq. (13)becomes large
as s -+ 0. Note that Eq. (13) cannot be accurate, since
Ao should vanish when p»

——p~. It could be a good
approximation, if this condition were satisfied and. then,
as 8 increased, F and Z changed rapidly to the values
assumed, in Eq. (13).There is no reason to believe that
this is the case in liquid He, and Eq. (13) should be
regarded as an example for which the integrals may be
evaluated explicitly.

Finally, the relation between q and p will be required.
It will be suKcient to take both particles on the Fermi
surface, and then

og' —og i' 'i'
q2=2pso sin'-,'8 1—1—

l
cosp, (15)

Es sin8i
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sin8
(1—cos8)

cos-', 8

4'0 I ] ~l ~1 j

de w(8A) (17)

turn out that the quantities of interest will be inde-
pendent of Pp.

Since np(o) is a function of o/T, it follows from Eq. (1)
that fi/r may be obtained as a series in powers of T by
writing Wx as a series in powers of (oi' —oi). For this
purpose, it is not possible to expand the integrand in
Eq. (2), because, according to Eqs. (6), (10), (11), and
(16), w depends upon oi and ci' through s and so is a
function of («' —oi)'/p'. The first term of the expansion
is a constant and gives no trouble, but in all higher
orders the p integral in Kq. (2) diverges at the lower
limit. The divergence is a consequence of the expansion,
and it may be avoided by changing variables to
y=y/~ oi' —oi~. Then, from Kq. (2),

1 ~*3 lr

Wx'= —
( o,' o,—) d8

12 m'h'

where kii is Boltzmann's constant and t'(3) is Riemann's
zeta function of argument 3. In Sec. IV, it will be seen
that there may be an additional contribution from the
neighborhood of g=2pi, which cannot be calculated
from the theory presented here.

Ke now turn to the calculation of the other transport
coeKcients. In the case of the viscosity, there is a factor
sin'p in the integrand of Eq. (3), and, this removes the
divergence from the 6rst-order term in the expansion
of w(8, &) in powers of (oi' —oi)'/P, but not from higher
orders. The net result is that fi/r, is of the form
aT'+ cT4+dT'. The value of c depends upon scattering
for all p, but d may be calculated in the same way as
bz' was. The expression for d will not be quoted, since
it is not easy to determine it from experiment.

In the same way, the factor (1—cosp) which occurs in

Eq. (4) removes the contribution to the T' term in
vD ' for the neighborhood of &=0, but not for p=m.
Using Eq. (5) and the symmetry of A& and Ao, the
coeKcient of the T' term in 7D ' is

Now, to obtain the lowest order in
~

oi' —oi~, the
upper limit of the p integral may be extended to in6nity,
after integrating once by parts to ensure convergence:

1 m~' sin88'~'=— d8 (1—cos8)
12 x5A6 0 cos~8

bD'=—

where

7l.(3)k,om*o

Sg'ke

sin8
(1—cos8)

cos-', 8

OZOD

(21)

X low(8, eo) —)
oi'—«)

Ozo

. (»)
ay

Here w(8, &p) is to be evaluated with oi' —«——0. If
Kq. (18) is substituted into Eq. (1) and oi is set equal
to the chemical potential p, , v~ ' has the form

rx '=axTo+bxTo. (19)

In view of the symmetry about the Fermi surface,
A/rx is expected to be an even function of T, and in
fact, in Eq. (19), T' should. be written

~
T~ '. The appear-

ance of an odd power of T stems from the factor

~

oi' —oi
~

in Kq. (18), which, in turn, is a consequence of
the divergence at &=0 of the expansion of w(8, &) in
powels of (ol oi) ~

The T' term in Eq. (19) is the familiar result of Fermi-
liquid theory, although only a small part of the coeK-
cient uz has been calculated, since only the region
O~p&pp has been included. On the other hand, bx
is independent of po and the contribution from the
neighborhood of &=0 is given exactly. Since w(8, $) is
unchanged if P is replaced by pr —g, there is an equal
contribution from P pr, and, from Kqs. (1) and (18),
the total coeKcient of T' is given by

2wii ——(2pr/fi)
~
A io—A o

~

'. (22)

7&(3)ir' ks -'Z

32 kTp' 1+oZp
(23)

Once again, there may be an additional contribution
from the neighborhood of g=2ps. Equations (19)—(21)
constitute the main result, that the most important
corrections to the low-temperature Fermi-liquid-theory
expressions for the inverse mean free times for thermal
conductivity and spin diffusion are proportional to T'
and the coeKcients may be calculated from the forward-
scattering amplitudes which determine the equilibrium
properties (with the proviso about the region q 2p&).
The signiicance is that there may be experimentally
detectable departures from the low-temperature asym-
ptotic form v 1 ', even when T is much less than the
Fermi temperature Ti =Es/kii.

Note that it has not been assumed that the system
is near a ferromagnetic phase-transition point, but, if
it is, bz' and bD' may be evaluated explicitly, and they
are very large in magnitude. In general, the integrals in

Eqs. (20) and (21) must be carried out numerically, but,
if A o and A& are given by Eq. (13) and (1—oiZp)«1,
Eq. (20) becomes

12m'A'

sin8 O'N

X (1—cos8) ibid g, (20)
cosg8 o 84

and from Eqs. (21) and (22), br&'=2bx'. Both the
numerical coefFicient and the factor

~

1+4iZp~ ' make
bz' and bD' large, and the expansion of v. ' in powers of
T may not converge very rapidly. In fact, the whole

theory may not be valid if the system is too close to a
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ferromagnetic instability. The scattering of a quasi-
particle is analogous to critical scattering of light or
neutrons from a system near a second-order phase-
transition point, except that identity of the particles
leads to critical scattering in the backward, direction, as
well as at small angles. The method used here is
equivalent to the Ornstein-Zernicke theory, which is
known to be inadequate very near the transition. '

Equation (23) is very similar to the result first ob-
tained by Rice' from the paramagnon theory, although,
for several reasons, his numerical coeKcient was
different. He used 2'~ instead of 2m as the scattering
rate for E and omitted. the region P 0. An approximate
spectral function affected the numerical coefficients and
removed the T4 term in g. Also, Rice used a variation
principle to solve the Boltzmann equation, and this
leads to an additional, energy-dependent, factor in the
integrand in Eq. (1).The difference is a consequence of
approximations made in both approaches. As a result,
the T' term was multiplied by 12/5 in re ' and by
—,
' in ~D ' and v„'. The same factors have been found
by Saym and Ebner. ' A calculation based upon a more
accurate solution of the Boltzmann equation is in
progress and so the "variationaV' values of b~' and bD'

will not be quoted here. This question does not change
the origin of the T' terms except that there will be a
small T' term in the viscosity.

There is one other signi6cant di6erence. In the
paramagnon theory, it is insisted, that Ti in Eq. (23)
should be calculated with the bare mass m of the He'
atoms. From the point of view of Fermi-liquid theory,
we can see no reason why this shouM be so, and. the
method used in the present paper indicates that the
effective mass ms* should be used.

We have made no attempt to determine u~ and a~
or to calculate the transport coefficients at higher tem-
peratures, since this cannot be done without making
further assumptions about the behavior of the scatter-
ing amplitudes when TWO and ~eI~ and (q~ are not
small. Rice' used, a weak effective interaction and the
random-phase approximation for this purpose. In the
special case of a 8-function interaction, this amounts
to using the s=0= q scattering amplitudes for estimat-
ing a~ and uD. As mentioned above, there is an am-
biguity here for az, since either Eq. (6) or Eq. (7) could
be used.

Liquid, He' has an exchange integral of the appro-
priate sign and is not too close to a ferromagnetic insta-
bility, so the theory should apply. Experimentally, the
thermal conductivity is most accurately known, "and
at very low temperatures (rxT ) ' does seem to have a
term which is linear in T, and has a large coefficient. It
is not reasonable to compare Eq. (23) directly with

' See, for example, Critical Pheeomeeu, edited by M. S. Green
and J. V. Sengers, Natl. Bur. Std. (U. S.) Misc. Publ. No. 273
(196S).

9 G. Saym and C. Ebner (private communication).
'0 J. C. Wheatley, Phys. Rev. 165, 304 (1968).

experiments, since 14Ze(1+t4Ze) ', which varies from
—2 to —2.6 as the pressure is increased from 0.28 to
27 atm, is scarcely large enough for the approximation
to Eq. (20) to be valid. It is possible to make use of the
other limited experimental information about F(pt, p2 )
and Z(yt, pe') and to evaluate the integrals in Eqs. (20)
and (21) numerically. This has not been done at present
because the doubt about solution of the Boltzmann
equation, mentioned. above, is particularly serious for
the thermal conductivity, which happens to be the
transport coeKcient which is known best from experi-
ment. "Nevertheless, Eq. (20) does give the right order
of magnitude for bz, but, since He' is a strongly ( oupled
Fermi liquid, the existence of the e6'ect and the precise
magnitude of the coefficient cannot be attributed solely
to the proximity of liquid He' to a ferromagnetic
instability.

Bt (2s h)'
dp2lpj dp2

X8(pl+92 P1 p2 )B(et+ e2 et e2 )tt'

X lntne(1 —ni') (1—ne') —(1—ni) (1—n~)nt'nt'), (24)

where w is the symmetrized scattering rate of Eq. (6) and
the variables in the two-body collision are the same as
those defined in Sec. II.The notation e~ and nj' is used
for the nonequilibrium Fermi function for momentum
yt and pt', respectively. To order 1/1V (where E is the
number of particles), for p&yt', n may be replaced by
the equilibrium function eo and. e may be taken to be
the equilibrium energy. Then, using the properties of
ne, Eq. (24) may be rewritten

(25)Bnt/Bt= —(ni —ne(ei))/rt,

"P. Morel and P. Nozieres, Phys. Rev. 126, 1909 (1962).

EV. DAMPING AND ENERGY OF A
QUASIPARTICLE

The behavior of the scattering amplitudes for small

~

ei' —ei~ and q also gives rise to a T' lnT term in the
low-temperature specific heat, ' and. Amit, Kane, and
Wagner' have used a Green's-function method to
calculate its coeKcient. In this section, the problem
will be considered from the point of view of Fermi-
liquid theory. The d.amping of a quasiparticle will be
obtained. from the Boltzmann equation, and this will
lead to an expression for the quasiparticle energy and
hence the specific heat.

Suppose that the system is in equilibrium, and then,
at time t=0, a quasiparticle with momentum p~ is
added. At temperatures which are low enough for two-
body collisions to dominate, the relaxation time of this
nonequilibrium distribution is described by the Boltz-
mann equation4 "
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where

1 2

(2s h)'
dy2dP1'dP2'

EMER

Kqp is given by1/7i from the region q

2

d.,
(2s h)' pi'ps p

—Pi —Pp)~(pi+Ps —oi —op ioX8 Pi Po—Pi— 1
I

I
X no(pi

e
nXLno(pp)(i —no(pi')) 1—no po f.

ii
X 8(pp' —pi)w. (31)

m*pp')7 (26)

Im, (32)Im —A=A m
s Pp'q s

T4 t) oit contributes 0(e lected, since it coand, if ImC is neg
A/r, the imaginary part o q.

1 m*3
5'=— sin8

d8 io(8,$),
cos08

(27) Sp
Tr„dpaImA (1,2',s)=—

+(1—np(op))np(pi )np

Now
o remove the momentumpo

nction by in eg
h variables8and@use in

ri is given by Eq. (

thatence of v1is similar toerature dependenCe O v1

'"'"""'""""
h h l

'"b
dm arison wit t e

6 function is remove y
d th th

di texpr esse id n bipolar coor
'

1 3 8 oi' —oi— iA*(3,2',s)X8(p,—p,)C (1,3)

»~p dpi ~(p 0 P&Tr., 0
— C (1,3)

Bps

XImA (3,2',s) .

E . (33) with Eq. (11,Then, comparing E(I.

dP =— Pi Pid,P1 =—
pl 0 lP1 S'l l

"" l~(1,2„)=-Xp ua q
Tr., dpi b(pp pp)—

gpss

transfer, so thatthe momentum rawhere q is

)&8 e1'—e1— A (1,3,q)A*(3,2,s),*, 's (34)
pi'=pi+q,
po =pp'+q.

q qdq Imu(i, s), 35)
(~*/ng) I ~i'—~1 t

where
a (i,s) —3A o(,

additional contribution

f ir osmll alvauoesan1nor
e and. t eq'lt is necessary to exp

= (np(op') —no(pp)) (e~&"' "&—1no(po)(1 —no(po') = np op'—

the corresponding one for

—,b-"-,replacing e2' —e2

ch si e o . isfies Eq. (33).ch id of Eq. (34) sat

2', 1,s), an
b

qo

'll be set e 1 t

X

e ration wi e
s onding to

(3

N w using energy con

11$—)—A (11,s).

0
ll
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powers of
~

pl' —ol ~. The problem is similar to that en-

countered with the transport lifetimes, and it is neces-
sary to change variables from q to s, integrate once by
parts, and use the fact that Ima(1, s) is an odd. function
of s and is proportional to s for small $. Then keeping
lowest orders in

~

ol' —ol~ in the integrand,

correction to the quasiparticle energy has a logarithmic
term which may be obtained from the second order in
the expansion of a(1,s) in powers of s. If

a(1,s) = a(1,0)+a's'

the correction to the quasiparticle energy is

where
Nogo (Ima(1,s))

3p E k s i, p

(38)

dpi np(pl )+
g P(~1 ~1)

X (sl' pl)—(b+c~ pl' pl—[), (37)
168g' 0

dpi no(pl )+
~P (a'—~l)

(pl pl) nl
X (pl' —pl)' ln . (43)

p Filo

¹

16Eg'

'ds 8 Ima(1, s)
Ima(1, 1)—

p s 8$ s
(39)

In order to obtain the speci6c heat, he~ should be
evaluated for T/0, and keeping the terms which lead to
T' lnT in the specihc heat,

When T=O, Eq. (37) gives

@/rl= —sf'(ol —&)'—scl pl —~~' (40)

Equation (40) is analogous to Eq. (20), except that rl
has been evaluated at T=0 instead. of ~~= p. The doubts
which were expressed. in Sec. III about the solution of
the Boltzmann equation for transport processes do not
apply to the calculation of the quasiparticle lifetime,
and the contribution from the region q 0 to the coeK-
cient of the cubic term in Eq. (40) is given exactly.

The integral in Kq. (39) must be evaluated numer-
ically in general, but, for the special assumption of
Eq. (13), if 1+4Zp is small,

c= —(31r'/128EF') i-'„Zp/(1+-', Zp) i', (41)

and is very large. This result could have been obtained
directly from Eqs. (1), (13), (14), a,nd (27), and it is
the analog of Eq. (23).

The transformation from Eq. (31) to Eq. (35) is the
replacement of a transition rate by the imaginary part
of a forward-scattering amplitude, and it is, therefore,
a form of optical theorem. Since fl/rl is the imaginary
part of the quasiparticle energy, the real part should, be
obtained by substituting Rea(1,s) for Ima(1, s) in
Eq. (35). This statement is plausible, but it cannot be
proved. from what has been done here (for example, by
means of a dispersion relation), since Eq. (35) has been
derived for small e& only. Also, for the equilibrium
properties at finite temperatures, it is possible to deine
a quasiparticle energy which is purely real and does
not coincide with the complex energy of an added
quasiparticle. " However, the imaginary part of the
quasiparticle energy does not affect the T' lnT term in
the specific heat, and so, for present purposes, there is
no essential difference.

The real part of a(1,s) is an even function of s, and
it is not diflicult to see that, as a result, the leading

"R. Balian and C. de Domini|:is, Compt. Rend. 150, 3285
(1960);250, 4111 (1960);NucL Phys. 16, 502 (1960).

(Pl—P)m*
X(pl—p) ln (44)

The total single-particle energy is then

El= pl+Apl. (45)

where eo is a function of Ej.
Changing the sum to an integral, introd. ucing E~ as

variable of integration, and extending the lower limit of
integration to —~,

S 3 Epa' T' t' Els no*El
dE1 1—

~

3 +m' ln
48 TFs1 T' pFgp

X Lno lnno+ (1—no) 111(1—np)]. (47)

Then, keeping the lowest order in T and. the term pro-

' V. J. Emery, Ann. Phys. (N. Y.) 28, 1 (1964).

In obtaining Eq. (44), the energy and temperature
dependence of F(pl, ps') has been omitted. Its signif-
icance has been emphasized" in connection with the
interpretation of the speciic heat of liquid He', and
the requirement of Galilean invariance, ' when E~ has
the form given by Kqs. (44) and, (45), shows that it is
reflected in a(1,0) in Eq. (42) in such a way that the
coefficients of (pl —p)' and T'(pl Il) will be ch—anged.
The effect cannot be calculated from the theory
presented. here, since C is assumed to be given
phenomenologically.

If Eq. (44) is assumed for the moment, the change in
the speciic heat may be evaluated from the entropy

8= —2 Q (no lnnp+ (1—np) 111(1—np)$, (46)
Pl
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portional to lnT,

S T- ~2 T2 k Tm'-
1——Xou' ln

Tg 20 Tg' qoP»

from which the speciic heat is given by

(48)

Cg T 3+ T'
Xou'

g Tp 20 Tp'

kggTm*-
ln . (49)

qpPp

A similar result has been obtained by Amit, Kane,
and Wagner, ' who calculated the self-energy rather than
the single quasiparticle energy and also solved for the
special form of C(1,2') for which

~(y~~yo) =~o+~if i Po,
z(y&, yo) =Zp+Z&f z'P, .

This was chosen because Fo, F,, and Zo are known from
experiment, and Z& may be chosen so that A 0 vanishes
for p, =p2 when s=O=q.

Solving Eq. (11) and using Eqs. (8) and (36), Eq.
(47) gives for a'

where
~oa 4(4'0+4'1) (51)

yp
———-'[Pp'(1+ED —-', n Ep)+FP(1——,'ox'Fl) j

—-'[Zp'(1+Zg —-'m'Zp)+ZP(1 ——,', m'Zg)j (52)
and

with
4'1 Pp'1+oZ(811

~lIl�-
g1+F/(2l+1)

-'Z
~l

1+-'Zi(2l+1)

(53)

(54)

The real part of the self-energy Z(s,p~) of a quasi-
particle may be obtained in the present approach by
replacing o&

—p by o and Ima(i, s) by Reu(1,s) in Eq.
(35), and at T=O, assuming Eq. (50), the contribution
to ReZ(o, y~) is givenby

1
[('~.-l~)"+!~"( —)j

4Ep'
(o—p)m*

Xln
P»qo

(55)

The energy o& appearsin this equation because q y&jm*

has been rewritten in terms of e, and c,'.
Amit, Kane, and %agner' obtained two expressions

for thecontribution to ReZ(o, y~) from theneighborhood

of (=0, and they disagreed with each other and with
Eq. (55)~ It was pointed out, however, that there is a
further contribution from the neighborhood. of q=2pp,
and it was suggested that it be determined so that the
two ways of ending RebZ(o, y~) agreed, The result may
be obtained, by adding 4(lp+'oF&)p& to pp in Eq. (55),
and there is an analogous change in 5 and Cy. This
argument will be modined when the corrections to
Re8Z(o, y~) from theenergyan~™peraturedependence
of C are included. Also, the magnitude of the contribu-
tion from the neighborhood of q=2p~ depends strongly
upon thespecial assumption that F(y~,yo') and Z(y~, yo')
are given by Eq. (50)~ Presumably, in a more accurate
calculation there would be a residual discrepancy to be
attributed to the neighborhood of q 2pz, and. it will
aGect the lifetimes too. To take this region into account
would require an extension of the methods used here.

In the case of a nearly ferromagnetic Fermi liquid,
Zp is assumed to dominate and Eqs. (51)-(53) give
approximately

&on'= —-'~'~o', (56)

which is large and positive.
Asmentionedabove, Eq. (49) doesnotgive theentire

coeKcientof T lnT inC&. If Eq. (56) issubstitutedinto
Eq. (49) and Zp is calculated to 6rst order in the inter-
action, this coefficient divers by a factor of 3 from that
obtained by Brenig, Mikeska, and RiedeP4 and by
Brinkman and Engelsberg, '4 using the random-phase
approximation. The diGerence was attributed to a
"bosonlike" contribution from the paramagnons, "but
it may equally be interpreted as a consequence of the
temperature dependence of F(y~,yo'). This function
may consistently be calculated in the random-phase
approximation by functional differentiation, " so that
the formulas of Fermi-liquid theory apply.

The temperature and energy dependence of C does
not change the lifetimes, to the order in which they
have been calculated.
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