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pair of particles. Symbolically, K can be related to V
by the operator equation?®

K=V+VGGK, (7.10)

where G is the free-particle boson Green’s function in
the presence of the Bose condensation.® Under conditions
of a strong Bose condensation (Np>3>1), G can be written,
to a good approximation,

’I:G(l',t) = iGo(l',t)"‘Noe—'i”t y (71 1)

where G, is the empty-space free-particle Green’s
function. The second term takes account of the en-
hanced scattering into, or out of, the k=0 single-
particle state resulting from the Bose condensation.
Because of the presence of Ny in (7.11), the scattering
matrix K will be a function of density p and temperature
T (since N, changes with p and 7). One can take the
potential ¥, of this paper to be an effective scattering

29 K. A. Brueckner and K. Sawada, Phys. Rev. 106, 1117 (1957).
30 S, T. Beliaev, Zh. Eksperim. i Teor. Fiz. 34, 417 (1958)
[English transl.: Soviet Phys.—JETP 7, 289 (1958)].
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matrix, but then one must assume this effective V, to
change with temperature in some manner not considered
in the earlier equations of this section.

The second oversimplification results from neglecting
lifetime and renormalization effects, probably very
important in He*. The hyperspin formulation is in-
herently incapable of treating such effects. Exactly the
same situation is true with the isospin formulation of
superconductivity,’® the latter being incapable of
treating lifetime and renormalization effects in a strong-
coupling superconductor. Schrieffer and his coworkers3!
have achieved considerable success in treating such
effects by means of Nambu’s formulation of super-
conductivity®? in terms of matrix Green’s functions.
An analogous sort of treatment appropriate for the
many-boson problem is undoubtedly necessary for an
accurate calculation of superfluid helium at finite
temperatures.

# For a detailed discussion, see J. R. Schrieffer, Theory of
Superconductivity (W. A. Benjamin, Inc.,, New York, 1964),

Cha;;.[ 7.
8'Y. Nambu, Phys. Rev. 117, 648 (1960).
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The low-temperature expansion of the properties of Fermi liquids is discussed within the framework of
Landau’s theory. It is shown that the leading corrections to the low-temperature asymptotic forms come
mainly from the scattering of quasiparticles with small energy and momentum transfer, and that they are
proportional to % for the inverse mean free times for thermal conductivity and spin diffusion, and to
T3 InT for the specific heat. The energy and damping of a quasiparticle are calculated from the same point
of view. The special case of a nearly ferromagnetic Fermi liquid is considered explicitly, and comparison
is made with results already obtained from a Green’s-function approach, from the random-phase approxi-

mation, and from the concept of “paramagnons.”

I. INTRODUCTION

T has been known for some time! that at low tem-
peratures the properties of liquid He? approach their
asymptotic Fermi-liquid behavior rather slowly, and
recently it was suggested?3 that this is a consequence of

* Work performed under the auspices of U. S. Atomic Energy
Commission.

1 Part of this work was included in lectures at the University
of Sussex, England, in the Spring of 1967 and in a talk at the
Gordon Conference on “Dynamics of Quantum Solids and
Liquids,” Crystal Mountain, Washington, July 1967.

1J. C. Wheatley, in Quantum Fluids, edited by D. F. Brewer
(North-Holland Publishing Co., Amsterdam, 1966).

28, Doniach and S. Engelsberg, Phys. Rev. Letters 17, 750
(1966) ; S. Doniach, S. Engelsberg, and M. ]. Rice, in Proceedings
of the Tenth International Conference on Low-Tem perature Physics,
Moscow, 1966 (VINITI, Moscow, 1967); N. F. Berk and J. R.

the fact that the exchange interaction is almost strong
enough to make the liquid ferromagnetic. The dominant
processes were imagined to be those in which a particle
emitted or absorbed a persistent spin fluctuation or
‘“‘paramagnon.”

In particular, it was found that at temperature T
there were contributions proportional to 73InT in the
specific heat? and to T in the inverse mean free times
for thermal conductivity and spin diffusion.® These
terms appeared with large coefficients and seemed to be
of the right order of magnitude to account for the ob-
served properties of liquid He?.

Schrieffer, Phys. Rev. Letters 17, 443 (1966); in Proceedings of
the Tenth International Conference on Low-Temperature Physics,

Moscow, 1966 (VINITI, Moscow, 1967).
# M. J. Rice, Phys. Rev. 159, 153 (1967); 162, 189 (1967),
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The first calculations®® were carried out in the
random-phase approximation, but, in this paper, the
problem will be considered by means of Landau’s
theory of a Fermi liquid.*® The Boltzmann equation will
be used to obtain the transport lifetimes and quasi-
particle damping. This approach clearly displays the
origin of the terms proportional to 7% and shows that
they do not require proximity to a ferromagnetic phase
transition, but, rather, they are a general feature of
Fermi systems and are a consequence of quasiparticle
scattering with small energy and momentum transfer.
The coefficients may be obtained in terms of the forward-
scattering amplitude which determines the equilibrium
properties, and they are particularly large when the
system is strongly coupled or nearly ferromagnetic. In
the latter case they have the same form as those ob-
tained by Rice,* with different numerical factors.

The quasiparticle energy and the specific heat will
be deduced from the expression for the damping. The
result is very similar to that obtained by Amit, Kane,
and Wagner,® using a Green’s-function method. The
difference appears to come from scattering with large
momentum transfer, which is outside the scope of the
methods used here. Also, in either approach the coeffi-
cient of the T8 InT term in the specific heat is incom-
plete, since it depends in part upon the energy and
temperature dependence of the forward-scattering am-
plitude which determines the equilibrium properties,
and this is not known.

In an almost ferromagnetic liquid, the important
feature is that quasiparticle scattering with small
energy and momentum transfer is analogous to critical
scattering of light or neutrons from a system which is
close to a second-order, or continuous-phase-transition
point.” The essential difference is that, in a transport
process, the scattered particle is identical to the
scatterer, and the symmetry of the scattering amplitudes
implies that the backward scattering is critical also.

At first sight, the calculation appears to be rather
different from the paramagnon approach—in fact, it
can be arranged to bring out either physical picture.
The advantage of using Fermi-liquid theory, apart from
the fact that it has been used very widely to under-
stand the properties of liquid He?, is that, instead of
carrying out an approximate calculation on a model
Hamiltonian with weak forces, one works with formally
exact relationships involving quantities which have some
connection with experiment. The other essential dif-
ference is that the particles which emit and absorb
paramagnons are assumed to be the bare fermions 3

4 A, A. Abrikosov and I. M. Khalatnikov, Rept. Progr. Phys.
22, 329 (1959).

8 D. Hone, Phys. Rev. 121, 669 (1961); 121, 1864 (1961).

6 D. J. Amit, J. W. Kane, and H. Wagner, Phys. Rev. Letters
19, 425 (1967); D. J. Amit, lectures presented at the Eighth
Scottish Universities Summer School in Physics, 1967 (to be
published).

7T, Tzuyama, D, J. Kim, and R. Kubo, J. Phys. Soc. Japan
18, 1025 (1963).
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whereas Fermi-liquid theory considers the scattering of
quasiparticles. Thus every where we shall find that the
full effective mass at the Fermi surface replaces the
bare mass in the paramagnon results.® This is a feature
of the work of Amit, Kane, and Wagner® also.

Expressions for the scattering amplitudes and the
transport lifetimes will be given in Sec. II. Section III
will be concerned with the low-temperature expansion
of the transport coefficients, and Sec. IV with the quasi-
particle damping and energy and the specific heat of
the system.

II. SCATTERING RATES IN THE
FERMI-LIQUID THEORY

In this section, some of the results of Landau’s theory
of a Fermi liquid will be discussed, in order to establish
the notation and state the assumptions.

The transport coefficients are proportional to mean
free times 7, and at sufficiently low temperatures they
are determined by collisions of two quasiparticles. The
momentum and energy will be denoted by (p1,&1) and
(p2,e2) for the incoming quasiparticles and by (py/,e)
and (py,e’) for the outgoing quasiparticles.

It has been shown*® that at low temperatures

r‘1=/ d62/ de;’/ de’ (e e2— e’ — €2 )0 (€2)
X[1=no(e”) JL1—=no(e)IW, (1)

where no(e) is the equilibrium Fermi function and W is
a weighted average scattering rate which depends upon
the transport process. For the thermal conductivity K,
the viscosity 5, and the spin diffusion D,

1 m*s . T
W= — / d¢/ o
127588 J 0
sinf

3 m*3 T T
Wy=—— / deo ] dg
327%h8 /o o cosif

X (1—cosb)? sin®pw (0,6) ,

1 m*3 T 7' sind
Wp=—— / de [ d9

8wsht J o  cosif

X (1—cosf) (1—cosp)wp (0,0), (4)

where m* is the effective mass at the Fermi surface, 6
is the angle between p; and ps, and ¢ is the angle be-
tween the (ps,p2) plane and the (py/,py’) plane.

The scattering rates 2w and 2wp may be expressed in
terms of scattering amplitudes 4z and 4 o, which are,
respectively, even and odd under interchange of either
the incoming particles on the outgoing particles. To
lowest order in the temperature 7, it is sufficient to
calculate W with the incoming particles on the Fermi

inf

(1—cost)w(6,9),  (2)

s
cos30

®3)
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surface, and, indeed, this has been assumed in writing
down Egs. (2)-(4). In that case, Ag and Ao are,
respectively, even and odd under change of sign of
cos¢. Then, in Eq. (4),

2wp= 2x/h)| Ap+Ao|? (5)

is the scattering rate for distinguishable particles, and,
in Egs. (2) and (3),

2w= 2x/B)3|40|*+|4&|*] (6)

is the scattering rate for indistinguishable particles
with triplet and singlet spin weights. The alternative
expression

2w= (2r/M)[| Ae+A4o|*+2|40]%] )

is often used. Here Ag+A4 0 and 24 are the scattering
amplitudes for antiparallel spins and parallel spins,
respectively. The two forms of w give the same results
for 7, and 7x, since Ag4 o* and A5*4 o are odd func-
tions of cos¢ and so they do not contribute. However,
since A g and 4 o are approximated by forward-scatter-
ing amplitudes, as is often done, the ¢ dependence is
not treated correctly, and Egs. (6) and (7) will lead to
different values of 7, and 7x.

It is possible to obtain some information about 4o
and Ag from the equilibruim properties. For this
purpose, it is desirable to use the variables py, po’ and
the momentum transfer q=p,’—p1=p.—p.’ to specify
the collision. For small |q|, it turns out that q enters
through the variable

s=m*w/qpr, (8)

where pr is the Fermi momentum and  is the energy
transfer
W= €1’— €1. (9)

The spin-dependent scattering amplitude may then be
written
A4(1,2'5)=A(pr,01; p,02; 5)
= %(31‘1 0+A E)+2 (A o—AE)(H,O'z N (10)

where o, and o9 are spin operators for the scattering
particles. It has been shown* that, for small |w| and

al,
,lq(iu )=&(1,2)+ Mo /d
’ )= )2 re
ya S 8upr? 3 P3

Xo(ps—pr)@(1,3)

a

S'—Ps

?”{4 3,2,9, (1)

where N, is the density of states at the Fermi surface
and is equal to prm*/x?%3, and ®(1,2’) is the forward-
scattering amplitude which determines the equilibrium
properties. In Eq. (11) it is assumed that w has a small
positive imaginary part.

Conventionally, ®(1,2") is written in the form

Ne®(1,2")=F (pr- p)+Z(p1-pe)o1 0. (12)
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It is well known,* that the averages Foand Z, of F and Z
over the Fermi surface are determined by the first sound
velocity and spin susceptibility, respectively, and that
the average of F weighted with p;-ps’ over the Fermi
surface is determined by m*. This is the only empirical
information available, but it may be supplemented by
enforcing condition that 4 ¢ vanishes when p;=p,.

Equation (11) gives an exact description of screening
of the equilibruim scattering amplitudes for small
|e’—e| and g. The paramagnon theory?3 uses the
random-phase approximation for this purpose. The
existing theory does not make any statement about
larger values of |&’—ei| or ¢ except that Ao and A g
may be determined for ¢~= (which is the same as
g~2prpsinjf) from their symmetry under change of
sign of cose.

In order to consider a nearly ferromagnetic Fermi
liquid, explicit results will be quoted for the special
case in which F(p;-py’) is zero and Z is a constant and
equal to Zo. Then Eq. (11) may be solved to give

2Nod o= —3NoAr=1Zo/{1+31Z[1+a(s)]},

where

(13)

a(s)=%s In[(s—1)/(s+1)].

In a ferromagnetic Fermi liquid, 14+%Z¢<0. In a nearly
ferromagnetic Fermi liquid, 1432, is positive but very
small, and the right-hand side of Eq. (13) becomes large
as s — 0. Note that Eq. (13) cannot be accurate, since
Ao should vanish when p;=p.. It could be a good
approximation, if this condition were satisfied and then,
as 0 increased, F and Z changed rapidly to the values
assumed in Eq. (13). There is no reason to believe that
this is the case in liquid He?, and Eq. (13) should be
regarded as an example for which the integrals may be
evaluated explicitly.

Finally, the relation between g and ¢ will be required.
It will be sufficient to take both particles on the Fermi
surface, and then

61”—51 2-1/2
q2=2ppzsin2%0{1—[1—< ):I cos¢}, (15)

Epsinf

(14)

where Er is the Fermi energy p#2/2m*. For small ¢ and
|&’—e], Eq. (15) may be rewritten

(e’ —€1)?

§?= s
4¢2E p* sin?20-} (e1'— e1)? sec?38

(16)

where ¢ is related to s by Eq. (8).

III. LOW-TEMPERATURE EXPANSION OF
TRANSPORT COEFFICIENTS

The thermal conductivity will be considered first, and
we shall calculate Wx® which is the contribution to
Wk in Eq. (2) from the region 0S¢=¢,, where ¢, is
small enough for Egs. (11) and (16) to be valid. It will



208

turn out that the quantities of interest will be inde-
pendent of ¢o.

Since no(¢) is a function of ¢/7, it follows from Eq. (1)
that /7 may be obtained as a series in powers of T by
writing Wx as a series in powers of (ei'—e). For this
purpose, it is not possible to expand the integrand in
Eq. (2), because, according to Egs. (6), (10), (11), and
(16), w depends upon ¢ and ¢’ through s and so is a
function of (&1’— €1)?/¢?. The first term of the expansion
is a constant and gives no trouble, but in all higher
orders the ¢ integral in Eq. (2) diverges at the lower
limit. The divergence is a consequence of the expansion,
and it may be avoided by changing wvariables to
é=¢/| e’ —e|. Then, from Eq. (2),

51n0

do/|e1’—e1]
(1= cosf) / Bw@s). (7)

cosze

Now, to obtain the lowest order in |e&/—e|, the
upper limit of the ¢ integral may be extended to infinity,
after integrating once by parts to ensure convergence:

*3 T

( 1— cosh)
cos20

© _ _dw
X[‘Po’w(e,(ﬁo)“ led'— 611/ dé ¢——::| (18)
0 d¢

Here w(8,¢0) is to be evaluated with ¢'—e=0. If
Eq. (18) is substituted into Eq. (1) and ¢ is set equal
to the chemical potential u, 7x~ has the form

=agT?4bkT3. (19)

In view of the symmetry about the Fermi surface,
#/7x is expected to be an even function of 7, and in
fact, in Eq. (19), 73 should be written | T'|% The appear-
ance of an odd power of T stems from the factor
| e’ —e1| in Eq. (18), which, in turn, is a consequence of
the divergence at ¢=0 of the expansion of w(f,¢) in
powers of (e’ —e1).

The 7% term in Eq. (19) is the familiar result of Fermi-
liquid theory, although only a small part of the coeffi-
cient ¢x has been calculated, since only the region
0=¢=¢o has been included. On the other hand, bx
is independent of ¢o and the contribution from the
neighborhood of ¢=0 is given exactly. Since w(6,¢) is
unchanged if ¢ is replaced by m—¢, there is an equal
contribution from ¢~m, and, from Egs. (1) and (18),
the total coefficient of 7% is given by

T R)ksim*® 7
Bkl / o
127548 0

(1 coso)/ d¢¢——— (20)

c052
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where kg is Boltzmann’s constant and {(3) is Riemann’s
zeta function of argument 3. In Sec. IV, it will be seen
that there may be an additional contribution from the
neighborhood of ¢g=2pr, which cannot be calculated
from the theory presented here.

We now turn to the calculation of the other transport
coefficients. In the case of the viscosity, there is a factor
sin’p in the integrand of Eq. (3), and this removes the
divergence from the first-order term in the expansion
of w(f,¢) in powers of (e’ — e1)?/¢?, but not from higher
orders. The net result is that #/7, is of the form
aT?+c¢T*+dT%. The value of ¢ depends upon scattering
for all ¢, but d may be calculated in the same way as
bx’ was. The expression for d will not be quoted, since
it is not easy to determine it from experiment.

In the same way, the factor (1—cos¢) which occurs in
Eq. (4) removes the contribution to the 7% term in
7p! for the neighborhood of ¢=0, but not for ¢=r.
Using Eq. (5) and the symmetry of Az and 4o, the
coefficient of the 7% term in 7p7* is

70 (3)ksm*® o7
R / a0
8nd#S 0

<1~cose> / d¢¢—-3, @1)

cos2

2Wp= (ZW/ﬁ)IAE~Ao|2.

where
(22)

Once again, there may be an additional contribution
from the neighborhood of ¢=2pr. Equations (19)-(21)
constitute the main result, that the most important
corrections to the low-temperature Fermi-liquid-theory
expressions for the inverse mean free times for thermal
conductivity and spin diffusion are proportional to 7%
and the coefficients may be calculated from the forward-
scattering amplitudes which determine the equilibrium
properties (with the proviso about the region g~2pr).
The significance is that there may be experimentally
detectable departures from the low-temperature asym-
ptotic form 7~T~2, even when 7 is much less than the
Fermi temperature T'p= Er/ksz.

Note that it has not been assumed that the system
is near a ferromagnetic phase-transition point, but, if
it is, bx’ and bp’ may be evaluated explicitly, and they
are very large in magnitude. In general, the integrals in
Egs. (20) and (21) must be carried out numerically, but,
if Ao and A4z are given by Eq. (13) and (1—3Z0)<1,
Eq. (20) becomes

3

7¢(3)w® ks ’ 23)

32 ATy

iZo
1+1Z,

and from Egs. (21) and (22), bp'=2bg’. Both the
numerical coefficient and the factor ]1—|~1Z0| —% make
bx’ and bp’ large, and the expansion of 7 in powers of
T may not converge very rapidly. In fact, the whole
theory may not be valid if the system is too close to a

~

K==
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ferromagnetic instability. The scattering of a quasi-
particle is analogous to critical scattering of light or
neutrons from a system near a second-order phase-
transition point, except that identity of the particles
leads to critical scattering in the backward direction, as
well as at small angles. The method used here is
equivalent to the Ornstein-Zernicke theory, which is
known to be inadequate very near the transition.?

Equation (23) is very similar to the result first ob-
tained by Rice? from the paramagnon theory, although,
for several reasons, his numerical coefficient was
different. He used 2wp instead of 2w as the scattering
rate for K and omitted the region $~0. An approximate
spectral function affected the numerical coefficients and
removed the T* term in 7. Also, Rice used a variation
principle to solve the Boltzmann equation, and this
leads to an additional, energy-dependent, factor in the
integrand in Eq. (1). The difference is a consequence of
approximations made in both approaches. As a result,
the T? term was multiplied by 12/5 in 74 and by
% in 75! and 7,7 The same factors have been found
by Baym and Ebner.? A calculation based upon a more
accurate solution of the Boltzmann equation is in
progress and so the ‘““variational” values of bx’ and bp’
will not be quoted here. This question does not change
the origin of the 7° terms except that there will be a
small 7% term in the viscosity.

There is one other significant difference. In the
paramagnon theory, it is insisted that T'r in Eq. (23)
should be calculated with the bare mass m of the He?
atoms. From the point of view of Fermi-liquid theory,
we can see no reason why this should be so, and the
method used in the present paper indicates that the
effective mass m* should be used.

We have made no attempt to determine ¢k and ep
or to calculate the transport coefficients at higher tem-
peratures, since this cannot be done without making
further assumptions about the behavior of the scatter-
ing amplitudes when 70 and |w| and |q| are not
small. Rice?® used a weak effective interaction and the
random-phase approximation for this purpose. In the
special case of a §-function interaction, this amounts
to using the s=0=g¢ scattering amplitudes for estimat-
ing ax and ap. As mentioned above, there is an am-
biguity here for ak, since either Eq. (6) or Eq. (7) could
be used.

Liquid He® has an exchange integral of the appro-
priate sign and is not too close to a ferromagnetic insta-
bility, so the theory should apply. Experimentally, the
thermal conductivity is most accurately known,!® and
at very low temperatures (7x7?)! does seem to have a
term which is linear in T, and has a large coefficient. It
is not reasonable to compare Eq. (23) directly with

8 See, for example, Critical Phenomena, edited by M. S. Green
%?3651) V. Sengers, Natl. Bur. Std. (U. S.) Misc. Publ. No. 273

? G, -Baym and C. Ebner (private communication).

107, C. Wheatley, Phys. Rev. 165, 304 (1968).
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experiments, since $Zo(1-+3Zo)*, which varies from
—2 to —2.6 as the pressure is increased from 0.28 to
27 atm, is scarcely large enough for the approximation
to Eq. (20) to be valid. It is possible to make use of the
other limited experimental information about F(ps,p.’)
and Z(p;,p2’) and to evaluate the integrals in Egs. (20)
and (21) numerically. This has not been done at present
because the doubt about solution of the Boltzmann
equation, mentioned above, is particularly serious for
the thermal conductivity, which happens to be the
transport coefficient which is known best from experi-
ment.!? Nevertheless, Eq. (20) does give the right order
of magnitude for bk, but, since He? is a strongly <oupled
Fermi liquid, the existence of the effect and the precise
magnitude of the coefficient cannot be attributed solely
to the proximity of liquid He* to a ferromagnetic
instability.

IV. DAMPING AND ENERGY OF A
QUASIPARTICLE

The behavior of the scattering amplitudes for small
ler’—e1]| and ¢ also gives rise to a 7% InT term in the
low-temperature specific heat,? and Amit, Kane, and
Wagner® have used a Green’s-function method to
calculate its coefficient. In this section, the problem
will be considered from the point of view of Fermi-
liquid theory. The damping of a quasiparticle will be
obtained from the Boltzmann equation, and this will
lead to an expression for the quasiparticle energy and
hence the specific heat.

Suppose that the system is in equilibrium, and then,
at time /=0, a quasiparticle with momentum p; is
added. At temperatures which are low enough for two-
body collisions to dominate, the relaxation time of this
nonequilibrium distribution is described by the Boltz-
mann equation®*

ony 2

ot (2 7)8

/ dpadpy/dpy’

X8(p1tpe— pr'— p2)o(ert e2— &' — &' )w
X[nma(1—n1)(1—n)— (1—n1) (1—ng)ni'n,"], (24)

where w is the symmetrized scattering rate of Eq. (6) and
the variables in the two-body collision are the same as
those defined in Sec. I1. The notation #; and »," is used
for the nonequilibrium Fermi function for momentum
p: and py/, respectively. To order 1/N (where N is the
number of particles), for p#~p,’, #» may be replaced by
the equilibrium function 7 and ¢ may be taken to be
the equilibrium energy. Then, using the properties of
no, Eq. (24) may be rewritten

an1/6t= — (n;-—-no(q))/'rl, (25)

1P, Morel and P. Nozieres, Phys. Rev. 126, 1909 (1962).
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where

1 2

— dp2dpi/dps’
T1 (21rh)5/ *prape

Xo(prtpe—pr/'—p)o(ertea— e’ — & )w
X [1o(e2) (1—70(er’)) (1 —70(e'))
+(1—n0(e2))no(er)mo(e)].  (26)
Now it is possible to remove the momentum &
function by integration over p,’ and then to introduce

the variables 6 and ¢ used in Secs. IT and IT1, to find that
71 is given by Eq. (1), withtt

=" a0 es). @D
=— —w (0,0
87r5h6/(; o  cos3f ’

and the temperature dependence of 7, is similar to that
of 7%, discussed in Sec. III. However, the integrations
will be carried out in a rather different way, in order to
obtain the real part of the quasiparticle energy and to
make a comparison with the results obtained by Amit,
Kane, and Wagner.®

First, the momentum é function is removed by inte-
gration over ps, and then the p, integration may be
expressed in bipolar coordinates:

2r r* p1’+p1
/ dpy/=— / pi'dpy / qdy, (28)
p1Jo Ip1—p1l
where ¢ is the momentum transfer, so that
’
= + ,
Py Pi q (29)
p=p'+q.

The Fermi functions in Eq. (26) imply that the
dominant contribution to the integral comes for p,’
near pr, and so, in Eq. (28), p1’dp,’ may be replaced by
m*de) and |p)/—p1| by m*| e’ —e|/pr. Since we are
interested in small momentum transfers, the upper
limit of integration will be set equal to go, which is a
cutoff corresponding to ¢ in Sec. IIIL.

Now, using energy conservation, e;+ex= e’ ¢’, and
Eq. (29) for small g,

no(e2) (1—no(e2)) = (mo(ex’) —1o(ez)) (e~ —1)~1

ano(ezl)

~ ——ﬁz'. q (eBla’—en—1)-1, (30)
23

Making this substitution and the corresponding one for
no(es)(1—no(e2)) in Eq. (26), using Eq. (28), and
replacing e'—ez by —q-py’/m*, the contribution to
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1/7 from the region ¢=¢o is given by
h 2

/ ded
70 (21rh)5p1lpp 0

1 2
Xl:’no(éll)"["—“—"“—:lf qu/dpzl
eBla’—ea) 1 (m*/pp) ler/—e1

P’ q q-p2
% Z*a(e;—el— 2)s<p2'—p1)w. 31)

m m*

m*z

Now

1
Im———A4 = A* Tn——+

s—pP3 g s—psq s—ps ¢

and, if Im® is neglected, since it contributes O(7*) to
#/7, the imaginary part of Eq. (11) is

Imd, (32)

Ny
ImA (1,2,s)= —g———z Tr,,/dps

P F

Ps-q Ps-q
X3 pr)B(1 I o/ e JA¥(3.2,)
m

m*

psq
s—ps-q
XImA (3,2',s).

Then, comparing Eq. (33) with Eq. (11),

Ny
4t / dps 3(po— pr)®(1,3)

F

(33)

Ps-q
m*

Ny
ImA (1,2',S)= _—— TI'“/dpa 5(?3—'?17')
8?1«*2
Ps-q
Xs(el'— E1'_‘3_*'>A (133>Q)A*(3)2’:S) ’ (34)
m
since each side of Eq. (34) satisfies Eq. (33).
From ®(2',1)=®(1,2") and Eq. (11) it follows that
A(1,2',5)=A4(2',1,5), and then, using Egs. (6), (10),
and (34), Eq. (31) may be rewritten

i No r*® 1
—_— / dé]_l [no(el,)-i"—-—'—]
T 4P F2 0 PLIC LV, |

q0
Xf qdqIma(l,s), (35)
(m*/pp) ler’—e1|
where
a(1,5)=340(1,1,5)—Ae(1,1,5). (36)

Note that there is no additional contribution
analogous to that from the region ¢~ in Sec. III. This
corresponds to the neighborhood of p’=p;, and it has
already been taken into account by carrying out the
p:’ integral with the aid of Eq. (11), which is exact.

In order to find %/7; for small values of T and | e1—p/,
it is necessary to expand the ¢ integral in Eq. (35) in
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powers of |e/’—e|. The problem is similar to that en-
countered with the transport lifetimes, and it is neces-
sary to change variables from ¢ to s, integrate once by
parts, and use the fact that Ima(1,s) is an odd function
of s and is proportional to s for small s. Then keeping
lowest orders in |ei’—e;| in the integrand,

h ® 1
—_— —-/ d61l [‘ﬂo(él')—l'—_—]
T1 0 eBla’—e) _q

X(e'—e) (0+cle’—el), (37)
where N Ima(Ls)
ma(l,s
bl (—-———) : 38)
3PFEF S 8=0

N [Ima(l,l)— 1fl;s_a_____1ma(1,s):|. 39)

EF2 0o § as S

When I'=0, Eq. (37) gives
h/mi=—3b(e1—p)*—%c| e1—ul®. (40)

Equation (40) is analogous to Eq. (20), except that =,
has been evaluated at 7'=0 instead of ¢;=pu. The doubts
which were expressed in Sec. IIT about the solution of
the Boltzmann equation for transport processes do not
apply to the calculation of the quasiparticle lifetime,
and the contribution from the region g~0 to the coeffi-
cient of the cubic term in Eq. (40) is given exactly.

The integral in Eq. (39) must be evaluated numer-
ically in general, but, for the special assumption of
Eq. (13), if 1432, is small,

c=—@n*/128E) |32/ (1+1Z0)[*,  (41)

and is very large. This result could have been obtained
directly from Egs. (1), (13), (14), and (27), and it is
the analog of Eq. (23).

The transformation from Eq. (31) to Eq. (35) is the
replacement of a transition rate by the imaginary part
of a forward-scattering amplitude, and it is, therefore,
a form of optical theorem. Since #/7; is the imaginary
part of the quasiparticle energy, the real part should be
obtained by substituting Ree(l,s) for Imea(l,s) in
Eq. (35). This statement is plausible, but it cannot be
proved from what has been done here (for example, by
means of a dispersion relation), since Eq. (35) has been
derived for small ¢ only. Also, for the equilibrium
properties at finite temperatures, it is possible to define
a quasiparticle energy which is purely real and does
not coincide with the complex energy of an added
quasiparticle? However, the imaginary part of the
quasiparticle energy does not affect the 7% InT term in
the specific heat, and so, for present purposes, there is
no essential difference.

The real part of a(1,5) is an even function of s, and
it is not difficult to see that, as a result, the leading

2R, Balian and C. de Dominicis, Compt. Rend. 150, 3285
(1960) ; 250, 4111 (1960) ; Nucl. Phys. 16, 502 (1960).
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correction to the quasiparticle energy has a logarithmic
term which may be obtained from the second order in
the expansion of a(1,s) in powers of s. If

a(1,5)=a(1,0)+d's?, (42)
the correction to the quasiparticle energy is
Noa' 0 1
A€1= _ / del’ [no(éll)-l"—————]
16E# Jo efla’—e) —1
(51'—' el)m*
X(e'—e€1)?In 43)
Prgo

In order to obtain the specific heat, Ae; should be
evaluated for 750, and keeping the terms which lead to
T3 InT in the specific heat,

(a—p)p T?
A€1= %Noa'[ 2—']
T# T#
(er—p)m*
X (e—p) In|——|. (44)
P rqo
The total single-particle energy is then
E1= 61+A61. (45)

In obtaining Eq. (44), the energy and temperature
dependence of F(pi,p.’) has been omitted. Its signif-
icance has been emphasized® in connection with the
interpretation of the specific heat of liquid He? and
the requirement of Galilean invariance, when E; has
the form given by Eqgs. (44) and (45), shows that it is
reflected in ¢(1,0) in Eq. (42) in such a way that the
coefficients of (e;—u)® and 7%(e;—pu) will be changed.
The effect cannot be calculated from the theory
presented here, since ® is assumed to be given
phenomenologically.

If Eq. (44) is assumed for the moment, the change in
the specific heat may be evaluated from the entropy

S=—23 [nolnngt (1—no) In(1—no)], (46)

where 7, is a function of E;.

Changing the sum to an integral, introducing E; as
variable of integration, and extending the lower limit of
integration to — «,

PFqo ]

Noa/ T2 E12
dE]_ [1— "‘“"(3 |1 112) ln
48 T\ T2
(47)

X [noInne+ (1—n0) In(1—n4) .

S 3

N 2TrJ) -

m*E 1

Then, keeping the lowest order in 7" and the term pro-

13V. J. Emery, Ann. Phys. (N. Y.) 28, 1 (1964).



212 V. J.

], (48)

vy ] (49)

A similar result has been obtained by Amit, Kane,
and Wagner,® who calculated the self-energy rather than
the single quasiparticle energy and also solved for the
special form of #(1,2") for which

F(py,p)=Fo+Fipi-py,

Z(pl,pz') = Zo+Z1131 : ﬁz' .

This was chosen because Fy, Fy, and Z, are known from

experiment, and Z; may be chosen so that 4 ¢ vanishes
for py=p; when s=0=gq.

Solving Eq. (11) and using Egs. (8) and (36), Eq.

(47) gives for o’
(1)

portional to InT,

S T w2 T2
R L P
N T 20 T ¢

kBTm*

Qopr
from which the specific heat is given by
372 T2  |kpTm*

Cy T
—= %ﬁ——[l ——No'—In
N T Tid 2 T

(50)

Nod'= - 4(¢0+¢I) )
where
o= —3[F¢(1+P1— P+ P (1—dsrF1)]
—3Ze¢(V\+Z1— 50 Z0)+Z2(1—F6nZ1)]  (52)

and o o
d1=3FoF1+3Z0Z1, (53)
with
_ F
= r oy
: (54)
_ iZ1
L=,
1+3Z:(2041)

The real part of the self-energy =(e,p1) of a quasi-
particle may be obtained in the present approach by
replacing e;—u by e and Ime(l,s) by Rea(l,s) in Eq.
(35), and at T=0, assuming Eq. (50), the contribution
“to ReZ(e,py) is given by

1
RedZ (e,p1)= [Gpo—id1) e+t (er—p) ]
AE?
(e—p)m*
Xln l———-————— (55)
Prqo

The energy e; appears in this equation because q-p/m*
has been rewritten in terms of ¢ and &'

Amit, Kane, and Wagner® obtained two expressions
for the contribution to ReZ (¢,p;) from the neighborhood
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of ¢g=0, and they disagreed with each other and with
Eq. (55). It was pointed out, however, that there is a
further contribution from the neighborhood of ¢=2pp,
and it was suggested that it be determined so that the
two ways of finding RedZ (e,p1) agreed, The result may
be obtained by adding :(Fo+3F1)¢1 to ¢o in Eq. (55),
and there is an analogous change in S and Cy. This
argument will be modified when the corrections to
RedZ (e,p1) from the energy and temperature dependence
of ® are included. Also, the magnitude of the contribu-
tion from the neighborhood of g=2pr depends strongly
upon the special assumption that F(py,ps’) and Z (p1,ps’)
are given by Eq. (50). Presumably, in a more accurate
calculation there would be a residual discrepancy to be
attributed to the neighborhood of ¢=~2pr, and it will
affect the lifetimes too. To take this region into account
would require an extension of the methods used here.
In the case of a nearly ferromagnetic Fermi liquid,
Z, is assumed to dominate and Egs. (51)-(53) give
approximately
Noal= —%1r2203 s

(56)

which is large and positive.

As mentioned above, Eq. (49) does not give the entire
coefficient of 7% InT in Cy. If Eq. (56) is substituted into
Eq. (49) and Z, is calculated to first order in the inter-
action, this coefficient differs by a factor of 3 from that
obtained by Brenig, Mikeska, and Riedel* and by
Brinkman and Engelsberg,* using the random-phase
approximation. The difference was attributed to a
“bosonlike” contribution from the paramagnons,* but
it may equally be interpreted as a consequence of the
temperature dependence of F(pi,p.’). This function
may consistently be calculated in the random-phase
approximation by functional differentiation,!® so that
the formulas of Fermi-liquid theory apply.

The temperature and energy dependence of ® does
not change the lifetimes, to the order in which they
have been calculated.
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